SGM4574 4-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

GENERAL DESCRIPTION

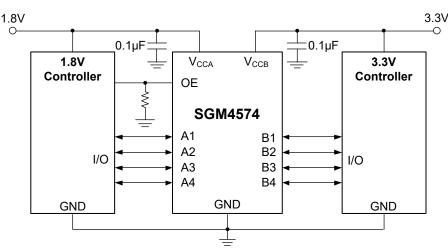
SGMICRO

The SGM4574 is a 4-bit, non-inverting, bidirectional voltage-level translator which features two independent configurable power-supply lines. The A and B ports track the V_{CCA} supply and V_{CCB} supply respectively. The supply voltage range is 1.65V to 5.5V for A ports and 2.3V to 5.5V for B ports. The device provides a bidirectional translation function between the different voltage nodes (including 1.8V, 2.5V, 3.3V and 5V).

The SGM4574 has an output enable (OE) function, which controls the inputs and outputs states. When OE goes low, all I/Os enter into the high-impedance state. The OE should be connected to GND via a pull-down resistor, and the minimum resistor value is depended on the current source capability of the driver.

The SGM4574 features the OE input circuit which is referenced to $V_{\mbox{\scriptsize CCA}}.$

The SGM4574 is available in Green UTQFN-1.8×1.8-12L, TQFN-2×2-12L and SOIC-14 packages. It operates over an ambient temperature range of -40°C to +85°C.


FEATURES

- Power Supply Voltage Ranges (V_{CCA} ≤ V_{CCB})
 - A Ports: 1.65V to 5.5V
 - B Ports: 2.3V to 5.5V
- Direction-Control Signal is Not Required
- Data Rates
 - Push-Pull: 24Mbps
 - Open-Drain: 2Mbps
- No Specific Power Sequences Required for V_{CCA} and V_{CCB}
- -40°C to +85°C Operating Temperature Range
- Available in Green UTQFN-1.8×1.8-12L, TQFN-2×2-12L and SOIC-14 Packages

APPLICATIONS

Smart Phones Portable Devices Handheld Devices PC/Tablet

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	UTQFN-1.8×1.8-12L	-40°C to +85°C	SGM4574YUQN12G/TR	4574 XXXX	Tape and Reel, 3000
SGM4574	TQFN-2×2-12L	-40°C to +85°C	SGM4574YTQM12G/TR	4574 XXXX	Tape and Reel, 3000
	SOIC-14	-40°C to +85°C	SGM4574YS14G/TR	SGM4574YS14 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXX = Date Code. XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

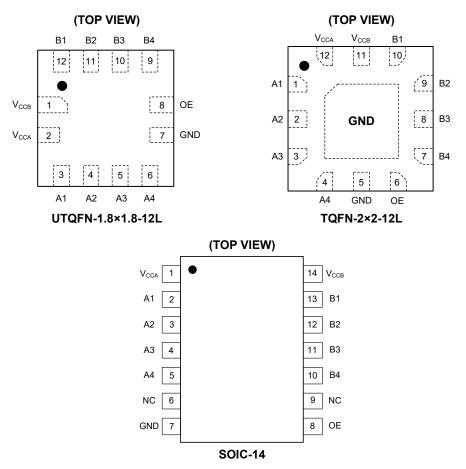
ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range
V _{CCA} 0.3V to 6V
V _{CCB} 0.3V to 6V
A Ports, B Ports, OE Input Voltage Range, V $_{\rm I}^{(1)}$
-0.3V to 6V
Output Voltage Range for the High-Impedance or Power-Off
State, V ₀ ⁽¹⁾
A Ports0.3V to 6V
B Ports0.3V to 6V
Output Voltage Range for the High or Low State, $V_{0}^{(1)(2)}$
A Ports0.3V to V_{CCA} + 0.3V
B Ports0.3V to V_{CCB} + 0.3V
Input Clamp Current, I _{IK} (VI < 0)50mA
Output Clamp Current, I _{OK} (V _O < 0)25mA
Continuous Output Current, I ₀ ±50mA
Continuous Current through V _{CCA} , V _{CCB} , or GND \pm 100mA
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM4000V
MM
CDM

NOTES:

1. When the input and output current ratings are observed, the input and I/O negative voltage ratings may be exceeded. 2. V_{CCA} and V_{CCB} values are shown in the recommended operating conditions table.

