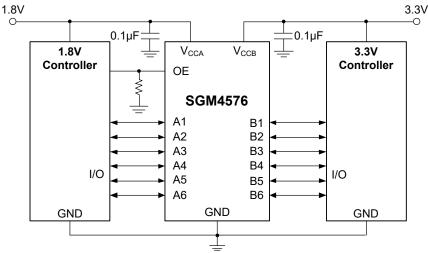
SGM4576 6-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

## **GENERAL DESCRIPTION**

SGMICRO

The SGM4576 is a 6-bit, non-inverting, bidirectional voltage-level translator which features two independent configurable power-supply lines. The A and B ports track the  $V_{CCA}$  supply and  $V_{CCB}$  supply respectively. The supply voltage range is 1.65V to 5.5V for A ports and 2.3V to 5.5V for B ports. The device provides a bidirectional translation function between the different voltage nodes (including 1.8V, 2.5V, 3.3V and 5V).

The SGM4576 has an output enable (OE) function, which controls the inputs and outputs states. When OE goes low, all I/Os enter into the high-impedance state. It is beneficial for reducing quiescent current consumption. When  $V_{CCA}$  is powered, OE has an internal pull-down current source.


The SGM4576 is available in Green TQFN-2.6×1.8-16L package. It operates over an ambient temperature range of -40°C to +85°C.

## FEATURES

- Power Supply Voltage Ranges (V<sub>CCA</sub> ≤ V<sub>CCB</sub>)
  - A Ports: 1.65V to 5.5V
  - B Ports: 2.3V to 5.5V
- Direction-Control Signal is Not Required
- Data Rates
  - Push-Pull: 24Mbps
  - Open-Drain: 2Mbps
- Support V<sub>CCA</sub> or V<sub>CCB</sub> Isolation
  - When V<sub>CCA</sub> or V<sub>CCB</sub> is Low, Device Enters Power-Down Mode
- No Specific Power Sequences Required for V<sub>CCA</sub> and V<sub>CCB</sub>
- Support Partial-Power-Down Function
- -40°C to +85°C Operating Temperature Range
- Available in Green TQFN-2.6×1.8-16L Package

## **APPLICATIONS**

Universal Asynchronous Receiver/Transmitter I<sup>2</sup>C/SMBus Interfaces General Purpose I/O (GPIO)





## Contro

**TYPICAL APPLICATION** 



## PACKAGE/ORDERING INFORMATION

| MODEL   | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER | PACKAGE<br>MARKING | PACKING<br>OPTION   |
|---------|------------------------|-----------------------------------|--------------------|--------------------|---------------------|
| SGM4576 | TQFN-2.6×1.8-16L       | -40°C to +85°C                    | SGM4576YTQA16G/TR  | 4576<br>XXXXX      | Tape and Reel, 3000 |

#### MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

| <u>X</u> | XXXX        |
|----------|-------------|
|          | Vendor Code |
|          | Date Code - |
|          | Data Cada   |

Week Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

#### **OVERSTRESS CAUTION**

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

#### DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

#### **ESD SENSITIVITY CAUTION**

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.



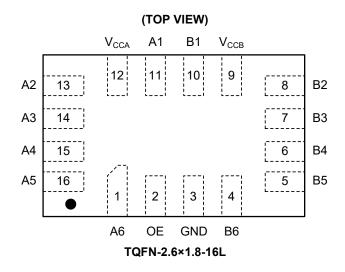
#### **ABSOLUTE MAXIMUM RATINGS**

| Supply Voltage Range                                                                |
|-------------------------------------------------------------------------------------|
| V <sub>CCA</sub> 0.3V to 6V                                                         |
| V <sub>CCB</sub> 0.3V to 6V                                                         |
| A Ports, B Ports, OE Input Voltage Range, V $_{\rm I}^{(1)}$                        |
| -0.3V to 6V                                                                         |
| Output Voltage Range for the High-Impedance or Power-Off                            |
| State, V <sub>0</sub> <sup>(1)</sup>                                                |
| A Ports0.3V to 6V                                                                   |
| B Ports0.3V to 6V                                                                   |
| Output Voltage Range for the High or Low State, $V_{0}^{(1)(2)}$                    |
| A Ports0.3V to $V_{\text{CCA}}$ + 0.3V                                              |
| B Ports0.3V to $V_{\text{CCB}}$ + 0.3V                                              |
| Input Clamp Current, I <sub>IK</sub> (VI < 0)50mA                                   |
| Output Clamp Current, I <sub>OK</sub> (V <sub>O</sub> < 0)25mA                      |
| Continuous Output Current, I <sub>0</sub> ±50mA                                     |
| Continuous Current through V <sub>CCA</sub> , V <sub>CCB</sub> , or GND $\pm$ 100mA |
| Junction Temperature+150°C                                                          |
| Storage Temperature Range65°C to +150°C                                             |
| Lead Temperature (Soldering, 10s)+260°C                                             |
| ESD Susceptibility                                                                  |
| HBM4000V                                                                            |
| MM                                                                                  |
| CDM                                                                                 |
|                                                                                     |

#### NOTES:

1. When the input and output current ratings are observed, the input and I/O negative voltage ratings may be exceeded. 2.  $V_{CCA}$  and  $V_{CCB}$  values are shown in the recommended operating conditions table.

