

74LVTH16373 3.3V, 16-Bit D-Type Transparent Latch with 3-State Outputs

GENERAL DESCRIPTION

The 74LVTH16373 is a 16-bit D-type transparent latch with non-inverting 3-state outputs which is designed for 3.3V supply voltage. The device can provide capability in driving highly capacitive or relatively low-impedance loads, which makes it especially suitable for use in implementing buffer registers, I/O ports, bidirectional bus drivers and working registers.

The device is capable of being used as two 8-bit latches or one 16-bit latch. Each octal is equipped with a latch enable (nLE) input and an output enable ($n\overline{OE}$) input. nDn are data inputs and nQn are data outputs. When nLE is set high, the nQn will appear the data of nDn. When nLE is set low, the nQn will be latched at the levels of the nDn inputs one set-up time preceding the high-to-low transition.

A buffered output enable $(n\overline{OE})$ input can make the eight outputs set to either high/low logic levels or high-impedance state.

The bus hold on data inputs makes it unnecessary to use external pull-up/pull-down resistors to hold unused input.

FEATURES

- Wide Operating Voltage Range: 3.3V
- Input and Output Interface Capability to 5V System Environment
- +64mA/-32mA Output Current
- 16-Bit Transparent Latch
- 3-State Buffers
- Input and Output Switching Levels of TTL
- Power-up Reset
- Power-up 3-State
- No Bus Current Loading when Output is Connected to 5V Bus
- No External Pull-up/Pull-down Resistors are Required Due to the Bus Hold on Data Inputs
- Support Live Insertion and Extraction
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-48 Package

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVTH16373	TSSOP-48	-40°C to +125°C	74LVTH16373XTS48G/TR	74LVTH16373 XTS48 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXXXX

Vendor Code

—— Trace Code

— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage, V _{CC} 0.5V to 4.6V
Input Voltage, VI ⁽²⁾ 0.5V to 7V
Output Voltage, Vo ⁽²⁾
High-Impedance State0.5V to 7V
High-State or Low-State0.5V to MIN (7V, V _{CC} + 0.5V)
Input Clamping Current, I _{IK} (V _I < 0V)50mA
Output Clamping Current, I _{OK} (V _O < 0V)50mA
Output Current, I _O
High-State64mA
Low-State128mA
Supply Current, I _{CC} 128mA
Ground Current, I _{GND} 256mA
Junction Temperature ⁽³⁾ +150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM7000V
CDM1000V

RECOMMENDED OPERATING CONDITIONS

Supply Voltage, V _{CC}	2.7V to 3.6V
Input Voltage, V _I	0V to 5.5V
Output Voltage, V _O	
High-Impedance State	0V to 5.5V
High-State or Low-State	$0V$ to V_{CC}
High-Level Output Current, I _{OH}	32mA
Low-Level Output Current, IoL	64mA
Input Transition Rise and Fall Rate, $\Delta t / \Delta V$	
	10ns/V (MAX)
Operating Temperature Range	40°C to +125°C

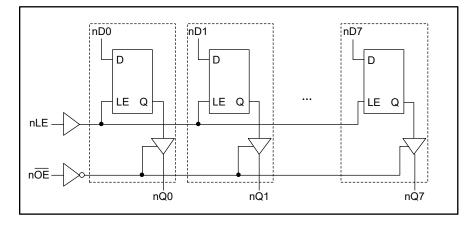
OVERSTRESS CAUTION

1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

LOGIC DIAGRAM

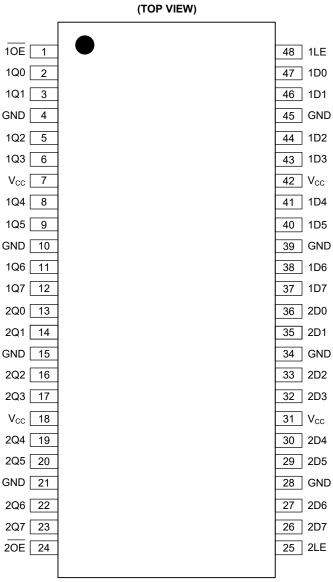
FUNCTION TABLE

OPERATING MODE	co		UT	INTERNAL	OUTPUT
OPERATING MODE	nOE	nLE	nDn	REGISTER	nQn
Enable and Read Register	L	Н	L	L	L
(Transparent Mode)	L	Н	Н	Н	Н
Lateband David Daviater	L	L	I	L	L
Latch and Read Register	L	L	h	Н	Н
	Н	L	I	L	Z
Latch Register and Disable Outputs	Н	L	h	Н	Z