RECOMMENDED OPERATING CONDITIONS


Supply Voltage Range ⁽⁵⁾
V _{CCA} 1.65V to 5.5V
V _{CCB}
High-Level Input Voltage, V _{IH}
A Port I/Os (V_{CCA} = 1.65V, V_{CCB} = 2.3V to 5.5V)
A Port I/Os (V_{CCA} = 1.95V to 5.5V, V_{CCB} = 2.3V to 5.5V)
B Port I/Os V_{CCI} - 0.4V to V_{CCI}
OE InputV _{CCA} × 0.8V to 5.5V
Low-Level Input Voltage, V _{IL}
A Port I/Os0V to 0.15V
B Port I/Os0V to 0.15V
OE Input0V to V _{CCA} × 0.25V
Operating Temperature Range40°C to +85°C

NOTES:

- 3. V_{CCI} is the supply voltage associated with the input ports.
- 4. V_{CCO} is the supply voltage associated with the output ports.
- 5. Ensure that $V_{CCA} \leq V_{CCB}$ and V_{CCA} must not exceed 5.5V.

PIN CONFIGURATIONS

PIN DESCRIPTION

	PIN						
TQFN- 2×2-12L	UTQFN- 1.8×1.8-12L	SOIC-14	NAME	TYPE	FUNCTION		
1	3	2	A1	I/O	Input/Output 1. It tracks the V _{CCA} supply.		
2	4	3	A2	I/O	Input/Output 2. It tracks the V _{CCA} supply.		
3	5	4	A3	I/O	Input/Output 3. It tracks the V _{CCA} supply.		
4	6	5	A4	I/O	Input/Output 4. It tracks the V _{CCA} supply.		
_	_	6, 9	NC	_	No Connection. Not internally connected.		
5	7	7	GND	S	Ground.		
6	8	8	OE	I	Output Enable Control Pin. Active high. When OE goes low, all outputs enter into the high-impedance state. It tracks the V_{CCA} supply.		
7	9	10	B4	I/O	Input/Output 4. It tracks the V _{CCB} supply.		
8	10	11	B3	I/O	Input/Output 3. It tracks the V _{CCB} supply.		
9	11	12	B2	I/O	Input/Output 2. It tracks the V _{CCB} supply.		
10	12	13	B1	I/O	Input/Output 1. It tracks the V _{CCB} supply.		
11	1	14	V _{CCB}	S	Supply Voltage on B Ports. It can be operated from 2.3V to 5.5V.		
12	2	1	V _{CCA}	S	Supply Voltage on A Ports. It can be operated from 1.65V to 5.5V, and V_{CCA} is always $\leq V_{CCB}$.		
Exposed Pad	_	_	GND	_	Exposed pad should be soldered to PCB board and connected to GND or left floating.		