# RECOMMENDED OPERATING CONDITIONS


| Supply Voltage Range <sup>(5)</sup>                                             |
|---------------------------------------------------------------------------------|
| V <sub>CCA</sub> 1.65V to 5.5V                                                  |
| V <sub>CCB</sub>                                                                |
| High-Level Input Voltage, V <sub>IH</sub>                                       |
| A Port I/Os ( $V_{CCA}$ = 1.65V, $V_{CCB}$ = 2.3V to 5.5V)                      |
|                                                                                 |
| A Port I/Os (V <sub>CCA</sub> = 1.95V to 5.5V, V <sub>CCB</sub> = 2.3V to 5.5V) |
| $V_{\text{CCI}}$ - 0.4V to $V_{\text{CCI}}$                                     |
| B Port I/Os $V_{CCI}$ - 0.4V to $V_{CCI}$                                       |
| OE InputV <sub>CCA</sub> × 0.8V to 5.5V                                         |
| Low-Level Input Voltage, V <sub>IL</sub>                                        |
| A Port I/Os0V to 0.15V                                                          |
| B Port I/Os0V to 0.15V                                                          |
| OE Input0V to V <sub>CCA</sub> × 0.25V                                          |
| Operating Temperature Range40°C to +85°C                                        |

#### NOTES:

- 3.  $V_{\text{CCI}}$  is the supply voltage associated with the input ports.
- 4.  $V_{\text{CCO}}$  is the supply voltage associated with the output ports.
- 5. Ensure that  $V_{CCA} \leq V_{CCB}$  and  $V_{CCA}$  must not exceed 5.5V.



## **PIN CONFIGURATION**



## **PIN DESCRIPTION**

| PIN | NAME             | TYPE | FUNCTION                                                                                                                                       |
|-----|------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | A6               | I/O  | Input/Output 6. It tracks the V <sub>CCA</sub> supply.                                                                                         |
| 2   | OE               | Ι    | Output Enable Control Pin. Active high. When OE goes low, all outputs enter into the high-impedance state. It tracks the $V_{\rm CCA}$ supply. |
| 3   | GND              | G    | Ground.                                                                                                                                        |
| 4   | B6               | I/O  | Input/Output 6. It tracks the $V_{CCB}$ supply.                                                                                                |
| 5   | B5               | I/O  | Input/Output 5. It tracks the $V_{CCB}$ supply.                                                                                                |
| 6   | B4               | I/O  | Input/Output 4. It tracks the $V_{CCB}$ supply.                                                                                                |
| 7   | B3               | I/O  | Input/Output 3. It tracks the $V_{CCB}$ supply.                                                                                                |
| 8   | B2               | I/O  | Input/Output 2. It tracks the $V_{CCB}$ supply.                                                                                                |
| 9   | V <sub>CCB</sub> | Р    | Supply Voltage on B Ports. It can be operated from 2.3V to 5.5V.                                                                               |
| 10  | B1               | I/O  | Input/Output 1. It tracks the $V_{CCB}$ supply.                                                                                                |
| 11  | A1               | I/O  | Input/Output 1. It tracks the $V_{CCA}$ supply.                                                                                                |
| 12  | V <sub>CCA</sub> | Р    | Supply Voltage on A Ports. It can be operated from 1.65V to 5.5V, and V_{CCA} is always $\leq$ V_{CCB}.                                        |
| 13  | A2               | I/O  | Input/Output 2. It tracks the $V_{CCA}$ supply.                                                                                                |
| 14  | A3               | I/O  | Input/Output 3. It tracks the $V_{CCA}$ supply.                                                                                                |
| 15  | A4               | I/O  | Input/Output 4. It tracks the $V_{CCA}$ supply.                                                                                                |
| 16  | A5               | I/O  | Input/Output 5. It tracks the $V_{CCA}$ supply.                                                                                                |



## **ELECTRICAL CHARACTERISTICS**

(V<sub>CCA</sub> = 1.65V to 5.5V, V<sub>CCB</sub> = 2.3V to 5.5V, Full = -40°C to +85°C, typical values are at T<sub>A</sub> = +25°C, unless otherwise noted.)

