

SGM5349-16 8 Channels, 16-Bit, SPI Interface, Voltage-Output Digital-to-Analog Converter

GENERAL DESCRIPTION

The SGM5349-16 is a 16-bit, 8 channels, voltageoutput digital-to-analog converter (DAC). The chips are guaranteed monotonic by design.

The chips have a power-on control circuit, which can make sure DAC has a fixed output when system is powered on. The SGM5349A-16 outputs 0V when system powers up. The SGM5349M-16 outputs midscale when system powers up.

The chips have an nLDAC pin which can let DAC update outputs simultaneously.

The chips have an nCLR pin which can let DAC update to a configurable state, zero-code, midscale, or full-scale.

The SGM5349-16 uses a 3-wire SPI-compatible interface, and its operation data rate is up to 50MHz.

The SGM5349-16 is available in Green TSSOP-16 and TQFN-4×4-16L packages.

FEATURES

- Power Supply Range: 2.7V to 5.5V
- Power Down to 1µA at 5.5V
- Monotonicity Guaranteed by Design
- Power-On Reset to Zero-Scale or Midscale
- 3 Power-Down Modes
- Hardware nLDAC Function
- nCLR Function to Programmable Code
- Rail-to-Rail Buffered Voltage-Output Operation
- Available in Green TSSOP-16 and TQFN-4×4-16L Packages

APPLICATIONS

Battery Testing Equipment Process Control Programmable Voltage and Current Sources Data Acquisition Systems

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SCM5240A 16	TSSOP-16	-40°C to +125°C	SGM5349A-16XTS16G/TR	SGMCEF XTS16 XXXXX	Tape and Reel, 4000
3GI03349A-10	SGM5349A-16 TQFN-4×4-16L		SGM5349A-16XTQE16G/TR	SGMCED XTQE16 XXXXX	Tape and Reel, 3000
SCM5240M 46	TSSOP-16	-40℃ to +125℃	SGM5349M-16XTS16G/TR	SGMON3 XTS16 XXXXX	Tape and Reel, 4000
SGM5349M-16	TQFN-4×4-16L	-40°C to +125°C	SGM5349M-16XTQE16G/TR	SGMON2 XTQE16 XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXXXX

Vendor Code

- Trace Code

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Input Voltage Range	0.3V to 6.5V
Digital Input Voltage Range	0.3V to V_{CC} + 0.3V
Output Voltage Range	0.3V to V_{CC} + 0.3V
Reference Input Voltage Range	0.3V to V _{CC} + 0.3V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
НВМ	4000V
CDM	1000V

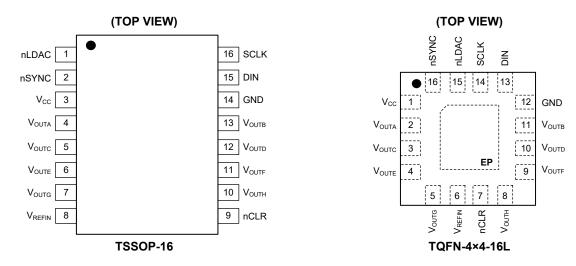
RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

	PIN		FUNCTION					
TSSOP-16	TQFN-4×4-16L	NAME	FUNCTION					
1	15	nLDAC	Active low. Set this pin high and then set it low. On the falling edge of nLDAC, the DAC outputs update simultaneously. If the simultaneous update function of hardware is not used, this pin can be tied permanently low.					
2	16	nSYNC	Frame Synchronization Input Pin. Active Low. During 32-bit data shifting in, the pin must be kept low.					
3	1	V _{cc}	Power Supply Pin.					
4	2	V _{OUTA}						
5	3	Voutc	Analas Output Valass from DAC					
6	4	V _{OUTE}	Analog Output Voltage from DAC.					
7	5	V _{OUTG}						
8	6	V_{REFIN}	Analog Voltage Reference Input.					
9	7	nCLR	Active low. Set this pin high and then set it low. On the falling edge of nCLR, the DAC register are updated with the data contained in the clear code register. When nCLR is low, all nLDAC pulses are invalid.					
10	8	V _{OUTH}						
11	9	V _{OUTF}	Analog Output Voltage from DAC.					
12	10	V _{OUTD}	Analog Output Voltage nom DAC.					
13	11	V _{OUTB}						
14	12	GND	Ground.					
15	13	DIN	Serial Data Input Pin.					
16	14	SCLK	Serial Clock Input Pin. Data is clocked on the falling edge of SCLK.					
_	Exposed Pad	EP	This pad should be connected to GND.					