ELECTRICAL CHARACTERISTICS

(V_{CCA} = 1.65V to 5.5V, V_{CCB} = 2.3V to 5.5V, Full = -40°C to +85°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER		SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
A Ports High-Level C	Output Voltage	V _{OHA}	I_{OH} = -20µA, $V_{IB} \ge V_{CCB}$ - 0.4V		Full	V _{CCA} × 0.67			
A Ports Low-Level Output Voltage		V _{OLA}	I _{OL} = 1mA, V _{IB} ≤ 0.15V		Full			0.4	v
B Ports High-Level C	Output Voltage	V _{OHB}	$I_{OH} = -20\mu A, V_{IA} \ge V_{IA}$	√ _{CCA} - 0.4V	Full	$V_{CCB} \times 0.67$			v
B Ports Low-Level C	utput Voltage	V _{OLB}	$I_{OL} = 1mA, V_{IA} \le 0.$	15V	Full			0.4	
Input Leakage	OE Input	I,			+25°C			±1	μA
Current		"			Full			±1.5	μΛ
	A Ports		$V_{CCA} = 0V, V_{CCB} = 0$	W to 5.5 V	+25°C			±0.5	
Power Off Leakage		I _{OFF}		JV 10 0.0V	Full			±1	μA
Current	B Ports	OFF	$V_{CCA} = 0V$ to 5.5V,	$V_{con} = 0V$	+25°C			±0.5	μ., ί
	DIONS			$v_{CCA} = 0v_{10} 0.5v, v_{CCB} = 0v_{10}$				±1	
3-State Output	A or B Ports	loz	0E = 0V					±0.5	μA
Leakage		102	02-00		Full			±1	μΛ
			V _I = V _O = OPEN,	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			13	
		I _{CCA}	$I_0 = 0A$	$V_{CCA} = 5.5 V, V_{CCB} = 0 V$	Full			13	μΑ
				V_{CCA} = 0V, V_{CCB} = 5.5V	Full			-1	
		I _{ССВ}	$V_1 = V_0 = OPEN,$ $I_0 = 0A$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			17	
Quiescent Supply Cu	urrent			$V_{CCA} = 5.5 V, V_{CCB} = 0 V$	Full			-1	
				V_{CCA} = 0V, V_{CCB} = 5.5V	Full			8	
		I _{CCA} + I _{CCB}	$V_1 = V_0 = OPEN,$ $I_0 = 0A$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			21	μA
		I _{CCZA}	$V_{I} = V_{CCI} \text{ or } 0V,$ $I_{O} = 0A, OE = 0V$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			13	μA
		I _{CCZB}	$V_{I} = V_{CCI} \text{ or } 0V,$ $I_{O} = 0A, OE = 0V$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			8	μA
OE Input Capacitand	ce	Ci	V_{CCA} = 3.3V, V_{CCB} =	= 3.3V	+25°C		6		pF
Input/Output	A Ports	<u> </u>			+25°C		6		
Capacitance	B Ports	C _{IO}	V_{CCA} = 3.3V, V_{CCB} =	- 3.3V	+25°C		6		pF

TIMING REQUIREMENTS

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

	SYMBOL	CONDITIONS	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	UNITS	
PARAMETER	STWBUL	CONDITIONS	ТҮР	TYP	ТҮР	UNITS	
(V _{CCA} = 1.8V)							
Data Rate		Push-pull driving	24	24	24	Mhna	
Dala Rale		Open-drain driving	2	2	2	Mbps	
Pulse Duration		Push-pull driving	41	41	41	20	
(Data Inputs)	t _w	Open-drain driving	500	500	500	ns	
(V _{CCA} = 2.5V)							
Data Rate		Push-pull driving	24	24	24	Mana	
Dala Rale		Open-drain driving	2	2	2	Mbps	
Pulse Duration		Push-pull driving	41	41	41		
(Data Inputs)	tw	Open-drain driving	500	500	500	ns	
(V _{CCA} = 3.3V)							
		Push-pull driving		24	24	Mana	
Data Rate		Open-drain driving		2	2	Mbps	
Pulse Duration		Push-pull driving		41	41	20	
(Data Inputs)	t _w	Open-drain driving		500	500	ns	
(V _{CCA} = 5V)							
Data Rate		Push-pull driving			24	Mhna	
		Open-drain driving			2	Mbps	
Pulse Duration	+	Push-pull driving			41	20	
(Data Inputs)	t _w	Open-drain driving 5		500	ns		