| PARAMETER                        |                | SYMBOL                              | CONDITIONS                                                     |                                                              | TEMP  | MIN                     | TYP | MAX  | UNITS                            |
|----------------------------------|----------------|-------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|-------|-------------------------|-----|------|----------------------------------|
| A Ports High-Level C             | Output Voltage | V <sub>OHA</sub>                    | I <sub>OH</sub> = -20μA, V <sub>IB</sub> ≥ V                   | V <sub>CCB</sub> - 0.4V                                      | Full  | V <sub>CCA</sub> × 0.67 |     |      |                                  |
| A Ports Low-Level Output Voltage |                | V <sub>OLA</sub>                    | I <sub>OL</sub> = 1mA, V <sub>IB</sub> ≤ 0.15V                 |                                                              | Full  |                         |     | 0.4  |                                  |
| B Ports High-Level C             | Output Voltage | V <sub>OHB</sub>                    | $I_{OH} = -20\mu A, V_{IA} \ge V_{IA}$                         | √ <sub>CCA</sub> - 0.4V                                      | Full  | $V_{CCB} \times 0.67$   |     |      | v                                |
| B Ports Low-Level C              | utput Voltage  | V <sub>OLB</sub>                    | $I_{OL} = 1mA, V_{IA} \le 0.$                                  | 15V                                                          | Full  |                         |     | 0.4  |                                  |
| Input Leakage                    | OE Input       | I,                                  |                                                                |                                                              | +25°C |                         |     | ±1   | ıιΔ                              |
| Current                          |                | "                                   |                                                                |                                                              | Full  |                         |     | ±1.5 | μΛ                               |
|                                  | A Ports        |                                     | $V_{CCA} = 0V, V_{CCB} = 0$                                    | W to 5.5 $V$                                                 | +25°C |                         |     | ±0.5 |                                  |
| Power Off Leakage                |                | I <sub>OFF</sub>                    |                                                                | JV 10 0.0V                                                   | Full  |                         |     | ±1   | 0.4<br>0.4<br>±1<br>±1.5<br>±0.5 |
| Current                          | B Ports        | OFF                                 | $V_{CCA} = 0V$ to 5.5V,                                        | $V_{con} = 0V$                                               | +25°C |                         |     | ±0.5 | μ., ί                            |
|                                  | DIONS          |                                     |                                                                | VCCB UV                                                      | Full  |                         |     | ±1   |                                  |
| 3-State Output                   | A or B Ports   | loz                                 | OE = 0V                                                        |                                                              | +25°C |                         |     | ±0.5 | μΑ                               |
| Leakage                          |                | 102                                 |                                                                |                                                              | Full  |                         |     | ±1   |                                  |
|                                  |                |                                     | $V_1 = V_0 = OPEN,$                                            | $V_{CCA}$ = 1.65V to $V_{CCB}$ ,<br>$V_{CCB}$ = 2.3V to 5.5V | Full  |                         |     | 13   |                                  |
|                                  |                | I <sub>CCA</sub>                    | $I_0 = 0A$                                                     | $V_{CCA} = 5.5 V, V_{CCB} = 0 V$                             | Full  |                         |     | 13   |                                  |
|                                  |                |                                     |                                                                | $V_{CCA}$ = 0V, $V_{CCB}$ = 5.5V                             | Full  |                         |     | -1   |                                  |
|                                  |                | I <sub>CCB</sub>                    | V <sub>1</sub> = V <sub>0</sub> = OPEN,<br>I <sub>0</sub> = 0A | $V_{CCA}$ = 1.65V to $V_{CCB}$ ,<br>$V_{CCB}$ = 2.3V to 5.5V | Full  |                         |     | 17   |                                  |
| Quiescent Supply Cu              | urrent         |                                     |                                                                | $V_{CCA} = 5.5 V, V_{CCB} = 0 V$                             | Full  |                         |     | -1   |                                  |
|                                  |                |                                     |                                                                | $V_{CCA} = 0V, V_{CCB} = 5.5V$                               | Full  |                         |     | 8    |                                  |
|                                  |                | I <sub>CCA</sub> + I <sub>CCB</sub> | $V_1 = V_0 = OPEN,$<br>$I_0 = 0A$                              | $V_{CCA}$ = 1.65V to $V_{CCB}$ ,<br>$V_{CCB}$ = 2.3V to 5.5V | Full  |                         |     | 21   | μA                               |
|                                  |                | I <sub>CCZA</sub>                   | $V_{I} = V_{CCI} \text{ or } 0V,$<br>$I_{O} = 0A, OE = 0V$     | $V_{CCA}$ = 1.65V to $V_{CCB}$ ,<br>$V_{CCB}$ = 2.3V to 5.5V | Full  |                         |     | 13   | μA                               |
|                                  |                | I <sub>CCZB</sub>                   | $V_{I} = V_{CCI} \text{ or } 0V,$<br>$I_{O} = 0A, OE = 0V$     | $V_{CCA}$ = 1.65V to $V_{CCB}$ ,<br>$V_{CCB}$ = 2.3V to 5.5V | Full  |                         |     | 8    | μA                               |
| OE Input Capacitand              | ce             | Ci                                  | V <sub>CCA</sub> = 3.3V, V <sub>CCB</sub> =                    | = 3.3V                                                       | +25°C |                         | 6   |      | pF                               |
| Input/Output                     | A Ports        | <u> </u>                            |                                                                | - 2 2)/                                                      | +25°C |                         | 6   |      | <b>ъ</b> Г                       |
| Capacitance                      | B Ports        | C <sub>IO</sub>                     | $V_{CCA}$ = 3.3V, $V_{CCB}$ =                                  | - 3.3V                                                       | +25°C |                         | 6   |      | p⊦                               |



