

Reference Specification

Type KX Series P (Safety standard certified ceramic capacitor)

DATE: Apr. 20, 2012

Product specifications in this drawing are subject to change or our products described in this drawing may be discontinued without advance notice.

The parts numbers and specifications listed in this drawing are for information only. You are requested to transact the "Approval Sheet for Product Specification", before your ordering.

Engineering Section Capacitor Division 2 Izumo Murata Manufacturing Co., Ltd. Do not use these products in any Automotive Power train or Safety equipment including Battery charger for Electric Vehicles and Plug-in Hybrid.

Only Murata products clearly stipulated as "for Automotive use" on its product specification can be used for automobile applications such as Power train and Safety equipment.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

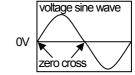
When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of $\phi 0.1$ mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.


(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V. - See the right figure -

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

\triangle NOTE

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to following safety standard certified ceramic capacitor Type KX. Type KX is Safety Standard Certified disc ceramic capacitor of Class X1,Y1.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL	UL60384-14	E37921	300
CSA	CSA E60384-14	1343810	300
VDE	IEC60384-14, EN60384-14	40002831	300
BSI	EN60065 (8.8,14.2), IEC60384-14, EN60384-14	KM 37901	300
SEMKO		1200074	300
DEMKO	JE000004.44	D01004	300
FIMKO	IEC60384-14, EN60384-14	24191	300
NEMKO	EN00304-14	P12215096	300
ESTI		12.0094	300
IMQ	EN60384-14	V4069	300

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2-1. Operating temperature range

2-2. Part number configuration

ex.) <u>DE1</u>	E3	KX	472	M	TM	B	P28F
Product	Temperature	Type	Capacitance	Capacitance	Lead	Packing	Individual
code	characteristic	name		tolerance	code	style code	specification

• Product code

DE1 denotes X1,Y1 class.

• Temperature characteristic

Code	Temperature characteristic
B3	В
E3	E

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type KX.

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 472.

$$47 \times 10^2 = 4700 pF$$

- Capacitance tolerance
 Please refer to [Part number list].
- Lead code

Code	Lead style		
A*	Vertical crimp long type		
T*	Vertical crimp short type		
N*	Vertical crimp taping type		

^{*} Please refer to [Part number list]

• Packing style code

9 - 1,10 - 0 - 0 - 0						
Code	Packing type					
В	Bulk type					
Α	Ammo pack taping type					

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at

the end of part number.

	-					
Code	Specification					
P04F	 Rated voltage : AC300V(r.m.s.) Body thickness(T) : 5.0mm max. Halogen free 					
P28F	Br ≤ 900ppm, Cl ≤ 900ppm Br + Cl ≤ 1500ppm CP wire	Tolerance of lead space : ±0.5mm				

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(KX) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

Nominal capacitance : 3 digit system

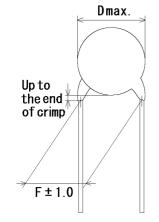
Capacitance tolerance : Code
Type name : KX
Rated voltage mark : 300~
Class code : X1Y1
Halogen free mark : \H

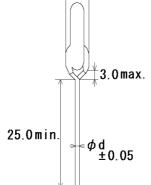
Manufacturing year : Letter code(The last digit of A.D. year.)

Manufacturing month : Code

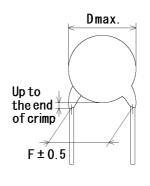
Feb./Mar. \rightarrow 2 Aug./Sep. \rightarrow 8 Apr./May \rightarrow 4 Oct./Nov. \rightarrow O Dec./Jan. \rightarrow D

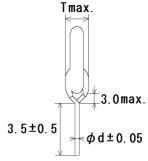
Company name code : (Made in Taiwan), (Made in Thailand)


(Example)

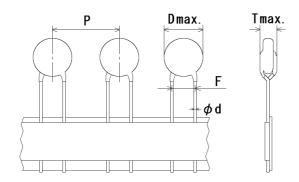


4. Part number list


·Vertical crimp long type (Lead code:A*)


-Vertical crimp short type
(Lead code:T*)

Tmax.



Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

									Utill .	ШШ
T.C.	Cap.	Cap.	Customer Dort Number	Murata Part Number		Dimension (mm)				Pack
1.0.	(pF)	tol.	Customer Part Number	Murata Part Number	D T F		d	code	qty. (pcs)	
В	100	±10%		DE1B3KX101KA4BP04F	7.0	5.0	10.0	0.6	A4	250
В	150	±10%		DE1B3KX151KA4BP04F	7.0	5.0	10.0	0.6	A4	250
В	220	±10%		DE1B3KX221KA4BP04F	8.0	5.0	10.0	0.6	A4	250
В	330	±10%		DE1B3KX331KA4BP04F	7.0	5.0	10.0	0.6	A4	250
В	470	±10%		DE1B3KX471KA4BP04F	7.0	5.0	10.0	0.6	A4	250
В	680	±10%		DE1B3KX681KA4BP04F	8.0	5.0	10.0	0.6	A4	250
Е	1000	±20%		DE1E3KX102MA4BP04F	7.0	5.0	10.0	0.6	A4	250
Е	1500	±20%		DE1E3KX152MA4BP04F	8.0	5.0	10.0	0.6	A4	250
Е	2200	±20%		DE1E3KX222MA4BP04F	9.0	5.0	10.0	0.6	A4	250
Е	3300	±20%		DE1E3KX332MA4BP04F	10.0	5.0	10.0	0.6	A4	250
Е	4700	±20%		DE1E3KX472MA4BP04F	12.0	5.0	10.0	0.6	A4	200
В	100	±10%		DE1B3KX101KTMBP28F	7.0	5.0	10.0	0.6	TM	500
В	150	±10%		DE1B3KX151KTMBP28F	7.0	5.0	10.0	0.6	TM	500
В	220	±10%		DE1B3KX221KTMBP28F	8.0	5.0	10.0	0.6	TM	500
В	330	±10%		DE1B3KX331KTMBP28F	7.0	5.0	10.0	0.6	TM	500
В	470	±10%		DE1B3KX471KTMBP28F	7.0	5.0	10.0	0.6	TM	500
В	680	±10%		DE1B3KX681KTMBP28F	8.0	5.0	10.0	0.6	TM	500
Е	1000	±20%		DE1E3KX102MTMBP28F	7.0	5.0	10.0	0.6	TM	500
Е	1500	±20%		DE1E3KX152MTMBP28F	8.0	5.0	10.0	0.6	TM	500
Е	2200	±20%		DE1E3KX222MTMBP28F	9.0	5.0	10.0	0.6	TM	500
Е	3300	±20%		DE1E3KX332MTMBP28F	10.0	5.0	10.0	0.6	TM	500
E	4700	±20%		DE1E3KX472MTMBP28F	12.0	5.0	10.0	0.6	TM	250

Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

									O 1 111 C .			
Сар.	Сар.	Customer Part Number	Musete Dest Nuseber		· ·				ension (mm)			Pack
(pF)	tol.	Customer Part Number	Widiala Fait Number	D	Т	F	d	Р	code	qty. (pcs)		
100	±10%		DE1B3KX101KN4AP04F	7.0	5.0	10.0	0.6	25.4	N4	500		
150	±10%		DE1B3KX151KN4AP04F	7.0	5.0	10.0	0.6	25.4	N4	500		
220	±10%		DE1B3KX221KN4AP04F	8.0	5.0	10.0	0.6	25.4	N4	500		
330	±10%		DE1B3KX331KN4AP04F	7.0	5.0	10.0	0.6	25.4	N4	500		
470	±10%		DE1B3KX471KN4AP04F	7.0	5.0	10.0	0.6	25.4	N4	500		
680	±10%		DE1B3KX681KN4AP04F	8.0	5.0	10.0	0.6	25.4	N4	500		
1000	±20%		DE1E3KX102MN4AP04F	7.0	5.0	10.0	0.6	25.4	N4	500		
1500	±20%		DE1E3KX152MN4AP04F	8.0	5.0	10.0	0.6	25.4	N4	500		
2200	±20%		DE1E3KX222MN4AP04F	9.0	5.0	10.0	0.6	25.4	N4	500		
3300	±20%		DE1E3KX332MN4AP04F	10.0	5.0	10.0	0.6	25.4	N4	500		
4700	±20%		DE1E3KX472MN4AP04F	12.0	5.0	10.0	0.6	25.4	N4	500		
	(pF) 100 150 220 330 470 680 1500 2200 3300	(pF) tol. 100 ±10% 150 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 2200 ±20% 3300 ±20%	(pF) tol. Customer Fart Number 100 ±10% 150 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 2200 ±20% 3300 ±20%	(pF) tol. Customer Fart Number Mutata Fart Number 100 ±10% DE1B3KX101KN4AP04F 150 ±10% DE1B3KX221KN4AP04F 220 ±10% DE1B3KX331KN4AP04F 470 ±10% DE1B3KX471KN4AP04F 680 ±10% DE1B3KX681KN4AP04F 1000 ±20% DE1E3KX102MN4AP04F 1500 ±20% DE1E3KX222MN4AP04F 2200 ±20% DE1E3KX332MN4AP04F 3300 ±20% DE1E3KX332MN4AP04F	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D 100 ±10% DE1B3KX101KN4AP04F 7.0 150 ±10% DE1B3KX151KN4AP04F 7.0 220 ±10% DE1B3KX221KN4AP04F 8.0 330 ±10% DE1B3KX331KN4AP04F 7.0 470 ±10% DE1B3KX471KN4AP04F 7.0 680 ±10% DE1B3KX681KN4AP04F 8.0 1000 ±20% DE1E3KX102MN4AP04F 7.0 1500 ±20% DE1E3KX222MN4AP04F 9.0 3300 ±20% DE1E3KX332MN4AP04F 10.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T 100 ±10% DE1B3KX101KN4AP04F 7.0 5.0 150 ±10% DE1B3KX151KN4AP04F 7.0 5.0 220 ±10% DE1B3KX221KN4AP04F 8.0 5.0 330 ±10% DE1B3KX331KN4AP04F 7.0 5.0 470 ±10% DE1B3KX471KN4AP04F 7.0 5.0 680 ±10% DE1B3KX681KN4AP04F 8.0 5.0 1000 ±20% DE1E3KX102MN4AP04F 7.0 5.0 1500 ±20% DE1E3KX222MN4AP04F 9.0 5.0 3300 ±20% DE1E3KX332MN4AP04F 10.0 5.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T F 100 ±10% DE1B3KX101KN4AP04F 7.0 5.0 10.0 150 ±10% DE1B3KX151KN4AP04F 7.0 5.0 10.0 220 ±10% DE1B3KX221KN4AP04F 8.0 5.0 10.0 330 ±10% DE1B3KX471KN4AP04F 7.0 5.0 10.0 470 ±10% DE1B3KX681KN4AP04F 8.0 5.0 10.0 680 ±10% DE1B3KX102MN4AP04F 8.0 5.0 10.0 1000 ±20% DE1E3KX152MN4AP04F 8.0 5.0 10.0 2200 ±20% DE1E3KX222MN4AP04F 9.0 5.0 10.0 3300 ±20% DE1E3KX332MN4AP04F 10.0 5.0 10.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T F d 100 ±10% DE1B3KX101KN4AP04F 7.0 5.0 10.0 0.6 150 ±10% DE1B3KX151KN4AP04F 7.0 5.0 10.0 0.6 220 ±10% DE1B3KX221KN4AP04F 7.0 5.0 10.0 0.6 330 ±10% DE1B3KX331KN4AP04F 7.0 5.0 10.0 0.6 470 ±10% DE1B3KX471KN4AP04F 7.0 5.0 10.0 0.6 680 ±10% DE1B3KX102MN4AP04F 8.0 5.0 10.0 0.6 1000 ±20% DE1E3KX152MN4AP04F 8.0 5.0 10.0 0.6 2200 ±20% DE1E3KX222MN4AP04F 9.0 5.0 10.0 0.6 3300 ±20% DE1E3KX332MN4AP04F 10.0 5.0 10.0 0.6	(pF) tol. Consistent Part Number Description Text of part Number Description Description Description Text of part Number Description Description <td>Cap. (pF) Cap. tol. Customer Part Number Murata Part Number Dimension (mm) Lead code 100 ±10% DE1B3KX101KN4AP04F 7.0 5.0 10.0 0.6 25.4 N4 150 ±10% DE1B3KX151KN4AP04F 7.0 5.0 10.0 0.6 25.4 N4 220 ±10% DE1B3KX221KN4AP04F 8.0 5.0 10.0 0.6 25.4 N4 330 ±10% DE1B3KX331KN4AP04F 7.0 5.0 10.0 0.6 25.4 N4 470 ±10% DE1B3KX471KN4AP04F 7.0 5.0 10.0 0.6 25.4 N4 680 ±10% DE1B3KX681KN4AP04F 8.0 5.0 10.0 0.6 25.4 N4 1000 ±20% DE1E3KX102MN4AP04F 7.0 5.0 10.0 0.6 25.4 N4 2200 ±20% DE1E3KX222MN4AP04F 9.0 5.0 10.0 0.6 25.4 N4 3300</td>	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number Dimension (mm) Lead code 100 ±10% DE1B3KX101KN4AP04F 7.0 5.0 10.0 0.6 25.4 N4 150 ±10% DE1B3KX151KN4AP04F 7.0 5.0 10.0 0.6 25.4 N4 220 ±10% DE1B3KX221KN4AP04F 8.0 5.0 10.0 0.6 25.4 N4 330 ±10% DE1B3KX331KN4AP04F 7.0 5.0 10.0 0.6 25.4 N4 470 ±10% DE1B3KX471KN4AP04F 7.0 5.0 10.0 0.6 25.4 N4 680 ±10% DE1B3KX681KN4AP04F 8.0 5.0 10.0 0.6 25.4 N4 1000 ±20% DE1E3KX102MN4AP04F 7.0 5.0 10.0 0.6 25.4 N4 2200 ±20% DE1E3KX222MN4AP04F 9.0 5.0 10.0 0.6 25.4 N4 3300		