H = High Voltage Level

L = Low Voltage Level

h = High Voltage Level One Set-Up Time Prior to the High-to-Low LE Transition


I = Low Voltage Level One Set-Up Time Prior to the High-to-Low LE Transition

Z = High-Impedance State

3.3V, 16-Bit D-Type Transparent Latch with 3-State Outputs

PIN CONFIGURATION

TSSOP-48

PIN DESCRIPTION

PIN	NAME	FUNCTION		
47, 46, 44, 43, 41, 40, 38, 37	1D0, 1D1, 1D2, 1D3, 1D4, 1D5, 1D6, 1D7	Data Inputs.		
36, 35, 33, 32, 30, 29, 27, 26	2D0, 2D1, 2D2, 2D3, 2D4, 2D5, 2D6, 2D7	Data Inputs.		
1, 24	10E, 20E	Output Enable Inputs (Active Low).		
48, 25	1LE, 2LE	Latch Enable Inputs (Active High).		
2, 3, 5, 6, 8, 9, 11, 12	1Q0, 1Q1, 1Q2, 1Q3, 1Q4, 1Q5, 1Q6, 1Q7	Data Outputs.		
13, 14, 16, 17, 19, 20, 22, 23	2Q0, 2Q1, 2Q2, 2Q3, 2Q4, 2Q5, 2Q6, 2Q7	Data Outputs.		
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground.		
7, 18, 31, 42	V _{cc}	Supply Voltage.		