## TIMING REQUIREMENTS

 $(T_A = +25^{\circ}C, unless otherwise noted.)$ 

|                           | SYMBOL         | CONDITIONS         | V <sub>CCB</sub> = 2.5V | V <sub>CCB</sub> = 3.3V | V <sub>CCB</sub> = 5V |        |  |
|---------------------------|----------------|--------------------|-------------------------|-------------------------|-----------------------|--------|--|
| PARAMETER                 | STWBUL         | CONDITIONS         | ТҮР                     | TYP                     | TYP                   | UNITS  |  |
| (V <sub>CCA</sub> = 1.8V) |                |                    |                         |                         |                       |        |  |
| Data Rate                 |                | Push-pull driving  | 24                      | 24                      | 24                    | Mhna   |  |
| Dala Rale                 |                | Open-drain driving | 2                       | 2                       | 2                     | Mbps   |  |
| Pulse Duration            |                | Push-pull driving  | 41                      | 41                      | 41                    | 20     |  |
| (Data Inputs)             | t <sub>w</sub> | Open-drain driving | 500                     | 500                     | 500                   | ns     |  |
| (V <sub>CCA</sub> = 2.5V) |                |                    |                         |                         |                       |        |  |
| Data Rate                 |                | Push-pull driving  | 24                      | 24                      | 24                    | Mhno   |  |
| Dala Rale                 |                | Open-drain driving | 2                       | 2                       | 2                     | Mbps   |  |
| Pulse Duration            |                | Push-pull driving  | 41                      | 41                      | 41                    |        |  |
| (Data Inputs)             | tw             | Open-drain driving | 500                     | 500                     | 500                   | ns     |  |
| (V <sub>CCA</sub> = 3.3V) |                |                    |                         |                         |                       |        |  |
| Data Rate                 |                | Push-pull driving  |                         | 24                      | 24                    | Mhna   |  |
| Dala Rale                 |                | Open-drain driving |                         | 2                       | 2                     | - Mbps |  |
| Pulse Duration            |                | Push-pull driving  |                         | 41                      | 41                    | 20     |  |
| (Data Inputs)             | t <sub>w</sub> | Open-drain driving |                         | 500                     | 500                   | ns     |  |
| (V <sub>CCA</sub> = 5V)   |                |                    |                         |                         |                       |        |  |
| Data Rate                 |                | Push-pull driving  |                         |                         | 24                    | Mhna   |  |
|                           |                | Open-drain driving |                         |                         | 2                     | Mbps   |  |
| Pulse Duration            | +              | Push-pull driving  |                         |                         | 41                    | 20     |  |
| (Data Inputs)             | t <sub>w</sub> | Open-drain driving |                         |                         | 500                   | ns     |  |



## SWITCHING CHARACTERISTICS

(V<sub>CCA</sub> = 1.8V,  $T_A$  = +25°C, unless otherwise noted.)

| PARAMETER         | SYMBOL                                                  |              | ONDITIONS          | V <sub>CCB</sub> = 2.5V | V <sub>CCB</sub> = 3.3V | V <sub>CCB</sub> = 5V | UNITS |
|-------------------|---------------------------------------------------------|--------------|--------------------|-------------------------|-------------------------|-----------------------|-------|
| PARAMETER         | STWBOL                                                  | CONDITIONS   |                    | TYP                     | TYP                     | TYP                   | UNITS |
|                   | 4                                                       |              | Push-pull driving  | 3.5                     | 3.5                     | 5.1                   |       |
|                   | t <sub>PHL</sub>                                        |              | Open-drain driving | 56.2                    | 27.0                    | 27.9                  |       |
|                   |                                                         | A to B       | Push-pull driving  | 5.1                     | 4.5                     | 4.4                   | ns    |
| Dranagation Dalay | t <sub>PLH</sub>                                        |              | Open-drain driving | 142.7                   | 119.8                   | 92.1                  |       |
| Propagation Delay |                                                         |              | Push-pull driving  | 3.0                     | 2.8                     | 3.4                   |       |
|                   | t <sub>PHL</sub>                                        | B to A       | Open-drain driving | 25.6                    | 25.3                    | 25.4                  |       |
|                   |                                                         | DIOA         | Push-pull driving  | 3.7                     | 3.2                     | 2.6                   | ns    |
|                   | t <sub>PLH</sub>                                        |              | Open-drain driving | 55.1                    | 49.4                    | 48.0                  |       |
| Enable Time       | t <sub>EN</sub> (t <sub>PZH</sub> & t <sub>PZL</sub> )  | OE to A or B |                    | 28.4                    | 24.6                    | 22.5                  |       |
| Disable Time      | t <sub>DIS</sub> (t <sub>PHZ</sub> & t <sub>PLZ</sub> ) | OE to A or B |                    | 674                     | 677                     | 671                   | ns    |
|                   | t <sub>rA</sub>                                         | A Ports      | Push-pull driving  | 7.2                     | 8.1                     | 9.1                   |       |
| Rise Time         |                                                         | APOILS       | Open-drain driving | 12.3                    | 11.3                    | 10.1                  | ns    |
| Rise fime         |                                                         | B Ports      | Push-pull driving  | 7.2                     | 6.1                     | 5.4                   |       |
|                   | t <sub>rB</sub>                                         | DPOILS       | Open-drain driving | 99.3                    | 72.9                    | 36.7                  | ns    |
|                   |                                                         | A Ports      | Push-pull driving  | 5.7                     | 5.9                     | 6.9                   |       |
| Fall Time         | t <sub>fA</sub>                                         | APONS        | Open-drain driving | 3.8                     | 3.6                     | 3.6                   | ns    |
|                   |                                                         | D Davita     | Push-pull driving  | 7.9                     | 7.8                     | 8.4                   |       |
|                   | t <sub>fB</sub>                                         | B Ports      | Open-drain driving | 3.5                     | 8.4                     | 5.0                   | ns    |
| Data Rate         |                                                         | Push-pull dr | riving             | 24                      | 24                      | 24                    | Mhna  |
|                   |                                                         | Open-drain   | driving            | 2                       | 2                       | 2                     | Mbps  |