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Static Performance (1)	•			•		
Resolution			16			Bits
Relative Accuracy		V _{CC} = 2.7V		8	18	
		V _{CC} = 5.5V		8	16	LSB
Differential Nonlinearity	DNL	Monotonicity guaranteed by design		0.4	1	LSB
Zero-Code Error		All 0 loaded to DAC register		1.5	6	mV
Zero-Code Error Drift				3		µV/°C
Full-Scale Error		All 1 loaded to DAC register		3	10	mV
Gain Error				0.1	0.3	% FSR
Gain Temperature Coefficient		Of FSR/℃		1.5		ppm
Offset Error				1.5	6	mV
Power Supply Rejection Ratio	PSRR	V _{cc} ± 10%		-90		dB
		Due to full-scale output change, R_L = 2k\Omega to GND or V_{CC}		10		μV
DC Crosstalk		Due to load current change		25		μV/mA
		Due to powering down (per channel)		10		μV
Output Characteristics (2)	L					I
Output Voltage Range			0		Vcc	V
		R _L = ∞		2		
Capacitive Load Stability		$R_L = 2k\Omega$		10		nF
DC Output Impedance				0.1		Ω
Short-Circuit Current		V _{cc} = 5V		35		mA
Power-Up Time		Coming out of power-down mode, V_{CC} = 5V		15		μs
Reference Inputs					•	
Reference Current		$V_{REFIN} = V_{CC} = 5.5V$ (per DAC channel)		24	35	μA
Reference Input Range			0		V _{cc}	V
Reference Input Impedance				28		kΩ
Logic Inputs (2)					•	
Input Current		All digital inputs		0.1	2	μA
Input Low Voltage	VIL				0.7	V
Input High Voltage	VIH		2.5			V
Pin Capacitance				3		pF
Power Requirements	•	·		•	-	•
Power Supply Range	V _{cc}	All digital inputs at 0 or V_{CC} , DAC active, excludes load current	2.7		5.5	V
Supply Current		Normal Mode ⁽³⁾		0.8	1.5	mA
Supply Current	I _{cc}	All Power-Down Modes (4)		1	10	μA

NOTES:

1. Linearity calculated using a reduced code range of 512 to 65,024. Output unloaded.

2. Guaranteed by design. Not production tested.

3. Interface inactive. All DACs are active. DAC outputs unloaded.

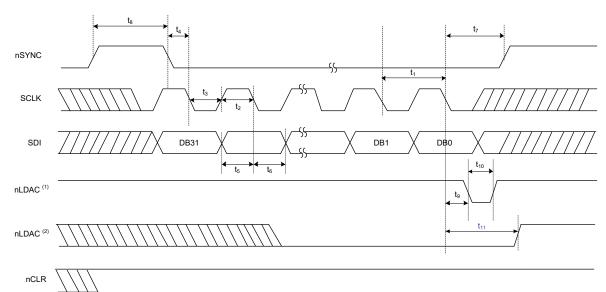
4. All 8 DACs powered down.

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 2.7V \text{ to } 5.5V, R_L = 2k\Omega \text{ to GND}, C_L = 200\text{pF to GND}, V_{REFIN} = V_{CC}, T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
AC Performance		·					
Output Voltage Settling Time		1⁄4 to 3⁄4 scale settling to ±2 LSB (16-bit re	esolution)		5		μs
Slew Rate					1.2		V/µs
Digital-to-Analog Glitch		1 LSB (16-bit resolution) change around	major carry		5		nV-s
Impulse		From code 0xEA00 to code 0xE9FF (16-bit resolution)			20		nv-s
Digital Feedthrough				0.5		nV-s	
Digital Crosstalk				0.5		nV-s	
Analog Crosstalk					2		nV-s
DAC-to-DAC Crosstalk					2		nV-s
Multiplying Bandwidth		$V_{\text{REFIN}} = 2V \pm 0.2V_{\text{PP}}$			900		kHz
Total Harmonic Distortion	THD	$V_{\text{REFIN}} = 2V \pm 0.1V_{\text{PP}}$, frequency = 10kHz			72		dB
Output Noise Spectral		DAC and $= 0.08000$ (16 bit resolution)	1kHz		130		nV/√ _{Hz}
Density		DAC code = 0x8000 (16-bit resolution)	10kHz		90		nV/√ _{Hz}
Output Noise		0.1Hz to 10Hz, DAC code = 0x8000		25		µVp-p	