		144 0 1		elerence on	• ,						
	pecification and		C	cification	- 1			Toot -	nothed		
<u>No.</u> 1	Appearance and o		No marked defect on appearance form and dimensions.			Test method The capacitor should be inspected by naked eyes for visible evidence of defect.					
				Part number lis	t].	Dime	ensions sho	uld be me	asured wit	h slide cali	ipers.
3	Marking Dielectric	Between lead	To be easily le No failure.	gible.			capacitor sl				es.
J	strength Between lead wires		No fallule.			AC4 lead	000V(r.m.s wires for 60	.)<50/60Hz 0 s.	z> is applie	ed betweer	n the
		Body	No failure.				rge/Discha the termin				
		insulation	No failule.				ected toge		Japacitoi 3	N∥	
							, a metal fo		e	V	
							ely wrapped ody of the		Metal &	Λ	
						to the	e distance o	of	foil 📈		bout to 6 mi
							t 3 to 6mm			<u>%%</u> %% №	1etal
							each termi				alls
						conta	ainer filled v				
						diam	eter. ly, AC4000	V (rm e)<	50/60Hz>	ie annlied	for
							between th				
	Inculation Deal 1		10,000:15				. (Charge/E				:41-
4	Insulation Resista	nce (I.K.)	10 000MΩ min	-			nsulation re 00±50V wit				with
							voltage sho				
	Consider		\A/(4b ! '0'	al Anines			gh a resist			1 100:5	
5	Capacitance		Within specified tolerance.				capacitance 1kHz and A			a at 20°C v	with
6	Dissipation Factor	(D.F.)	2.5% max.				dissipation			asured at 2	20°C
		•					1±0.1kHz a				
7	Temperature char	acteristic					capacitance sten sneci			ld be made	e at
						each step specified in Table.					
						4			7		
						1 2 3 4 5					
						20±2 -25±2 20±2 85±2 20±2					
8	Active flammability	Active flammability The cheese-cloth should not b		oth should not be	;		capacitors				
			on fire.				one but me se-cloth. To				
						to 20	discharge	s. The inte	rval betwe	en success	
							narges shout tained for 2				
						04.5	F	. L1 L2	,	R	
						<u>81</u>		┱═┰═		$^{\neg}\bigcirc$	/
						\sim	JM P ⊘ C	1 C2 T C	³†°×†	"十 术	. Ut
							Tr 102	 	▘ ╵╁		
									냭	Osciloscope	
						C1,2	: 1սF+1	10%, C3:	0.033uF+	5% 10kV	
						,	L4 : 1.5ml	H±20% 16/	A Rod core	choke	
						R		±2%, Ct : 3			
						UAc Cx	: UR ±5 : Capac	itor under	Rated vol	age	
						F	: Fuse,	Rated 10A	١		
						Ut	: Voltag	e applied	to Ct		
							Ux				
								5kV T			
									\sim		
										time	
										uille	