## SWITCHING CHARACTERISTICS (continued)

( $V_{CCA}$  = 2.5V,  $T_A$  = +25°C, unless otherwise noted.)

| DADAMETED           | OVMDOL                                                  |              |                    | V <sub>CCB</sub> = 2.5V | V <sub>CCB</sub> = 3.3V | V <sub>CCB</sub> = 5V | UNITS |  |
|---------------------|---------------------------------------------------------|--------------|--------------------|-------------------------|-------------------------|-----------------------|-------|--|
| PARAMETER           | SYMBOL                                                  | CONDITIONS   |                    | ТҮР                     | TYP                     | TYP                   | UNITS |  |
|                     | +                                                       |              | Push-pull driving  | 4.5                     | 4.5                     | 5.0                   |       |  |
|                     | t <sub>PHL</sub>                                        | A to D       | Open-drain driving | 26.2                    | 27.1                    | 26.2                  |       |  |
|                     |                                                         | A to B       | Push-pull driving  | 3.8                     | 3.3                     | 3.1                   | ns    |  |
| Dran a notion Dalay | t <sub>PLH</sub>                                        |              | Open-drain driving | 111.0                   | 95.6                    | 76.0                  |       |  |
| Propagation Delay   |                                                         |              | Push-pull driving  | 4.2                     | 4.0                     | 4.1                   |       |  |
|                     | t <sub>PHL</sub>                                        | D to A       | Open-drain driving | 25.8                    | 25.5                    | 25.6                  |       |  |
|                     | t <sub>PLH</sub>                                        | B to A       | Push-pull driving  | 3.7                     | 3.5                     | 3.6                   | - ns  |  |
|                     |                                                         |              | Open-drain driving | 52.7                    | 50.6                    | 49.8                  |       |  |
| Enable Time         | t <sub>EN</sub> (t <sub>PZH</sub> & t <sub>PZL</sub> )  | OE to A or B |                    | 21.6                    | 17.4                    | 15.5                  |       |  |
| Disable Time        | t <sub>DIS</sub> (t <sub>PHZ</sub> & t <sub>PLZ</sub> ) | OE to A or B |                    | 689                     | 688                     | 678                   | ns    |  |
|                     | t <sub>rA</sub>                                         | A Ports      | Push-pull driving  | 6.4                     | 6.7                     | 6.9                   | ns    |  |
| Rise Time           |                                                         | APOILS       | Open-drain driving | 10.5                    | 7.7                     | 7.8                   |       |  |
| Rise filme          |                                                         | B Ports      | Push-pull driving  | 6.2                     | 5.4                     | 4.9                   |       |  |
|                     | t <sub>rB</sub>                                         | B Ports      | Open-drain driving | 67.0                    | 50.9                    | 30.5                  | ns    |  |
|                     |                                                         | A Ports      | Push-pull driving  | 8.6                     | 8.2                     | 7.3                   |       |  |
|                     | t <sub>fA</sub>                                         | APOILS       | Open-drain driving | 3.6                     | 3.3                     | 3.1                   | ns    |  |
| Fall Time           |                                                         | D Dorto      | Push-pull driving  | 8.5                     | 7.7                     | 8.1                   |       |  |
|                     | t <sub>fB</sub>                                         | B Ports      | Open-drain driving | 3.4                     | 3.9                     | 5.4                   | ns    |  |
| Data Data           |                                                         | Push-pull dr | iving              | 24                      | 24                      | 24                    | Mana  |  |
| Data Rate           |                                                         | Open-drain   | driving            | 2                       | 2                       | 2                     | Mbps  |  |



