

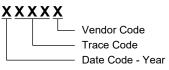
74LVCN16373 16-Bit D-Type Transparent Latch with 3-State Outputs

GENERAL DESCRIPTION

The 74LVCN16373 is a 16-bit D-type transparent latch with 3-state outputs that is designed for 1.2V to 3.6V V_{CC} operation. It features separate D-type inputs for each latch and 3-state outputs for bus-oriented applications. Each octal is equipped with a latch enable (nLE) input and an output enable (n \overline{OE}) input. Both 3.3V and 5V devices can drive inputs. When device is disabled, the outputs can accept voltages up to 5.5V, allowing this device to operate in a mixed 3.3V and 5V system environment.

The device includes two 8-bit transparent D-type latches with 3-state outputs. When nLE is high, the data at the nDn inputs goes into the latches. In this case, the latches are transparent, that is to say, the latch outputs vary with corresponding D-type inputs each time. When $n\overline{OE}$ is low, the data of the nQn outputs is available. When $n\overline{OE}$ is high, the outputs are in high-impedance state. $n\overline{OE}$ inputs have no influence on the state of the latches.

FEATURES


- Supply Voltage Range: 1.2V to 3.6V
- Input and Output Interface Capability to 5V System Environment
- +24mA/-24mA Output Current
- Direct Interface with TTL Levels
- Outputs in High-Impedance State when V_{CC} = 0V
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-48 Package

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVCN16373	TSSOP-48	-40°C to +125°C	74LVCN16373XTS48G/TR	74LVCN16373 XTS48 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXX = Date Code. Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

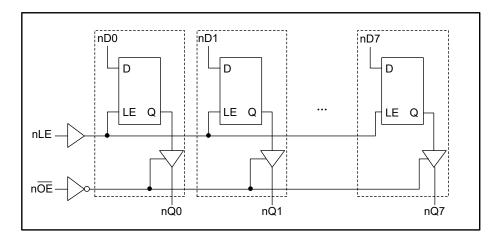
ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage, V _{CC} 0.5V to 6.5V
Input Voltage, V _I ⁽²⁾ 0.5V to 6.5V
Output Voltage, V _O ⁽²⁾
High-Impedance State0.5V to 6.5V
High-State or Low-State0.5V to MIN (6.5V, V _{CC} + 0.5V)
Input Clamping Current, $I_{IK}(V_I < 0V)$ 50mA
Output Clamping Current, $I_{OK}(V_O > V_{CC} \text{ or } V_O < 0V)$
±50mA
Output Current, I _O
High-State or Low-State±50mA
Supply Current, I _{CC}
Ground Current, I _{GND} 100mA
Junction Temperature (3)+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM7000V
CDM1000V

RECOMMENDED OPERATING	CONDITIONS
Function Supply Voltage, V _{CC}	1.2V to 3.6V
Operating Supply Voltage, V _{CC}	1.65V to 3.6V
Input Voltage, V _I	0V to 5.5V
Output Voltage, Vo	
High-Impedance State	0V to 5.5V
High-State or Low-State	0V to V _{CC}
High-Level Output Current, I _{OH}	24mA
Low-Level Output Current, I _{OL}	24mA
Input Transition Rise and Fall Rate, $\Delta t/\Delta V$	
V _{CC} = 1.2V to 2.7V	20ns/V (MAX)
V _{CC} = 2.7V to 3.6V	10ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

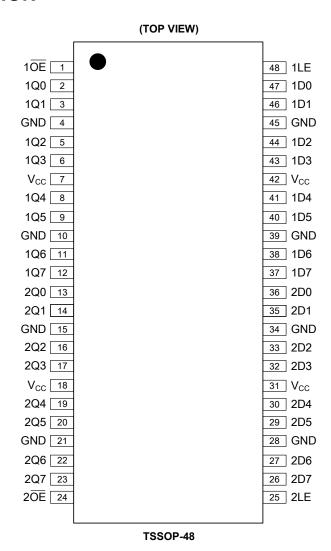
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