SWITCHING CHARACTERISTICS

(V_{CCA} = 1.8V, T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	UNITS
PARAWETER	STNIBOL			ТҮР	ТҮР	TYP	UNITS
			Push-pull driving	3.5	3.5	5.1	
	t _{PHL}		Open-drain driving	56.2	27.0	27.9	
		A to B	Push-pull driving	5.1	4.5	4.4	ns
Dropogation Dalay	t _{PLH}		Open-drain driving	142.7	119.8	92.1	
Propagation Delay			Push-pull driving	3.0	2.8	3.4	
	t _{PHL}	B to A	Open-drain driving	25.6	25.3	25.4	
		DIOA	Push-pull driving	3.7	3.2	2.6	ns
	t _{PLH}		Open-drain driving	55.1	49.4	48.0	
Enable Time	t _{EN} (t _{PZH} & t _{PZL})	OE to A or B		28.4	24.6	22.5	20
Disable Time	t _{DIS} (t _{PHZ} & t _{PLZ})	OE to A or B		674	677	671	ns
	t _{rA}	A Ports	Push-pull driving	7.2	8.1	9.1	ns
Rise Time			Open-drain driving	12.3	11.3	10.1	
Rise Time	+	B Ports	Push-pull driving	7.2	6.1	5.4	20
	t _{rB}	DFUIS	Open-drain driving	99.3	72.9	36.7	ns
		A Ports	Push-pull driving	5.7	5.9	6.9	20
Fall Time	t _{fA}	APOILS	Open-drain driving	3.8	3.6	3.6	ns
Fail Time		D Davita	Push-pull driving	7.9	7.8	8.4	
	t _{fB}	B Ports	Open-drain driving	3.5	8.4	5.0	ns
Data Rate		Push-pull dr	iving	24	24	24	Mhno
Dala Rale		Open-drain driving		2	2	2	Mbps

SWITCHING CHARACTERISTICS (continued)

(V_{CCA} = 2.5V, T_A = +25°C, unless otherwise noted.)

DADAMETED	OVMDOL	CONDITIONS		V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	
PARAMETER	SYMBOL			ТҮР	ТҮР	TYP	UNITS
	+		Push-pull driving	4.5	4.5	5.0	-
	t _{PHL}	A to D	Open-drain driving	26.2	27.1	26.2	
		A to B	Push-pull driving	3.8	3.3	3.1	ns
Dran a notion Dalay	t _{PLH}		Open-drain driving	111.0	95.6	76.0	
Propagation Delay			Push-pull driving	4.2	4.0	4.1	
	t _{PHL}	D to A	Open-drain driving	25.8	25.5	25.6	
	t _{PLH}	B to A	Push-pull driving	3.7	3.5	3.6	- ns
			Open-drain driving	52.7	50.6	49.8	
Enable Time	t _{EN} (t _{PZH} & t _{PZL})	OE to A or B		21.6	17.4	15.5	
Disable Time	t _{DIS} (t _{PHZ} & t _{PLZ})	OE to A or B		689	688	678	ns
	t _{rA}	A Ports	Push-pull driving	6.4	6.7	6.9	ns
Rise Time		APONS	Open-drain driving	10.5	7.7	7.8	
Rise filme		D Davita	Push-pull driving	6.2	5.4	4.9	
	t _{rB}	B Ports	Open-drain driving	67.0	50.9	30.5	ns
		A Ports	Push-pull driving	8.6	8.2	7.3	
	t _{fA}	APOILS	Open-drain driving	3.6	3.3	3.1	ns
Fall Time		B Ports	Push-pull driving	8.5	7.7	8.1	
	t _{fB}	DPOILS	Open-drain driving	3.4	3.9	5.4	ns
Data Data		Push-pull dr	iving	24	24	24	Mana
Data Rate		Open-drain driving		2	2	2	Mbps

SWITCHING CHARACTERISTICS (continued)