TIMING CHARACTERISTICS


 $(V_{CC} = 2.7V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C.$ All input signals are specified with $t_r = t_f = 1$ ns/V (10% to 90% of V_{CC}) and timed from a voltage level of $(V_{IL} + V_{IH})/2$, unless otherwise noted.)⁽¹⁾

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Cycle Time	t ₁ ⁽²⁾		20			ns
SCLK High Time	t ₂		8			ns
SCLK Low Time	t ₃		8			ns
nSYNC to SCLK Falling Edge Setup Time	t ₄		13			ns
Data Setup Time	t ₅		4			ns
Data Hold Time	t ₆		4			ns
SCLK Falling Edge to nSYNC Rising Edge	t ₇		0			ns
Minimum nSYNC High Time	t ₈		15			ns
SCLK Falling Edge to nLDAC Falling Edge	t ₉		0			ns
nLDAC Pulse Width Low	t ₁₀		10			ns
SCLK Falling Edge to nLDAC Rising Edge	t ₁₁		15			ns
nCLR Pulse Activation Time	t ₁₂			300		ns
nCLR Pulse Width Low	t ₁₃		5			ns

NOTES:

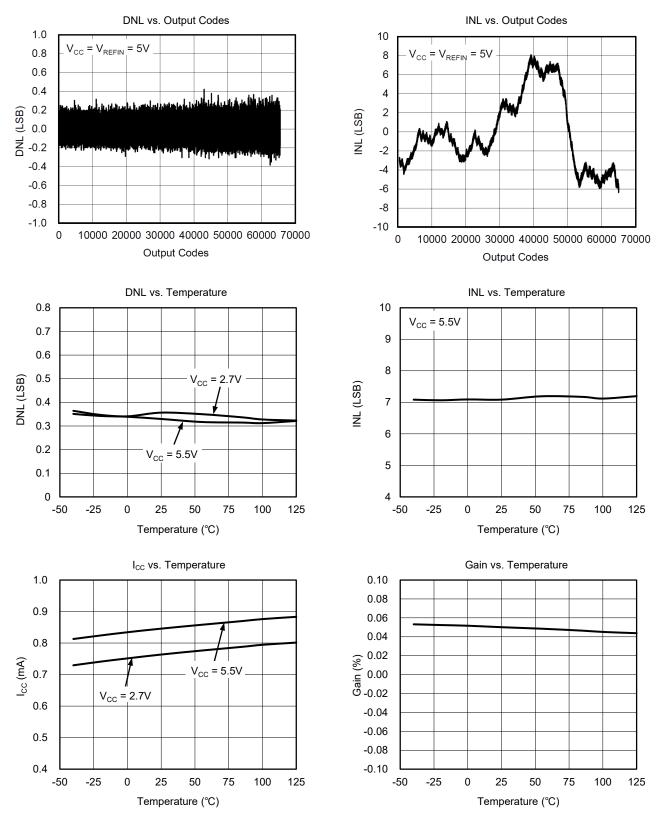
1. Refer to Figure 1 and Figure 2.