## SWITCHING CHARACTERISTICS (continued)

(V<sub>CCA</sub> = 3.3V, T<sub>A</sub> =  $+25^{\circ}C$ , unless otherwise noted.)

| PARAMETER         | SYMBOL                                                  |              | CONDITIONS         | V <sub>CCB</sub> = 3.3V | V <sub>CCB</sub> = 5V |                                                                                            |  |
|-------------------|---------------------------------------------------------|--------------|--------------------|-------------------------|-----------------------|--------------------------------------------------------------------------------------------|--|
| PARAMETER         | STWBOL                                                  |              | JONDITIONS         | TYP                     | ТҮР                   |                                                                                            |  |
|                   | +                                                       |              | Push-pull driving  | 4.4                     | 5.0                   |                                                                                            |  |
|                   | t <sub>PHL</sub>                                        | A to B       | Open-drain driving | 25.5                    | 27.5                  |                                                                                            |  |
|                   | +                                                       |              | Push-pull driving  | 3.5                     | 2.7                   | ns                                                                                         |  |
| Bronagation Dalay | t <sub>PLH</sub>                                        |              | Open-drain driving | 52.4                    | 51.4                  | UNITS<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ms<br>ms<br>s<br>Mbps |  |
| Propagation Delay | +                                                       |              | Push-pull driving  | 4.1                     | 4.4                   |                                                                                            |  |
|                   | t <sub>PHL</sub>                                        | B to A       | Open-drain driving | 25.8                    | 54.3                  |                                                                                            |  |
|                   | +                                                       | DIOA         | Push-pull driving  | 3.1                     | 2.8                   | ns                                                                                         |  |
|                   | t <sub>PLH</sub>                                        |              | Open-drain driving | 50.3                    | 49.4                  |                                                                                            |  |
| Enable Time       | t <sub>EN</sub> (t <sub>PZH</sub> & t <sub>PZL</sub> )  | OE to A or B |                    | 15.9                    | 13.8                  |                                                                                            |  |
| Disable Time      | t <sub>DIS</sub> (t <sub>PHZ</sub> & t <sub>PLZ</sub> ) | OE to A or B |                    | 699                     | 678                   | ns                                                                                         |  |
|                   | t <sub>rA</sub>                                         | A Ports      | Push-pull driving  | 5.2                     | 6.2                   | 20                                                                                         |  |
| Rise Time         |                                                         | AFOIIS       | Open-drain driving | 6.3                     | 6.2                   | 115                                                                                        |  |
| Rise Time         |                                                         | B Ports      | Push-pull driving  | 5.3                     | 4.7                   | 20                                                                                         |  |
|                   |                                                         | DFOILS       | Open-drain driving | 8.3                     | 6.8                   | 115                                                                                        |  |
|                   | +                                                       | A Ports      | Push-pull driving  | 7.3                     | 7.6                   |                                                                                            |  |
| Fall Time         | t <sub>fA</sub>                                         | AFOILS       | Open-drain driving | 3.1                     | 3.0                   | 115                                                                                        |  |
| Fail Time         | +                                                       | B Ports      | Push-pull driving  | 7.7                     | 7.3                   |                                                                                            |  |
|                   | t <sub>fB</sub>                                         | DPUILS       | Open-drain driving | 3.8                     | 4.6                   |                                                                                            |  |
| Data Rate         |                                                         | Push-pull dr | iving              | 24                      | 24                    | Mbpo                                                                                       |  |
| Daid Rale         |                                                         | Open-drain   | driving            | 2                       | 2                     | - iviups                                                                                   |  |

## SWITCHING CHARACTERISTICS (continued)

( $V_{CCA}$  = 5V,  $T_A$  = +25°C, unless otherwise noted.)