(V_{CCA} = 3.3V, T_A = $+25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	SYMBOL CONDITIONS		V _{CCB} = 3.3V	V _{CCB} = 5V	UNITS
PARAMETER	STWBOL		JONDITIONS	TYP	ТҮР	
	+		Push-pull driving	4.4	5.0	
	t _{PHL}	A to B	Open-drain driving	25.5	27.5	
	+	ALOD	Push-pull driving	3.5	2.7	ns
Propagation Dolov	t _{PLH}		Open-drain driving	52.4	51.4	
Propagation Delay	+		Push-pull driving	4.1	4.4	
	t _{PHL}	B to A	Open-drain driving	25.8	54.3	
	+	BIOA	Push-pull driving	3.1	2.8	- ns
	t _{PLH}		Open-drain driving	50.3	49.4	-
Enable Time	t _{EN} (t _{PZH} & t _{PZL})	OE to A or B		15.9	13.8	
Disable Time	t _{DIS} (t _{PHZ} & t _{PLZ})	OE to A or B		699	678	- ns
	t _{rA}	A Ports	Push-pull driving	5.2	6.2	20
Rise Time		AFOIIS	Open-drain driving	6.3	6.2	ns
Rise Time	t _{rB}	B Ports	Push-pull driving	5.3	4.7	ns
		DFUIS	Open-drain driving	8.3	6.8	115
	+	A Ports	Push-pull driving	7.3	7.6	20
Fall Time	t _{fA}	APOILS	Open-drain driving	3.1	3.0	- ns
Fail Time	+	B Ports	Push-pull driving	7.7	7.3	
	t _{fB}	DPOILS	Open-drain driving	3.8	4.6	ns
Data Rate		Push-pull dr	iving	24	24	Mbpa
Dala Nale		Open-drain driving		2	2	Mbps

SWITCHING CHARACTERISTICS (continued)

(V_{CCA} = 5V, T_A = +25°C, unless otherwise noted.)

DADAMETED	0////201	CONDITIONS		V _{CCB} = 5V	100070	
PARAMETER	SYMBOL		JUNDITIONS	ТҮР	UNITS	
			Push-pull driving	5.3		
	t _{PHL}	A to B	Open-drain driving	27.4		
		ALOD	Push-pull driving	2.4	ns	
Dress exetien Delevi	t _{PLH}		Open-drain driving	50.6		
Propagation Delay	4		Push-pull driving	5.0		
	t _{PHL}	B to A	Open-drain driving	26.3		
	t _{PLH}	DIOA	Push-pull driving	2.2		
			Open-drain driving	49.3		
Enable Time	t _{EN} (t _{PZH} & t _{PZL})	OE to A or E	5	22.6		
Disable Time	t _{DIS} (t _{PHZ} & t _{PLZ})	OE to A or B		665		
	t _{rA}		A Ports	Push-pull driving	5.3	
		A Ports	Open-drain driving	5.0	ns	
Rise Time		D Davida	Push-pull driving	4.9		
	t _{rB}	B Ports	Open-drain driving	6.5	ns	
		A Danta	Push-pull driving	8.5		
	t _{fA}	A Ports	Open-drain driving	2.8	ns	
Fall Time		P. Dorto	Push-pull driving	7.7		
	t _{fB}	B Ports	Open-drain driving	4.2	ns	
Data Data		Push-pull dr	iving	24	Mahara	
Data Rate		Open-drain driving		2	— Mbps	

FUNCTIONAL BLOCK DIAGRAM

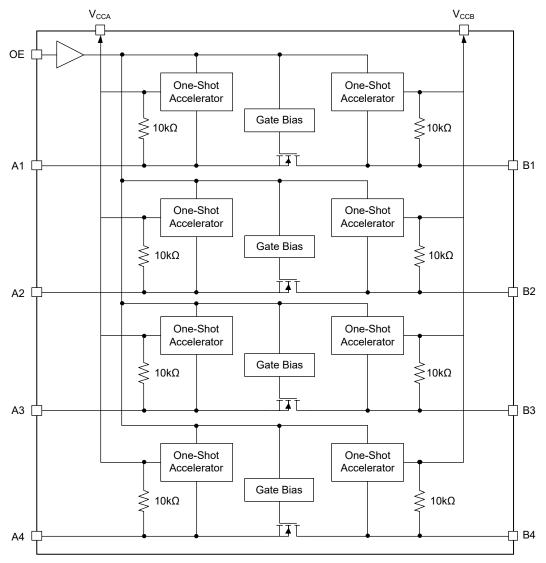


Figure 2. Block Diagram

WAVEFORMS

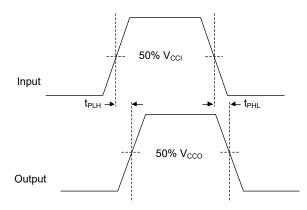


Figure 3. Propagation Delay

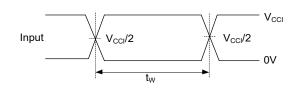
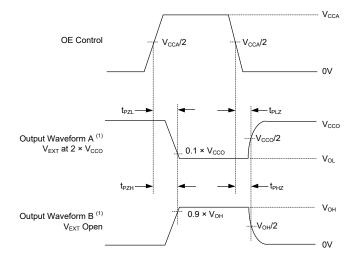