2. The SCLK frequency is 50MHz (MAX) at V_{CC} = 2.7V to 5.5V. Guaranteed by design, not production tested.

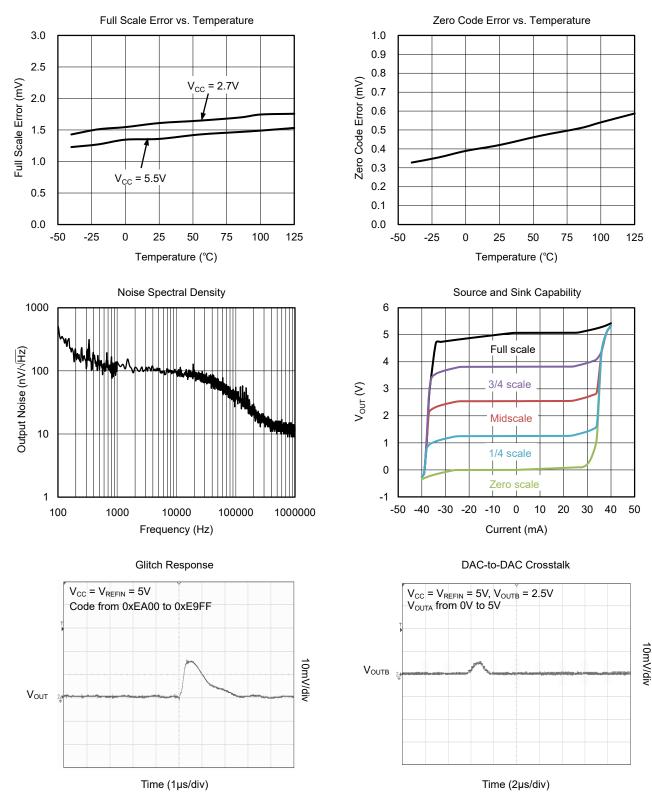
NOTES: 1. Asynchronous update mode. DAC is updated at the falling edge of nLDAC. 2. Synchronous update mode. nLDAC can be tied low permanently.

3. During the write operation, nCLR must be high.

Figure 1. Serial Write Operation

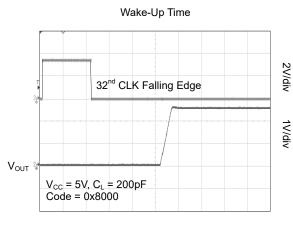


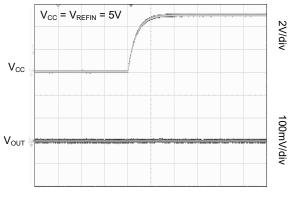
TYPICAL PERFORMANCE CHARACTERISTICS


 $V_{CC} = V_{REFIN}$, $C_L = 200 pF$, unless otherwise noted.

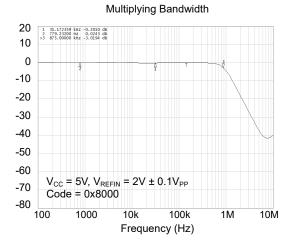
SG Micro Corp

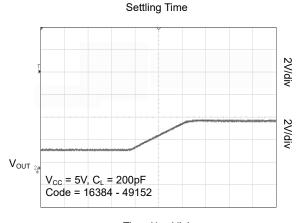
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

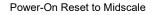

 $V_{CC} = V_{REFIN}$, $C_L = 200 pF$, unless otherwise noted.

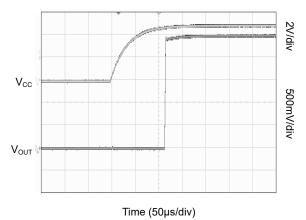

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

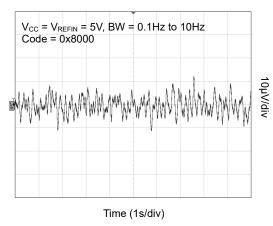
 $V_{CC} = V_{REFIN}$, $C_L = 200 pF$, unless otherwise noted.