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDIT	TEMP	MIN	TYP	MAX	UNITS		
Input Clamping Voltage	VIK	V _{CC} = 2.7V, I _{IK} = -18mA	V _{CC} = 2.7V, I _{IK} = -18mA		-1.2	-0.78		V	
High-Level Input Voltage	VIH	V _{CC} = 2.7V to 3.6V	Full	2			V		
Low-Level Input Voltage	VIL	V _{CC} = 2.7V to 3.6V		Full			0.8	V	
		I_{OH} = -100µA, V _{CC} = 2.7V to	o 3.6V	Full	V _{cc} - 0.05	V _{CC} - 0.001			
High-Level Output Voltage	V _{он}	I _{OH} = -8mA, V _{CC} = 2.7V		Full	2.45	2.6		V	
		I _{OH} = -32mA, V _{CC} = 3.0V		Full	2.1	2.65			
		(-2.7)	I _{OL} = 100μΑ	Full		0.001	0.05		
		$V_{CC} = 2.7V$	I _{OL} = 24mA	Full		0.15	0.28		
Low-Level Output Voltage	V _{OL}		I _{OL} = 16mA	Full		0.1	0.18	V	
		V _{CC} = 3.0V	I _{OL} = 32mA	Full		0.2	0.36		
			I _{OL} = 64mA	Full		0.4	0.55		
Power-Up Low-Level Output Voltage ⁽¹⁾	$V_{\text{OL}_{PU}}$	V_{CC} = 3.6V, I_{OL} = 1mA, V_{I} =	V _{CC} or GND	Full		5	50	mV	
Input Leakage Current	I,	Control pins, V _{CC} = 3.6V, V	Full		±0.01	±1			
		Control pins, $V_{CC} = 0V$ or 3	Full		0.01	5			
		Input data pins $^{(2)}$, V _{CC} = 0V	/ or 3.6V, V _I = 5.5V	Full		0.4	5	μΑ	
		Input data pins $^{(2)}$, V _{CC} = 3.6V, V _I = V _{CC}		Full		0.3	2		
		Input data pins $^{(2)}$, V _{CC} = 3.6	Full	-2	-0.01				
Off State Output Current	lan	$y_{1} = 2.6y_{1}$	V ₀ = 3.0V	Full		0.01	2	μA	
Off-State Output Current	l _{oz}	$V_{CC} = 3.6V$	V _o = 0.5V	Full	-2	-0.01			
Output Leakage Current	I _{LO}	Output in high-state when $V_0 = 5.5V$, $V_{CC} = 3.0V$	$V_0 > V_{CC}$,	Full		1	30	μA	
Power-Up/Down Output Current	I _{O_PU/PD}	$V_{CC} \le 1.2V, V_0 = 0.5V$ to V nOE = don't care	$_{\rm CC}$, V _I = GND or V _{CC} ,	+25°C		0.01	10	μA	
Power-Off Leakage Current	I _{OFF}	$V_{CC} = 0V$, V_{I} or $V_{O} = 0V$ to	5.5V	Full		0.01	10	μA	
		V _{CC} = 3.6V,	Outputs high	Full		12	80		
Supply Current	I _{cc}	$V_1 = GND \text{ or } V_{CC},$	Outputs low	Full		12	80	μA	
		$I_{O} = OA$	Outputs disabled ⁽³⁾	Full		12	80	1	
Additional Supply Current ⁽⁴⁾	Δl _{cc}	Per input pin, V_{CC} = 3.0V to V_{CC} - 0.6V, other inputs at		Full		0.2	200	μA	
Input Capacitance	Cı	Input pins, $V_1 = 0V$ or 3.0V		+25°C		6		pF	
Output Capacitance	Co	Output pins nQn, outputs c $V_0 = 0V$ or V_{CC}	lisabled,	+25°C		9		pF	
Bus Hold Low Current	I _{BHL}	$V_{\rm CC} = 3.0V, V_{\rm I} = 0.8V$			50	100		μA	
Bus Hold High Current	I _{BHH}	V _{CC} = 3.0V, V _I = 2.0V		Full	1	-130	-75	μA	
Bus Hold Low Overdrive Current ⁽⁵⁾	I _{BHLO}	Input data pins, V _I = 0V to	3.6V, V _{CC} = 3.6V	Full	500	200		μA	
Bus Hold High Overdrive Current ⁽⁵⁾	I _{BHHO}	Input data pins, V _I = 0V to	3.6V, V _{CC} = 3.6V	Full		-280	-500	μA	

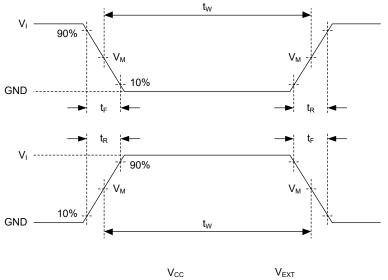
NOTES:

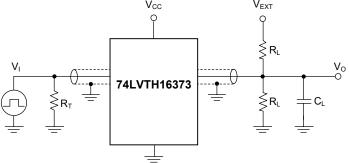
1. The data must not be loaded into the latches after applying power to get valid test results.

2. Unused pins at $V_{\text{CC}}\xspace$ or GND.

- 3. I_{CC} is measured with outputs pulled to V_{CC} or GND.
- 4. This is the increase in supply current for each input at the specified voltage level except for V_{CC} or GND.