Figure 4. Pulse Duration

NOTE:

1. Waveform A indicates an output that is high except for OE is high. Waveform B indicates an output that is low except for OE is high.

Figure 6. Enable and Disable Times

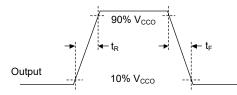
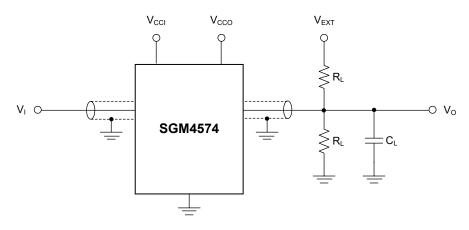



Figure 5. Rise Time and Fall Time of Data Output

TEST CIRCUIT

Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance includes jig and probe capacitance.

 V_{EXT} = External voltage for measuring switching times.

 V_{CCI} = Supply voltage associated with the input.

 V_{CCO} = Supply voltage associated with the output.

Figure 7. Test Circuit for Measuring Switching Times

DETAILED DESCRIPTION

Overview

The SGM4574 can transmit the logic waveform from port A to port B and port B to port A. The acceptable voltage range for port A is from 1.65V to 5.5V while the acceptable voltage range for port B is from 2.3V to 5.5V. In order to enhance the data rate of the transmission, the one-shot accelerators are taken into account. Also, the main structure of the SGM4574 is pass gate. For the operation of the device, the external resistor is not needed as there is a pull-up resistor at each open-drain output of the device. On top of this, the device is also supported the output of push-pull CMOS logic.

Architecture

The SGM4574 can switch the direction of the transmission for port A and port B automatically without any external control.

There is no need to add an external direction control for the application of the SGM4574. Also, each I/O pin can be an input or output of the voltage translator.

Figure 8. Architecture of an SGM4574 Cell

The explanation of two main parts of the internal circuit for the SGM4574 is shown as below:

- There is an NMOS between port A and port B to switch on or off the transmission.
- The one-shot accelerator can be used to accelerate the rising edges of the signal for port A and port B automatically.

Input Driver Requirements

The falling time of port A and port B and t_{PHL} depend on the output impedance of the connected device. The values of parameters which are t_{fA} , t_{fB} , t_{PHL} and data rates are specified when the resistance of external driver is less than 50 Ω .

Power-Up

For the application of the SGM4574, the V_{CCA} should be less than V_{CCB}. However, it does not matter if the power supply voltage is ramping, and the sequence of power-up for both V_{CCA} and V_{CCB} is not defined.

Enable and Disable

The function of OE is used to disable SGM4574 by setting the transmitting I/O pins to high-impedance mode. The definition of disable time (t_{DIS}) is the time period between OE goes low and when all of the I/O pins are in high-impedance mode. The enable time (t_{EN}) is defined as the time period between OE goes to high position and one-shot part starts to operate.

Pull-Up or Pull-Down Resistors on I/O Lines

For the I/O pin of A and B sides, there is a $10k\Omega$ pull-up resistor to provide a high position for each I/O pin. However, if a smaller pull-up resistor is required, the users can add an external resistor which is parallel with the $10k\Omega$ resistor.

Device Functional Modes

The SGM4574 contains two functional modes: enabled and disabled. When the OE input goes to low, all I/Os are set in HIZ state, the device will be disabled; when the OE input goes to high, the device will be enabled.