Time (5µs/div)




Time (100µs/div)



Time (1µs/div)

SG Micro Corp

SGM5349-16

FUNCTIONAL BLOCK DIAGRAM

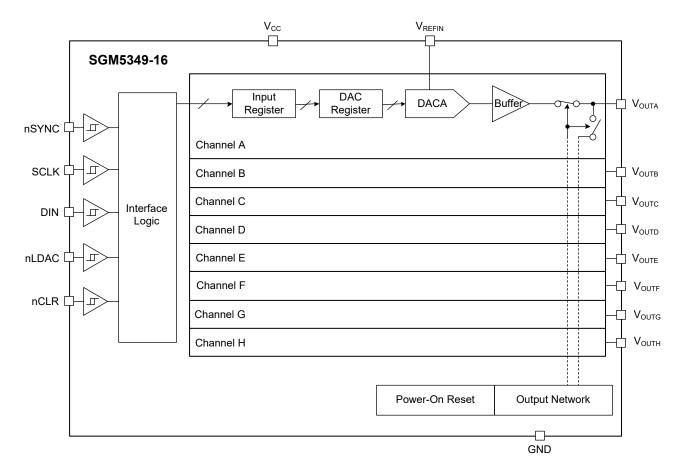


Figure 3. Block Diagram

DETAILED DESCRIPTION

DAC Section

The SGM5349-16 output code is straight binary. The ideal output voltage is given by:

$$V_{OUT} = V_{REFIN} \times \left(\frac{D}{2^{N}}\right)$$
(1)

Where:

D = Equal decimal value is 0 to 65535. N = 16.

Internal Reference

The chip has no internal reference.

Output Amplifier

The output buffer amplifier is rail-to-rail output.

Serial Interface

The SGM5349-16 has a 3-wire SPI-compatible interface.

For detail operation timing sequence, please see Figure 1. To prepare a new write sequence, nSYNC must be brought high for a minimum of 15ns before the new write sequence so that a falling edge of nSYNC can initiate the new write sequence.

Input Shift Register

The input shift register is a 32-bit data. The first 4-bit DB[31:28] is don't care. The second 4-bit DB[27:24] is command bit C3 to C0 (see Table 1). The meaning of left bits is different with commands.

If C3 to C0 are DAC output data updating associated, the third 4-bit DB[23:20] is DAC address bit A3 to A0 (see Table 2). And the following 16-bit DB[19:4] is the DAC data bit. The final 4-bit DB[3:0] is not used data bit (See Figure 4).

If C3 to C0 are power-down/power-up associated, please refer to Table 4.

If C3 to C0 are clear function code, please refer to Table 6.

If C3 to C0 are load DAC function, please refer to Table 8.

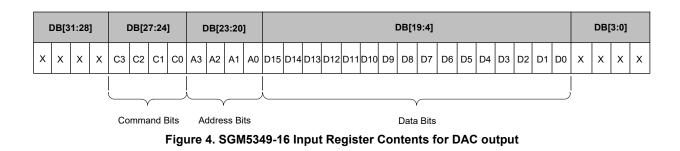

All 32-bit data are locked into the input register on the 32nd falling edge of SCLK.

Table 1. Command Definitions

	DB[2	7:24]		Description
C3	C2	C1	C0	Description
0	0	0	0	Write to input register n
0	0	0	1	Update DAC register n
0	0	1	0	Write to input register n, update all (software load DAC function)
0	0	1	1	Write to and update DAC channel n
0	1	0	0	Power-down/power-up DAC
0	1	0	1	Load clear code register
0	1	1	0	Load nLDAC register
0	1	1	1	Reset (power-on reset)
1	0	0	0	Reserved.
1	0	0	1	Reserved
-	_	-	_	Reserved
1	1	1	1	Reserved

Table 2. Address Commands

	DB[2	3:20]		Selected DAC Channel
A3	A2	A1	A0	Selected DAC Chainlei
0	0	0	0	DAC A
0	0	0	1	DAC B
0	0	1	0	DAC C
0	0	1	1	DAC D
0	1	0	0	DAC E
0	1	0	1	DAC F
0	1	1	0	DAC G
0	1	1	1	DAC H
1	1	1	1	All DACs

DETAILED DESCRIPTION (continued)

nSYNC Interrupt

In a normal write sequence, the nSYNC line must be kept low for at least 32 falling edges of SCLK and the DAC is updated on the 32^{nd} falling edge. However, if nSYNC goes high before the 32^{nd} falling edge, this write operation is invalid and ignored. An example is shown in Figure 5.

Power-On Reset

The SGM5349A-16 resets to 0V output when chip powers up. The SGM5349M-16 resets to midscale output when chip powers up.