| DADAMETED         | 0/4/201                                                 |                        |                    | V <sub>CCB</sub> = 5V | 100070 |  |
|-------------------|---------------------------------------------------------|------------------------|--------------------|-----------------------|--------|--|
| PARAMETER         | SYMBOL                                                  |                        | CONDITIONS         | ТҮР                   | UNITS  |  |
|                   |                                                         |                        | Push-pull driving  | 5.3                   |        |  |
|                   | t <sub>PHL</sub>                                        | A to B                 | Open-drain driving | 27.4                  |        |  |
|                   | +                                                       | ALOD                   | Push-pull driving  | 2.4                   | — ns   |  |
| Propagation Dalay | t <sub>PLH</sub>                                        |                        | Open-drain driving | 50.6                  |        |  |
| Propagation Delay |                                                         |                        | Push-pull driving  | 5.0                   |        |  |
|                   | t <sub>PHL</sub>                                        | B to A                 | Open-drain driving | 26.3                  |        |  |
|                   | t <sub>PLH</sub>                                        | DIOA                   | Push-pull driving  | 2.2                   | ns     |  |
|                   |                                                         |                        | Open-drain driving | 49.3                  |        |  |
| Enable Time       | t <sub>EN</sub> (t <sub>PZH</sub> & t <sub>PZL</sub> )  | OE to A or B           |                    | 22.6                  | ns     |  |
| Disable Time      | t <sub>DIS</sub> (t <sub>PHZ</sub> & t <sub>PLZ</sub> ) | OE to A or B           |                    | 665                   | ns     |  |
|                   | t <sub>rA</sub>                                         | 4                      | A Ports            | Push-pull driving     | 5.3    |  |
| Diao Timo         |                                                         | I <sub>rA</sub> APOIIS | Open-drain driving | 5.0                   | — ns   |  |
| Rise Time         |                                                         | B Ports                | Push-pull driving  | 4.9                   |        |  |
|                   | t <sub>rB</sub>                                         | BPOILS                 | Open-drain driving | 6.5                   | ns     |  |
|                   |                                                         | A Danta                | Push-pull driving  | 8.5                   |        |  |
| Fall Time         | t <sub>fA</sub>                                         | A Ports                | Open-drain driving | 2.8                   | ns     |  |
|                   | +                                                       | B Ports                | Push-pull driving  | 7.7                   |        |  |
|                   | t <sub>fB</sub>                                         | DPOILS                 | Open-drain driving | 4.2                   | — ns   |  |
| Data Data         |                                                         | Push-pull dr           | iving              | 24                    | Mhaa   |  |
| Data Rate         |                                                         | Open-drain             | driving            | 2                     | Mbps   |  |



## WAVEFORMS

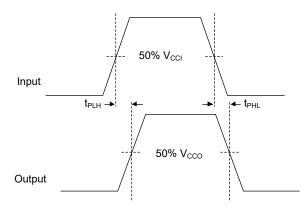



Figure 2. Propagation Delay

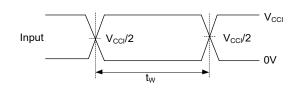
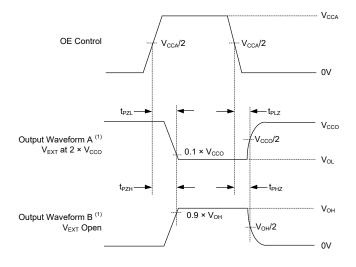




Figure 3. Pulse Duration



NOTE:

1. Waveform A indicates an output that is high except for OE is high. Waveform B indicates an output that is low except for OE is high.

Figure 5. Enable and Disable Times

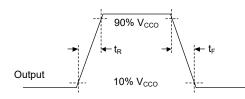
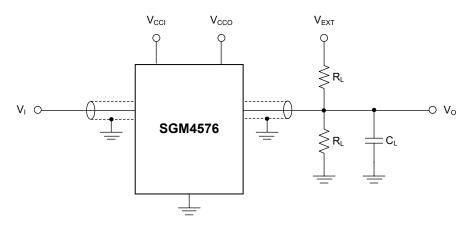




Figure 4. Rise Time and Fall Time of Data Output



## **TEST CIRCUIT**



Definitions for test circuit:

R<sub>L</sub> = Load resistance.

 $C_L$  = Load capacitance includes jig and probe capacitance.

 $V_{EXT}$  = External voltage for measuring switching times.

 $V_{CCI}$  = Supply voltage associated with the input.

 $V_{CCO}$  = Supply voltage associated with the output.

#### Figure 6. Test Circuit for Measuring Switching Times



## **DETAILED DESCRIPTION**

#### Applications

The SGM4576 is a bridge between two digital systems with different power supplies as it can transmit the signal transparently. For the application of the SGM4576, the output driver is open-drain or push-pull to drive the  $l^2C$  or one-wire bus. In addition, if a device with push-pull driver is connected to the l/O pin of the SGM4576, it will operate as normal.

#### Architecture

The SGM4576 can switch the direction of the transmission for port A and port B automatically without any external control.

There is no need to add an external direction control for the application of the SGM4576. Also, each I/O pin can be an input or output of the voltage translator.

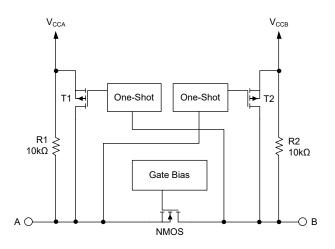



Figure 7. Architecture of an SGM4576 Cell

The explanation of two main parts of the internal circuit for the SGM4576 is shown as below:

- There is an NMOS between port A and port B to switch on or off the transmission.
- The one-shot accelerator can be used to accelerate the rising edges of the signal for port A and port B automatically.

#### **Input Driver Requirements**

The falling time of port A and port B and  $t_{\text{PHL}}$  depend on the output impedance of the connected device. The values of parameters which are  $t_{\text{fA}},\,t_{\text{fB}},\,t_{\text{PHL}}$  and data rates are specified when the resistance of external driver is less than 50 $\Omega$ .