LOGIC DIAGRAM

FUNCTION TABLE

CONTROL INPUT			INTERNAL	OUTPUT	
nŌĒ	nLE	nDn	REGISTER	nQn	
L	Н	L	L	L	
L	Н	Н	Н	Н	
L	L	I	L	L	
L	L	h	Н	Н	
Н	L	I	L	Z	
Н	L	h	Н	Z	

H = High Voltage Level


L = Low Voltage Level

h = High Voltage Level One Set-Up Time Prior to the High-to-Low nLE Transition

I = Low Voltage Level One Set-Up Time Prior to the High-to-Low nLE Transition

Z = High-Impedance State

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
47, 46, 44, 43, 41, 40, 38, 37	1D0, 1D1, 1D2, 1D3, 1D4, 1D5, 1D6, 1D7	Data Inputs.
36, 35, 33, 32, 30, 29, 27, 26	2D0, 2D1, 2D2, 2D3, 2D4, 2D5, 2D6, 2D7	Data Inputs.
1, 24 1 OE , 2 OE		Output Enable Inputs (Active Low).
48, 25	1LE, 2LE	Latch Enable Inputs (Active High).
2, 3, 5, 6, 8, 9, 11, 12	1Q0, 1Q1, 1Q2, 1Q3, 1Q4, 1Q5, 1Q6, 1Q7	Data Outputs.
13, 14, 16, 17, 19, 20, 22, 23	2Q0, 2Q1, 2Q2, 2Q3, 2Q4, 2Q5, 2Q6, 2Q7	Data Outputs.
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground.
7, 18, 31, 42	Vcc	Supply Voltage.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
		V _{CC} = 1.2V		Full	1.08			
Llink Laval Innova Valance		V _{CC} = 1.65V to 1.95V		Full	0.65 × V _{CC}			V
High-Level Input Voltage	V _{IH}	V _{CC} = 2.3V to	2.7V	Full	1.7			V
		V _{CC} = 2.7V to	3.6V	Full	2			
		V _{CC} = 1.2V		Full			0.12	
Low-Level Input Voltage	VIL	$V_{CC} = 1.65V \text{ to}$	1.95V	Full			0.35 × V _{CC}	V
Low-Level Input Voltage	V IL	V_{CC} = 2.3V to	2.7V	Full			0.7	V
		V_{CC} = 2.7V to		Full			0.8	
			$I_{O} = -100 \mu A,$ $V_{CC} = 1.65 V \text{ to } 3.6 V$	Full	V _{CC} - 0.05	V _{CC} - 0.003		
	V _{он}	V _I = V _{IH}	$I_{\rm O}$ = -4mA, $V_{\rm CC}$ = 1.65V	Full	1.43	1.54		. V
High-Level Output Voltage			I_{O} = -8mA, V_{CC} = 2.3V	Full	2.03	2.18		
I ngn zovo. O apat vonage			I_{O} = -12mA, V_{CC} = 2.7V	Full	2.36	2.55		
			$I_0 = -18$ mA, $V_{CC} = 3.0$ V	Full	2.53	2.8		
			$I_0 = -24$ mA, $V_{CC} = 3.0$ V	Full	2.35	2.73		
	V _{OL}		$I_0 = 100 \mu A$, $V_{CC} = 1.65 V$ to 3.6 V	Full		0.002	0.05	V
			$I_{O} = 4mA, V_{CC} = 1.65V$	Full		0.07	0.2	
Low-Level Output Voltage		$V_I = V_{IL}$	$I_0 = 8mA, V_{CC} = 2.3V$	Full		0.11	0.28	
			$I_0 = 12mA, V_{CC} = 2.7V$	Full		0.16	0.35	
			$I_{\rm O}$ = 24mA, $V_{\rm CC}$ = 3.0V	Full		0.3	0.55	
Input Leakage Current	l ₁	$V_I = 5.5V$ or G	ND, $V_{CC} = 3.6V$	Full		±0.01	±2	μΑ
Off-State Output Current	l _{oz}	$V_{I} = V_{IH} \text{ or } V_{IL}$ $V_{O} = 5.5V \text{ or GND}, V_{CC} = 3.6V$		Full		±0.01	±2	μΑ
Power-Off Leakage Current	I _{OFF}	V _I or V _O = 5.5V, V _{CC} = 0V		Full		0.01	5	μΑ
Supply Current	Icc	$V_1 = V_{CC}$ or GND, $I_0 = 0A$, $V_{CC} = 3.6V$		Full		1.3	20	μΑ
Additional Supply Current (1)	ΔI _{CC}	Per input pin, $V_1 = V_{CC} - 0.6V$, $I_0 = 0A$, $V_{CC} = 2.7V$ to 3.6V		Full		0.1	80	μΑ
Input Capacitance	Cı			+25°C		6		pF