There is a software reset which can perform same DAC reset function. And during reset, any nLDAC and nCLR operation is invalid.

Power-Down Modes

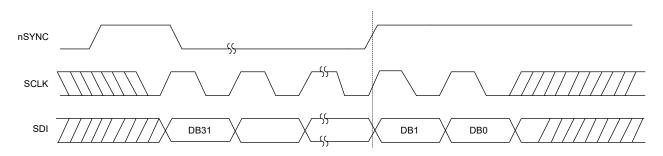

The SGM5349-16 has 3 power-down modes.

Table 3 shows these power-down modes configurations. And the operation data format is shown in Table 4. In Table 4, some or all DACs can be powered down to selected modes by setting according bits to '1'.

To exit power-down, configure target DAC channels to normal operation mode.

Table 3. Operating Modes

DB[9]	DB[8]	Operating Mode
0	0	Normal operation
0	0	Power-down modes
0	1	1kΩ to GND
1	0	100kΩ to GND
1	1	3-state

Figure 5. nSYNC Invalid Interrupt timing

Table 4. Input Shift Register Format for Power-Down/Power-Up Operation

MSB

DB31 to DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19 to DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
х	0	1	0	0	Х	Х	Х	Х	Х	PD1	PD0	DAC H	DAC G	DAC F	DAC E	DAC D	DAC C	DAC B	DAC A
Don't cares	(and bit o C0)	S		Don't cares		Don't cares	Power mc			Powe		•	up chan 1 to sele		ction		

LSB

DETAILED DESCRIPTION (continued)

Clear Code Register

The nCLR pin can be used to set the DAC register and output asynchronously. The nCLR status is set in clear code register (See Table 5).

To set clear register, please refer to command format in Table 6.

A full valid writes operation can call the chip exiting clear code mode.

Table 5. Clear Code Register

CR1 (DB[1])	CR0 (DB[0])	Clears to Code
0	0	0x0000
0	1	0x8000
1	0	0xFFFF
1	1	No operation

nLDAC Function

There are two ways of updating DAC output by using hardware nLDAC pin.

The first way is that we can tie nLDAC pin low or keep it low for a while (specified in Figure 1), and after a full write command performing, the DAC is updated at the falling edge of the 32nd SCLK.

The second way is that keep nLDAC high during the 32-bit writing sequence, then a pulse of nLDAC is given (See Figure 1), DAC output is updated asynchronously.

There are also software ways to control DAC update, which are equal to nLDAC pin operation. Please refer to Table 7 and Table 8.

In Table 8, when the according DAC channel bit is set to '1', DAC output load mode is determined by nLDAC pin operation. When according DAC channel bit is set to '0', it is equal to nLDAC connected to low, and DAC updated at the falling edge of the 32nd SCLK.

Table 6. Input Shift Register Format for Clear Code Operation

MSB

MSB										LSB	
DB31 to DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19 to DB2	DB1	DB0
Х	0	1	0	1	Х	Х	Х	Х	Х	CR1	CR0
Don't cares	Command bits (C3 to C0)			Don't cares				Don't cares	Clear co	de register	

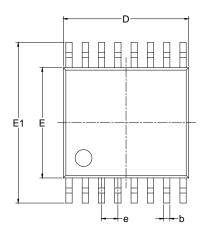
Table 7. nLDAC Control Configuration Description

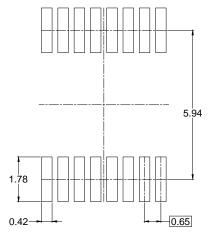
Load DAC Reg	gister	n DAC Operation				
nLDAC Bits (DB7 to DB0)	nLDAC Pin	nLDAC Operation				
0	1/0	DAC update determined by nLDAC hardware pin operation.				
1 X—don't cares		DAC channels update, regardless the nLDAC pin. It's equal nLDAC pin connected to '0'.				