#### **Power-Up**

For the application of the SGM4576, the V<sub>CCA</sub> should be less than V<sub>CCB</sub>. However, it does not matter if the power supply voltage is ramping, and the sequence of power-up for both V<sub>CCA</sub> and V<sub>CCB</sub> is not defined.

#### **Output Load Considerations**

To decrease the extend of capacitive loading and ensure the proper triggering of O.S., the trace in PCB should be as short as possible. Also, to ensure that the round-trip reflection delay is smaller than the time period of one-shot, the users should also decrease the length of trace, which means that the signal integrity is guaranteed because of the low impedance for the reflection. The period of on-state for the O.S. part is 30ns. In addition, for the one-shot circuit, it can support lumped capacitive load. In addition, the one-shot circuit has the time-out function, which aims to handle the extremely heavy capacitive load. For the function of O.S. part of the SGM4576, it can optimize the trade-off between the capability of load driving, maximum bit-rate and dynamic supply current. The length of PCB trace and output connectors will be considered as the capacitive load of the device, which may result in the retriggering of O.S., contention of bus and the oscillations of the output.

#### **Enable and Disable**

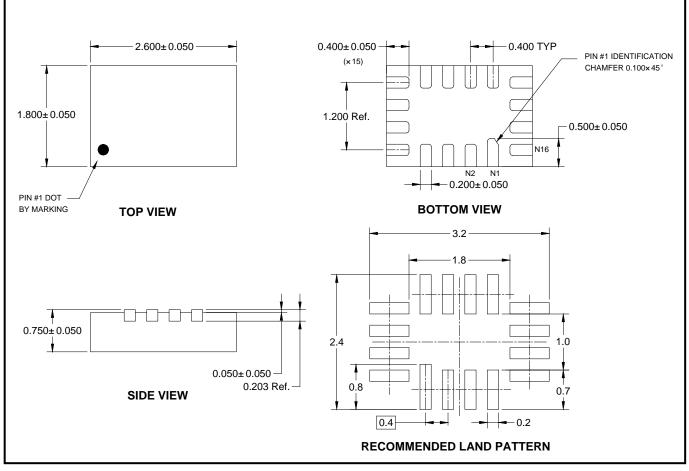
The function of OE is used to disable SGM4576 by setting the transmitting I/O pins to high-impedance mode. The pull-down current source is integrated inside OE once it is powered by V<sub>CCA</sub>. The definition of disable time (t<sub>DIS</sub>) is the time period between OE goes low and when all of the I/O pins are in high-impedance mode. The enable time (t<sub>EN</sub>) is defined as the time period between OE goes to high position and one-shot part starts to operate.

#### Pull-Up or Pull-Down Resistors on I/O Lines

For the I/O pin of A and B side, there is a  $10k\Omega$  pull-up resistor to provide a high position for each I/O pin. However, if a smaller pull-up resistor is required, the users can add an external resistor which is parallel with the  $10k\Omega$  resistor. Also, the value of V<sub>OL</sub> can be affected by the added external resistor. In addition, if the user wants to disable the device, the OE pin can be simply set to low position.



## **REVISION HISTORY**


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

#### Changes from Original (JUNE 2018) to REV.A

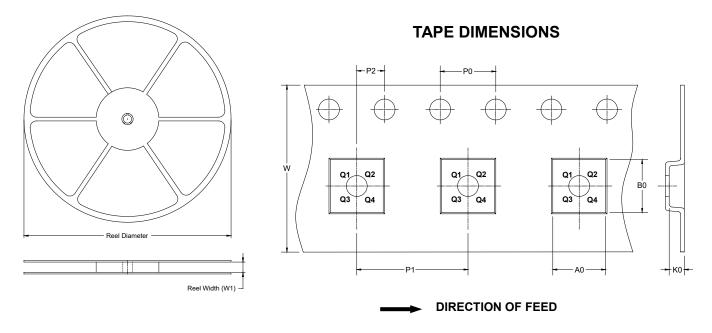
| Changed from product preview to production dataAll |
|----------------------------------------------------|
|----------------------------------------------------|



## PACKAGE OUTLINE DIMENSIONS TQFN-2.6×1.8-16L



NOTES:

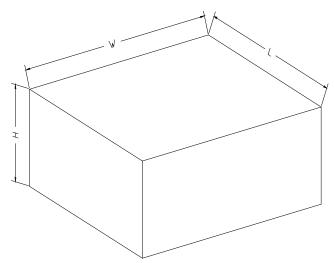

1. All linear dimensions are in millimeters.

2. This drawing is subject to change without notice.



## TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

#### KEY PARAMETER LIST OF TAPE AND REEL

| Package Type     | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|------------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| TQFN-2.6×1.8-16L | 7″               | 9.0                      | 2.01       | 2.81       | 0.93       | 4.0        | 4.0        | 2.0        | 8.0       | Q1               |

#### **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

#### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type   | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |       |
|-------------|----------------|---------------|----------------|--------------|-------|
| 7" (Option) | 368            | 227           | 224            | 8            |       |
| 7"          | 442            | 410           | 224            | 18           | 00002 |