5. This is the bus hold overdrive current required input must be in the opposite logic state.


DYNAMIC CHARACTERISTICS


(For test circuit, see Figure 1. All typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIC	NS	TEMP	MIN	ТҮР	MAX	UNITS	
Levete Llink Drene retien Delev		n Din ta in Oin, and Filmuna 2	V _{CC} = 2.7V	+25℃		3.4			
Low to High Propagation Delay	t _{PLH}	nDn to nQn, see Figure 2	$V_{\rm CC}$ = 3.0V to 3.6V	+25°C		3.4		ns	
Lligh to Low Propagation Dalay		nDn to nOn and Figure 2	V _{CC} = 2.7V	+25℃		3.8			
High to Low Propagation Delay	t _{PHL}	nDn to nQn, see Figure 2	V _{CC} = 3.0V to 3.6V	+25℃		3.5		ns	
Low to Lligh Dronggetion Doloy		nl E to nOn, and Eigure 2	V _{CC} = 2.7V	+25°C		3.6			
Low to High Propagation Delay	t _{PLH}	nLE to nQn, see Figure 3	V_{CC} = 3.0V to 3.6V	+25°C		3.6		ns	
High to Low Propagation Delay	+	nLE to nQn, see Figure 3	V _{CC} = 2.7V	+25°C		4		20	
Fight to Low Propagation Delay	t _{PHL}		V_{CC} = 3.0V to 3.6V	+25°C		4		ns	
Off State to Lligh Drenagation Delay			V _{CC} = 2.7V	+25°C		5.3		20	
Off-State to High Propagation Delay	t _{PZH}	nOE to nQn, see Figure 4	V_{CC} = 3.0V to 3.6V	+25°C		4.9		ns	
Off-State to Low Propagation Delay	+	$n\overline{OE}$ to nQn, see Figure 4	V _{CC} = 2.7V	+25°C		5		- ns	
	t _{PZL}	noe to non, see Figure 4	V_{CC} = 3.0V to 3.6V	+25°C		4.9			
High to Off-State Propagation Delay	+	$n\overline{OE}$ to nQn, see Figure 4	V _{CC} = 2.7V	+25°C		4.9		nc	
Fighto On-State Fropagation Delay	t _{PHZ}	noe to non, see Figure 4	V_{CC} = 3.0V to 3.6V	+25°C		4.6		ns	
Low to Off-State Propagation Delay		$n\overline{OE}$ to nQn, see Figure 4	V _{CC} = 2.7V	+25°C		5.4		ns	
Low to On-State Propagation Delay	t _{PLZ}	nOE to nQn, see Figure 4	$V_{\rm CC}$ = 3.0V to 3.6V	+25°C		5.4		- ns	
		nDn to nLE, see Figure 5	V _{CC} = 2.7V	+25°C		0.3		20	
High Set-Up Time	t _{sun}	IDIT to TILE, see Figure 5	V_{CC} = 3.0V to 3.6V	+25°C		0.3		ns	
Low Sat Lin Time		n Din to nl E. and Figure F.	V _{CC} = 2.7V	+25°C		0.3		20	
Low Set-Up Time	t _{SUL}	nDn to nLE, see Figure 5	V_{CC} = 3.0V to 3.6V	+25°C		0.3		ns	
Lligh Llold Time		n Din to ini E. and Figure F.	V _{CC} = 2.7V	+25°C		0.2		20	
High Hold Time	t _{HH}	nDn to nLE, see Figure 5	V _{CC} = 3.0V to 3.6V	+25℃		0.2		ns	
Levelled Time		n Din ta ini E, ana Einuna E	V _{CC} = 2.7V	+25℃		0.2			
Low Hold Time	t _{HL}	nDn to nLE, see Figure 5	$V_{\rm CC}$ = 3.0V to 3.6V	+25°C		0.2		ns	
Lligh Dules Width	+		V _{CC} = 2.7V	+25°C		1.5		20	
High Pulse Width	t _{wH}	nLE, see Figure 3	$V_{\rm CC}$ = 3.0V to 3.6V	+25°C		1.5		ns	

3.3V, 16-Bit D-Type Transparent Latch with 3-State Outputs

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

V_{EXT}: External voltage used to measure switching time.

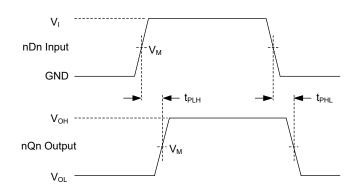
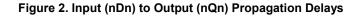
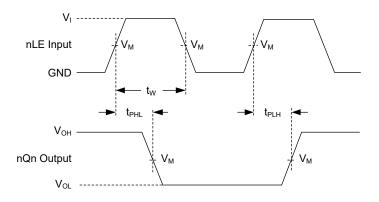

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT			LOAD		V _{EXT}			
Vcc	VI	fı	tw	t _R , t _F	C∟	RL	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}
2.7V to 3.6V	2.7V	≤ 10MHz	500ns	≤ 2.5ns	50pF	500Ω	GND	6V	open