APPLICATION INFORMATION

The SGM4574 can be used in the application between two different voltage interfaces or systems. The SGM4574 can be used in the situation where the open-drain or push-pull driver connected to its data I/Os, while the SGM4574 is beneficial in the application of push-pull.

Design Requirements

The values in Table 1 are considered for the following design.

Table 1. Design Parameters

Design Parameter	Example Value
Input Voltage Range	1.65V to 5.5V
Output Voltage Range	2.3V to 5.5V

Detailed Design Procedure

The following parameters should be determined:

• Input voltage range

The input voltage range of each side of the SGM4574 is determined by the associated power supply voltage. For logic high, the input signal should be higher than its V_{IH} . Also, for logic low, the input signal should be lower than its V_{IL} for logic low.

Output voltage range

The associated supply voltage at the output side determines the range of the output logic waveform.

There is a $10k\Omega$ pull-up resistor integrated inside the SGM4574. Also, if the small RC is required, an external pull-up resistor is required to be parallel with the internal resistor.

• The V_{OH} and V_{OL} are decreased because of the influence of the external pull-down resistor. The following equation illustrates how to calculate the V_{OH} with the given pull-down resistor.

$$V_{OH} = V_{CCX} \times R_{PD} / (R_{PD} + 10k\Omega)$$
(1)

where,

 V_{CCX} illustrates the supply voltage for ports A or B.

 R_{PD} illustrates the selected value of the external pull-down resistor.

Power-Supply Recommendations

There are two separate power supplies for the operation of SGM4574. The supply range of V_{CCB} is from 2.3V to 5.5V while the supply voltage for V_{CCA} is from 1.65V to 5.5V. The nodes of ports A and B can be set any voltage stages within the supply voltage, which are 1.8V, 2.5V, 3.3V and 5V. Also, the output signal will track the selected supply voltage as well.

There is no rule about the power-up sequence of the power supply for ports A and B. The device will not be damaged if $V_{CCA} \ge V_{CCB}$; however, for normal operation, the users need to make sure that $V_{CCA} \le V_{CCB}$.

The Output Enable (OE) is powered by V_{CCA} and all of the input I/O pins are in high-impedance state if OE = GND. For the period of powering up, if the users desire high-impedance state of the I/Os, a pull-down resistor is required to tie the voltage of OE pin to GND. The ability of sourcing current can determine selected value of the pull-down resistor.

Layout Guidelines

The following recommendations of PCB layout should be allowed:

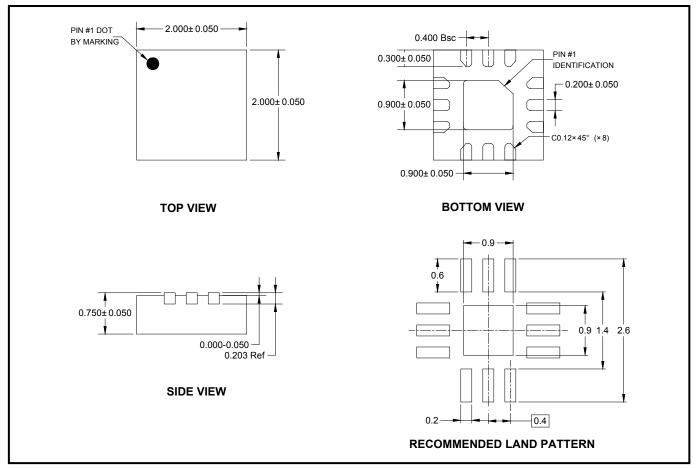
• Use bypass capacitor at the power supply pins.

• To decrease the external loading, short traces should be taken into account.

• The length of the PCB trace should be short so that the round-trip delay of the reflection is below the one-shot period (30ns). Also, the reflection can meet low impedance at the source.