NOTE:

1. This is the increase in supply current for each input at the specified voltage level other than Vcc or GND.

DYNAMIC CHARACTERISTICS

(For test circuit see Figure 1. All typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDI	TIONS	TEMP	MIN (1)	TYP	MAX (1)	UNITS
			V _{CC} = 1.2V	+25°C		28.4		
			V _{CC} = 1.65V to 1.95V	Full	0.5	6.8	14	
		nDn to nQn, see Figure 2	V _{CC} = 2.3V to 2.7V	Full	0.5	4.7	7	
			V _{CC} = 2.7V	Full	0.5	4.4	6.5	
			V _{CC} = 3.0V to 3.6V	Full	0.5	4.2	6	
Propagation Delay (2)	t _{PD}		V _{CC} = 1.2V	+25°C		27.2		ns
			V _{CC} = 1.65V to 1.95V	Full	0.5	8.8	15	
		nLE to nQn, see Figure 3	V _{CC} = 2.3V to 2.7V	Full	0.5	5.2	8.5	
			V _{CC} = 2.7V	Full	0.5	4.8	7.5	
			V _{CC} = 3.0V to 3.6V	Full	0.5	4.4	7	
	t _{EN}	nOE to nYn, see Figure 4	V _{CC} = 1.2V	+25°C		15.6		ns
			V _{CC} = 1.65V to 1.95V	Full	0.5	8	14	
Enable Time (2)			V _{CC} = 2.3V to 2.7V	Full	0.5	4.4	7	
			V _{CC} = 2.7V	Full	0.5	3.2	7	
			$V_{CC} = 3.0V \text{ to } 3.6V$	Full	0.5	2.8	6.5	
			V _{CC} = 1.2V	+25°C		12		ns
			V_{CC} = 1.65V to 1.95V	Full	0.5	6.8	12	
Disable Time (2)	t _{DIS}	nOE to nYn, see Figure 4	V _{CC} = 2.3V to 2.7V	Full	0.5	4.4	7	
			V _{CC} = 2.7V	Full	0.5	4	7	
			V _{CC} = 3.0V to 3.6V	Full	0.5	4	6.5	

DYNAMIC CHARACTERISTICS (continued)