WAVEFORMS

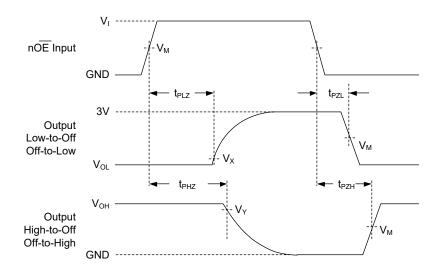


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

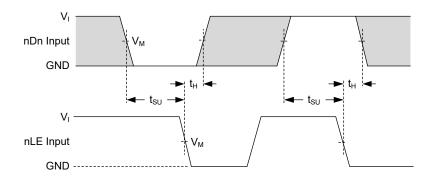
Test conditions are given in Table 1.


Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Latch Enable Input Pulse Width and the Latch Enable Input to Output Propagation Delays

WAVEFORMS (continued)



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 4. Enable and Disable Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 5. Data Set-Up and Hold Times for the nDn Input to the nLE Input

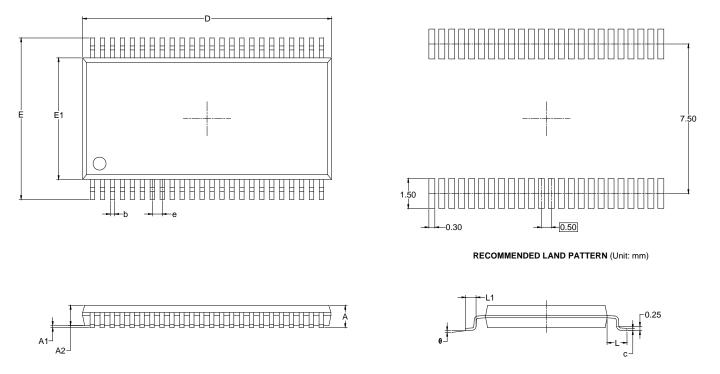
Table 2. Measurement Points

SUPPLY VOLTAGE	INF	TUT	OUTPUT				
Vcc	V ₁ V _M ⁽¹⁾		V _M	Vx	V _Y		
2.7V to 3.6V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{он} - 0.3V		

NOTE:

1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.

REVISION HISTORY

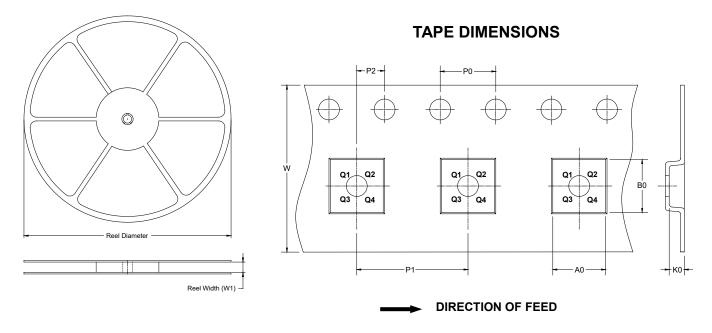

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

NOVEMBER 2021 – REV.A to REV.A.1	Page
Updated HBM value in Absolute Maximum Ratings section	2
Changes from Original (MARCH 2021) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS

TSSOP-48

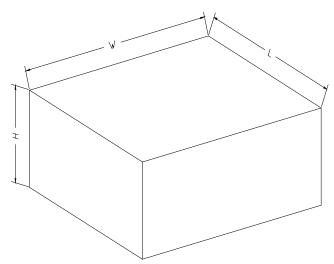
Symbol	D	imensions In Millimet	ers		
Symbol	MIN	MOD	MAX		
A			1.20		
A1	0.05	0.10	0.15		
A2	0.85	0.95	1.05		
b	0.18		0.26		
С	0.15		0.19		
D	12.40	12.50	12.60		
E	7.90	8.10	8.30		
E1	6.00	6.10	6.20		
е		0.50 BSC			
L		1.00 REF			
L1	0.45		0.75		
θ	0°		8°		


NOTES: 1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-48	13"	24.4	8.60	13.00	1.80	4.0	12.0	2.0	24.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