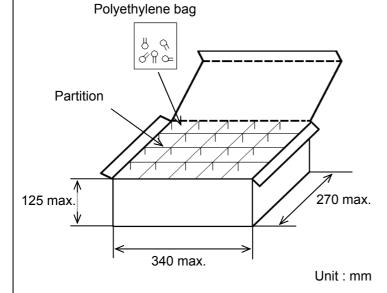
			Reference only	
No. 9	Item		Specification	Test method
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, a tensile weight gradually to each lead wire in the radial direction of
	torrimations		Capacitor cricara flot be broken.	capacitor up to 10N and keep it for 10±1 s.
		Bending		With the termination in its normal position, the
				capacitor is held by its body in such a manner that
				the axis of the termination is vertical; a mass
				applying a force of 5N is then suspended from the end of the termination.
				The body of the capacitor is then inclined,
				within a period of 2 to 3 s, through an angle of
				approximately 90° in the vertical plane and then
				returned to its initial position over the same period of time; this operation constitutes one bend.
				One bend immediately followed by a second bend
				in the opposite direction.
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the
	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to 55Hz in the vibration frequency range,1.5mm in
		D.F.	2.5% max.	total amplitude, and about 1min in the rate of
				vibration change from 10Hz to 55Hz and back to
				10Hz is applied for a total of 6 h; 2 h each in
11	Solderability of lead	le .	Lead wire should be soldered	3 mutually perpendicular directions.
''	Soluer ability or lead	15	With uniformly coated on the	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into
			axial direction over 3/4 of the	molten solder for 2±0.5 s. In both cases the depth of
			circumferential direction.	dipping is up to about 1.5 to 2.0mm from the root of
				lead wires.
				Temp. of solder: 245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
				235±5°C H63 Eutectic Solder
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5±0.5 s
		change I.R.	1000M Ω min.	(In case of 260±5°C : 10±1 s)
		Dielectric	Per item 3	The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires.
		strength		- Oursilian
				Thermal Capacitor insulating
				1.5 to 2.0mm
				Molten
				solder
				Pre-treatment : Capacitor should be stored at
				85±2°C for 1 h, then placed at
				*1room condition for 24±2 h
				before initial measurements.
				Post-treatment: Capacitor should be stored for 1 to 2 h at *1 room condition.
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C
	(On-preheat)	Capacitance	Within ±10%	for 60+0/-5 s.
		change	1000110	Then, as in figure, the lead wires should be immersed solder of 260+0/-5°C up to 1.5 to 2.0mm
		I.R. Dielectric	1000M Ω min. Per item 3	from the root of terminal for 7.5+0/-1 s.
		strength	i di ildiii 3	
				Thermal Capacitor insulating
				1.5
				to 2.0mm
				Molten solder
				Pre-treatment : Capacitor should be stored at
				85±2°C for 1 h, then placed at
				*1room condition for 24±2 h
				before initial measurements.
				Post-treatment: Capacitor should be stored for 1 to 2 h at *1 room condition.
*1 "roo	om condition" Temper	rature: 15 to 35°0	L C, Relative humidity: 45 to 75%, Atm	ospheric pressure: 86 to 106kPa