(For test circuit see Figure 1. All typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN (1)	TYP	MAX (1)	UNITS
			V _{CC} = 1.65V to 1.95V	+25°C	3.3			
Duda a Middle		ml E Himbons Simons 2	V _{CC} = 2.3V to 2.7V	+25°C	3.3			
Pulse Width	t _W	nLE High, see Figure 3	V _{CC} = 2.7V	+25°C	3.3			ns
			V _{CC} = 3.0V to 3.6V	+25°C	3.3			
			V _{CC} = 1.65V to 1.95V	+25°C	1.5			
Cat Un Time	t _{su}	nDn to nLE, see Figure 5	V _{CC} = 2.3V to 2.7V	+25°C	1.5			ns
Set-Up Time			V _{CC} = 2.7V	+25°C	2			
			V _{CC} = 3.0V to 3.6V	+25°C	2			
	t _H	nDn to nLE, see Figure 5	V _{CC} = 1.65V to 1.95V	+25°C	2			- ns
Hald The c			V _{CC} = 2.3V to 2.7V	+25°C	2			
Hold Time			V _{CC} = 2.7V	+25°C	1.2			
			V _{CC} = 3.0V to 3.6V	+25°C	1.2			
		Per input, V_1 = GND to V_{CC}	V _{CC} = 1.65V to 1.95V	+25°C		12		pF
Power Dissipation (3)	C_{PD}		V _{CC} = 2.3V to 2.7V	+25°C		13		
			V _{CC} = 3.0V to 3.6V	+25°C		14		

NOTES:

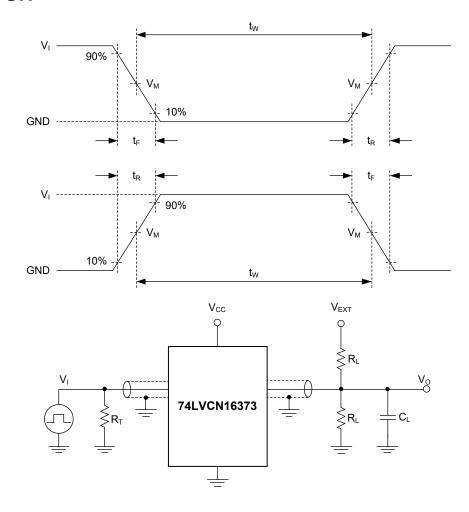
- 1. Specified by design and characterization; not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} . t_{EN} is the same as t_{PZL} and t_{PZH} . t_{DIS} is the same as t_{PLZ} and t_{PHZ} .
- 3. C_{PD} is used to determine the dynamic power dissipation ($P_{D}\ in\ \mu W).$

$$P_D = C_{PD} \times V_{CC}^{-2} \times f_i \times N + \Sigma (C_L \times V_{CC}^{-2} \times f_o)$$

where:

 f_i = Input frequency in MHz.

f_o = Output frequency in MHz.


C_L = Output load capacitance in pF.

 V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{Sum of the outputs.}$

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

 C_L : Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

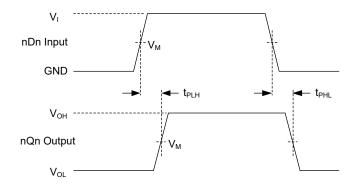
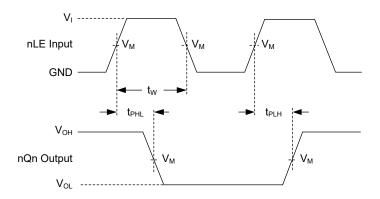

 V_{EXT} : External voltage used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LOAD		V _{EXT}		
V _{cc}	Vı	t _R , t _F	C∟	R _L	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
1.2V	V_{CC}	≤ 2ns	30pF	1kΩ	Open	2 × V _{CC}	GND
1.65V to 1.95V	V_{CC}	≤ 2ns	30pF	1kΩ	Open	2 × V _{CC}	GND
2.3V to 2.7V	Vcc	≤ 2ns	30pF	500Ω	Open	2 × V _{CC}	GND
2.7V	2.7V	≤ 2.5ns	50pF	500Ω	Open	2 × V _{CC}	GND
3.0V to 3.6V	2.7V	≤ 2.5ns	50pF	500Ω	Open	2 × V _{CC}	GND

WAVEFORMS

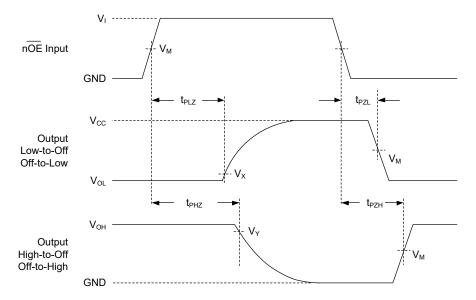


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (nDn) to Output (nQn) Propagation Delays


Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Latch Enable Input Pulse Width and the Latch Enable Input to Output Propagation Delays

WAVEFORMS (continued)

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

nDn Input
GND

V_I

The second of the secon

Figure 4. Enable and Disable Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 5. Data Set-Up and Hold Times for the nDn Input to the nLE Input

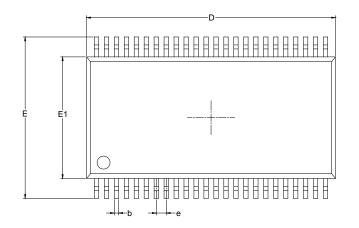
WAVEFORMS (continued)

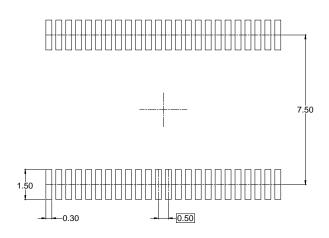
Table 2. Measurement Points

SUPPLY VOLTAGE	INPUT		OUTPUT				
V _{CC}	Vı	V _M ⁽¹⁾	V _M	V _X	V _Y		
1.2V	V_{CC}	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.15V	V _{OH} - 0.15V		
1.65V to 1.95V	V_{CC}	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.15V	V _{OH} - 0.15V		
2.3V to 2.7V	V_{CC}	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 0.15V	V _{OH} - 0.15V		
2.7V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{OH} - 0.3V		
3.0V to 3.6V	2.7V	1.5V	1.5V	V _{OL} + 0.3V	V _{OH} - 0.3V		

NOTE:

1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.

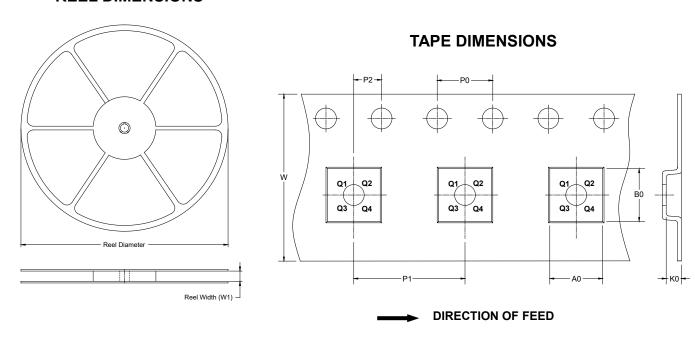

REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

NOVEMBER 2021 – REV.A to REV.A.1	Page
Updated HBM value in Absolute Maximum Ratings section	2
Changes from Original (MARCH 2021) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS TSSOP-48

RECOMMENDED LAND PATTERN (Unit: mm)

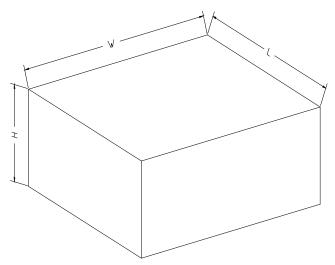

Symbol	Dimensions In Millimeters					
Symbol	MIN	MOD	MAX			
Α			1.20			
A1	0.05	0.10	0.15			
A2	0.85	0.95	1.05			
b	0.18		0.26			
С	0.15		0.19			
D	12.40	12.50	12.60			
Е	7.90	8.10	8.30			
E1	6.00	6.10	6.20			
е	0.50 BSC					
L	1.00 REF					
L1	0.45		0.75			
θ	0°		8°			

- NOTES:

 1. Body dimensions do not include mode flash or protrusion.
- 2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-48	13"	24.4	8.60	13.00	1.80	4.0	12.0	2.0	24.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13"	386	280	370	5	DD0002