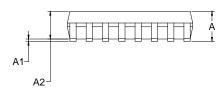
Table 8. Input Shift Register Format for nLDAC Register Operation

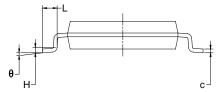
MSB																	LSB
DB31 to DB28	DB27	DB26	DB25	DB24	DB23	DB22	DB21	DB20	DB19 to DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
х	0	1	1	0	Х	Х	Х	Х	Х	DAC H	DAC G	DAC F	DAC E	DAC D	DAC C	DAC B	DAC A
Don't cares	Command bits (C3 to C0) Don't cares			Don't cares	If set to 1, redardless of hardware nLDAC bin operation.						on.						

REVISION HISTORY

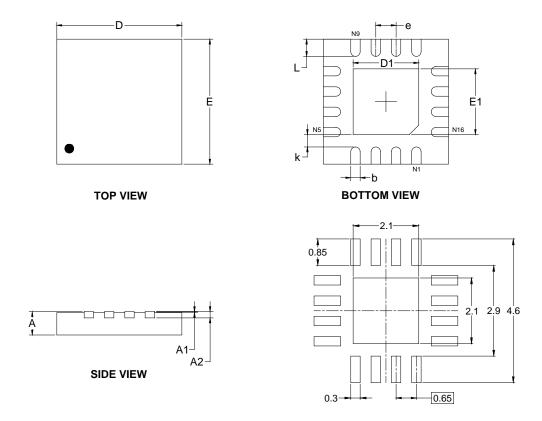

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


JANUARY 2021 – REV.A to REV.A.1	Page
Added SGM5349M-16 part number	All
Changes from Original (NOVEMBER 2020) to REV.A	Page
Changed from product preview to production data	All


PACKAGE OUTLINE DIMENSIONS


TSSOP-16

RECOMMENDED LAND PATTERN (Unit: mm)

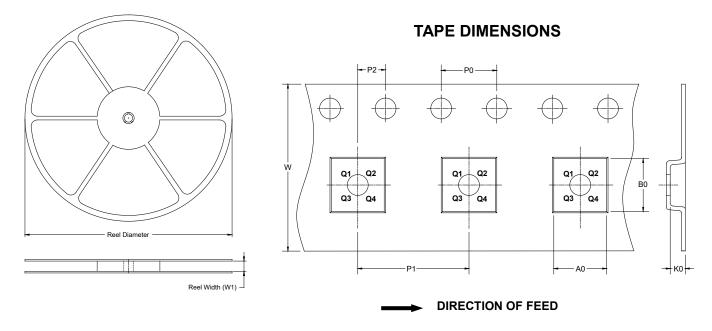

Symbol	-	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A		1.200		0.047		
A1	0.050	0.150	0.002	0.006		
A2	0.800	1.050	0.031	0.041		
b	0.190	0.300	0.007	0.012		
С	0.090	0.200	0.004	0.008		
D	4.860	5.100	0.191	0.201		
E	4.300	4.500	0.169	0.177		
E1	6.200	6.600	0.244	0.260		
е	0.650) BSC	0.026 BSC			
L	0.500	0.700	0.02	0.028		
Н	0.25	TYP	0.01	TYP		
θ	1°	7°	1°	7°		

NOTES: 1. Body dimensions do not include mode flash or protrusion. 2. This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS

TQFN-4×4-16L

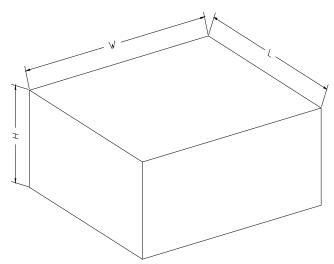
RECOMMENDED LAND PATTERN (Unit: mm)


Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A2	0.203	B REF	0.008 REF			
D	3.900	4.100	0.154	0.161		
D1	2.000	2.200	0.079	0.087		
E	3.900	4.100	0.154	0.161		
E1	2.000	2.200	0.079	0.087		
k	0.200) MIN	0.008 MIN			
b	0.250	0.350	0.010	0.014		
е	0.650) TYP	0.026	TYP		
L	0.450	0.650	0.018	0.026		

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-16	13″	12.4	6.90	5.60	1.20	4.0	8.0	2.0	12.0	Q1
TQFN-4×4-16L	13″	12.4	4.30	4.30	1.10	4.0	8.0	2.0	12.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