			Reference only	
No.	Item)	Specification	Test method
14	Flame test		The capacitor flame discontinue as follows.	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycle.
			Cycle Time 1 to 4 30 s max. 5 60 s max.	Capacitor Flame Gas Burner
15	Passive flammabilit		The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas: Butane gas Purity 95% min. About 8mm Gas burner About 10mm thick board
16	Humidity	Appearance	No marked defect.	Set the capacitor for 500±12 h at 40±2°C in 90 to
	(Under steady state)	Capacitance change	Char. B: Within ±10% Char. E: Within ±15%	95% relative humidity. Post-treatment: Capacitor should be stored for 1 to
		D.F.	5.0% max.	2 h at *1 room condition.
		I.R.	3 000MΩ min.	-
		Dielectric strength	Per item 3	
17	Humidity loading	Appearance	No marked defect.	Apply the rated voltage for 500±12 h at 40±2°C in
		Capacitance	Char. B: Within ±10%	90 to 95% relative humidity.
		change	Char. E: Within ±15%	1
		D.F.	5.0% max.	Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
		I.R.	3000M $Ω$ min.	1
		Dielectric	Per item 3	1
		strength		
1 "ro	om condition" Tempe	rature: 15 to 35°0	C. Relative humidity: 45 to 75%, Atm	ospheric pressure: 86 to 106kPa

^{*1 &}quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

0.	Item Life		Spacification				Test m	nethad		
		Appearance	Specification No marked defect.	In	nnulea	voltag		i c ti iUU		
		Capacitance	Within ±20%					hould he	subjected to a	
		change	VVIUIII /0							
		I.R.	3000MΩ min.		8kV impulses for three times. Then the capacitors are applied to life test.					
		Dielectric	Per item 3		6					
		strength	T et item 5		10	(%)	F	ront time (T1)) = 1.2 μ s=1.67T	
		Suchgui		Time to half-value (T2) = 50μ s						
					50 30 0 TT1					
				Т2						
					The capacitors are placed in a circulating air oven					
					for a period of 1000 h.					
					The air in the oven is maintained at a temperature					
					of 125+2/-0 °C, and relative humidity of 50% max.					
					Throughout the test, the capacitors are subjected to a AC510V(r.m.s.)<50/60Hz> alternating voltage					
				of	f main	e fregu	n.s.)<50/60Hz> alternating voltage			
					of mains frequency, except that once each hour the voltage is increased to AC1 000V(r.m.s.) for 0.					
				"	.0 10.0	ago io i	110100000	, 10 1 000	(1.111.0.) 101 0.	
				Po	ost-tre	atmen	t : Capacito	r should b	be stored for 1	
		<u> </u>					2 h at *1r	oom cond	lition.	
	Temperature and	Appearance	No marked defect.						o 5 temperatu	
i	immersion cycle	Capacitance change	Char. B: Within ±10%	Су	ycles,	then co	onsecutively	to 2 imme	ersion cycles.	
			Char. E: Within ±20%		_					
		D.F.	5.0% max.		1empe	erature	cycle>			
		D.F.	5.0% IIIax.			Step	Temperatu	ıre(°C)	Time	
						1	-25+0	/-3	30 min	
		I.R.	3000MΩ min.			2	Room te		3 min	
		Dielectric	Per item 3			3	+125+3		30 min	
		strength				4	Room te	emp.	3 min	
				lr	Immer Step	sion cy	/cle>	Time	Immersion	
					ОССР	iciiik	Derature(C)	111110	water	
					1	+6	35+5/-0	15 min	Clean	
				-					water	
					2		0±3	15 min	Salt water	
				L					•	
								Cy	cle time : 2 cy	
				D	Pre-treatment : Capacitor should be				ne stored at	
				' '	16-1166	aument			en placed at	
							*1room c	andition fo	or 24±2 h.	
							100111 0	orialition is	J. 21=211.	
				Po	ost-tre	atmen	t: Capacito	r should b	oe stored for 4	
							24 h at *	¹ room coi	ndition.	
"roor	m condition" Temper	ature: 15 to 35°0	C, Relative humidity: 45 to 75%,	Atmospl	heric	oressur	re: 86 to 106	kPa		

6.Packing specification

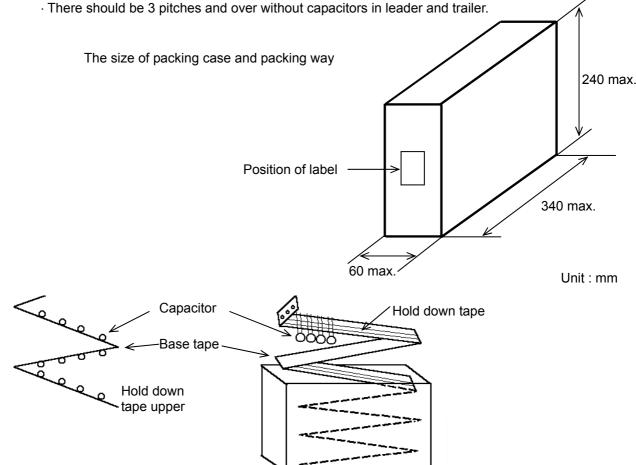

•Bulk type (Packing style code : B)

The size of packing case and packing way

The number of packing = *1 Packing quantity *2 n

*1 : Please refer to [Part number list].