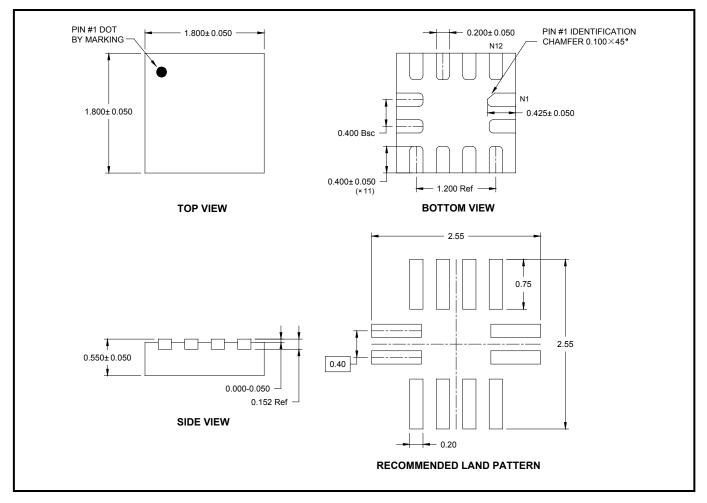
• Sometimes, the external pull-up resistors and loading capacitance is required for different systems, so that it is recommended that the pads at the signal trace is necessary.

REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

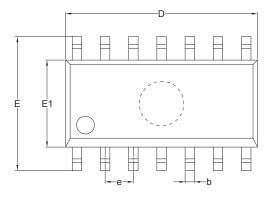
Changes from Original (JUNE 2018) to REV.A

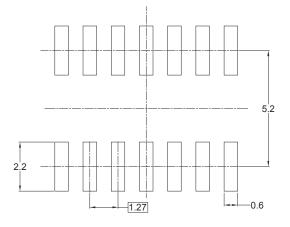
Changed from product preview to production dataAll
--



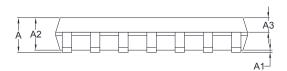
PACKAGE OUTLINE DIMENSIONS TQFN-2×2-12L

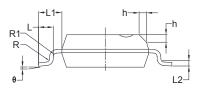
NOTE: All linear dimensions are in millimeters.


PACKAGE OUTLINE DIMENSIONS UTQFN-1.8×1.8-12L

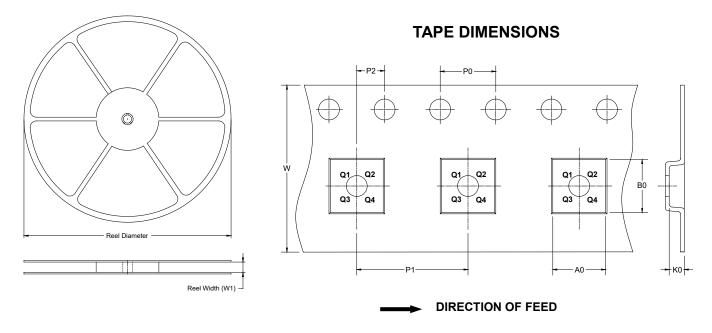


NOTE: All linear dimensions are in millimeters.


PACKAGE OUTLINE DIMENSIONS


SOIC-14

RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.35	1.75	0.053	0.069	
A1	0.10	0.25	0.004	0.010	
A2	1.25	1.65	0.049	0.065	
A3	0.55	0.75	0.022	0.030	
b	0.36	0.49	0.014	0.019	
D	8.53	8.73	0.336	0.344	
E	5.80	6.20	0.228	0.244	
E1	3.80	4.00	0.150	0.157	
е	1.27	BSC	0.050 BSC		
L	0.45	0.80	0.018	0.032	
L1	1.04	REF	0.040 REF		
L2	0.25	BSC	0.01 BSC		
R	0.07		0.003		
R1	0.07		0.003		
h	0.30	0.50	0.012	0.020	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION


REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-2×2-12L	7"	9.5	2.30	2.30	0.90	4.0	4.0	2.0	8.0	Q2
UTQFN-1.8×1.8-12L	7"	9.0	2.10	2.10	0.80	4.0	4.0	2.0	8.0	Q2
SOIC-14	13″	16.4	6.60	9.30	2.10	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton		
7" (Option)	368	227	224	8		
7"	442	410	224	18]_	
13″	386	280	370	5	DD0002	