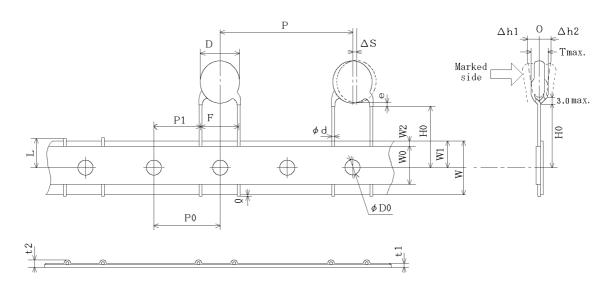
*2 : Standard n = 20 (bag)



Note)

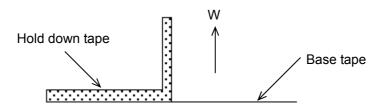
The outer package and the number of outer packing be changed by the order getting amount.

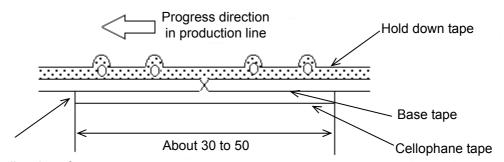
•Ammo pack taping type (Packing style code : A)


- · The tape with capacitors is packed zigzag into a case.
- \cdot When body of the capacitor is piled on other body under it.

7. Taping specification

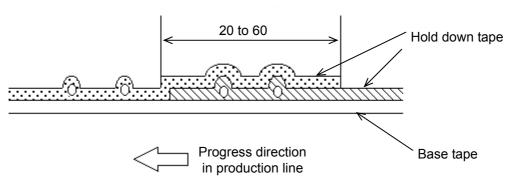
7-1. Dimension of capacitors on tape


Vertical crimp taping type < Lead code : N4 > Pitch of component 25.4mm / Lead spacing 10.0mm


1	i				
Code	Dimensions	Remarks			
Р	25.4±2.0				
P0	12.7±0.3				
F	10.0±1.0				
P1	7.7±1.5				
D	Please refer to [Part number list].				
ΔS	0±2.0	They include deviation by lead bend .			
W	18.0±0.5				
W1	9.0±0.5	Deviation of tape width direction			
ЦО	10.0 2.0				
HU	10.U±0				
Q	+0.5~-1.0				
φD0	4.0±0.1				
φd	0.60±0.05				
t1	0.6±0.3				
t2	1.5 max.	They include hold down tape thickness.			
∆h1	0.0				
∆h2	2.0 max.				
L	11.0± ⁰ _{1.0}				
W0	11.5 min.				
W2	1.5±1.5				
е	Up to the end of crimp				
Т	Please refer to [Part number list].				
	P P0 F P1 D ΔS W W1 H0 Q φD0 φd t1 t2 Δh1 Δh2 L W0 W2 e	P 25.4±2.0 P0 12.7±0.3 F 10.0±1.0 P1 7.7±1.5 D Please refer to [P ΔS 0±2.0 W 18.0±0.5 W1 9.0±0.5 H0 18.0± $_0^{2.0}$ Q +0.5~-1.0 φD0 4.0±0.1 φd 0.60±0.05 t1 0.6±0.3 t2 1.5 max. Δh1 Δh2 L 11.0± $_0^{0.0}$ W0 11.5 min. W2 1.5±1.5 e Up to the end of contractions are series as a series and series are series as a series are series are series as a series are series as a series are series are series as a series are series are series as a series are seri			

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

8. Standard of Outgoing Inspection Please refer to Appendix: "OUTGOING INSPECTION AQL STANDARD / DISC CERAMIC CAPACITORS HIGH VOLTAGE"(SKMKE01).	