

74LVC2T45 2-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation

GENERAL DESCRIPTION

The 74LVC2T45 is a 2-bit, dual-supply bus transceiver with configurable voltage translation. The device has two separate configurable power-supply rails. The A and B ports track the V_{CCA} supply and V_{CCB} supply respectively. The supply voltage pins accept any voltage from 1.65V to 5.5V. This makes the device suitable for low voltage bidirectional translation voltage nodes of 1.8V, 2.5V, 3.3V, and 5V.

The 74LVC2T45 features that allows two data buses asynchronously communicated. Either the A port outputs or the B port outputs can be activated by DIR logic levels. The DIR input circuit is supplied by V_{CCA} . When B port outputs are activated, the device allows the data to transmit from A bus to B bus. On the contrary, when A port outputs are activated, the device allows the data to transmit from B bus to A bus. The input circuit is always active on the two ports. A logic high or low must be set to avoid excessive supply current.

FEATURES

- V_{CCA} Supply Voltage Range: 1.65V to 5.5V
- V_{CCB} Supply Voltage Range: 1.65V to 5.5V
- DIR Input Circuit Referenced to V_{CCA}
- +32mA/-32mA Output Current
- Data Rates
 - 420Mbps (3.3V to 5V Translation)
 - 210Mbps (Translate to 3.3V)
 - 140Mbps (Translate to 2.5V)
 - 75Mbps (Translate to 1.8V)
- Outputs in High-Impedance State when V_{CCA} or V_{CCB} = 0V
- -40°C to +125°C Operating Temperature Range
- Available in Green MSOP-8 and XTDFN-1.35×1-8L Packages

APPLICATIONS

Personal Electronic Devices Industrial and Enterprise Devices Telecommunications

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVC2T45	MSOP-8	-40°C to +125°C	74LVC2T45XMS8G/TR	GJX XMS8 XXXXX	Tape and Reel, 4000
	XTDFN-1.35×1-8L	-40°C to +125°C	74LVC2T45XXET8G/TR	4PX	Tape and Reel, 5000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code. X = Date Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage Range, V _{CCA}	0.5V to 6.5V
Supply Voltage Range, V _{CCB}	0.5V to 6.5V
Input Voltage Range, VI (2)	0.5V to 6.5V
Output Voltage Range, Vo ⁽²⁾	
High-Impedance State	0.5V to 6.5V
High-State or Low-State	
A Ports0.5V to MIN	(6.5V, V _{CCA} + 0.5V)
B Ports0.5V to MIN	(6.5V, V _{CCB} + 0.5V)
Input Clamp Current, I _{IK} (V _I < 0)	50mA
Output Clamp Current, I _{OK} (V _O < 0)	50mA
Output Current, Io	
High-State or Low-State	±50mA
Supply Current, I _{CCA} or I _{CCB}	100mA
Ground Current, I _{GND}	100mA
Junction Temperature ⁽³⁾	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
НВМ	4000V
CDM	1000V

OVERSTRESS CAUTION

1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

2-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{CCA}	1.65V to 5.5V
Supply Voltage Range, V _{CCB}	1.65V to 5.5V
Input Voltage Range, V ₁	0V to 5.5V
Output Voltage Range, Vo	
High-Impedance State	0V to 5.5V
High-State or Low-State	
A Ports	0V to V_{CCA}
B Ports	0V to V _{CCB}
High-Level Output Current, IOH	32mA

Low-Level Output Current, IoL	32mA
Input Transition Rise or Fall Rate, $\Delta t / \Delta V$	
Data Inputs	
V _{CCI} = 1.65V to 1.95V	20ns/V (MAX)
V _{CCI} = 2.3V to 2.7V	20ns/V (MAX)
V _{CCI} = 3V to 3.6V	10ns/V (MAX)
V _{CCI} = 4.5V to 5.5V	5ns/V (MAX)
Control Input	
V _{CCI} = 1.65V to 5.5V	5ns/V (MAX)
Operating Temperature Range	40°C to +125°C

LOGIC DIAGRAM

FUNCTION TABLE

SUPPLY VOLTAGE	CONTROL INPUT	INPUT/O	JTPUT ⁽¹⁾		
V_{CCA}, V_{CCB}	DIR ⁽²⁾	An	Bn		
1.65V to 5.5V	L	An = Bn	Input		
1.65V to 5.5V	Н	Input	Bn = An		
GND ⁽³⁾	X	Z	Z		

H = High Voltage Level

L = Low Voltage Level

X = Don't Care

Z = High-Impedance State

NOTES:

1. The input circuit of the data I/O is always active.

2. The DIR input circuit is referenced to $V_{\mbox{\tiny CCA.}}$

3. If at least one of V_{CCA} or V_{CCB} is at GND level, the outputs in High-Impedance State.

PIN CONFIGURATIONS

PIN DESCRIPTION

Р	IN	NAME	FUNCTION			
MSOP-8	XTDFN-1.35×1-8L	NAME				
1	1	V _{CCA}	Supply Voltage on A Ports.			
2	2	A1 Input/Output. It tracks the V _{CCA} supply.				
3	3	A2	Input/Output. It tracks the V _{CCA} supply.			
4	4	GND	Ground.			
5	5	DIR	Direction Control Signal.			
6	6	B2	Input/Output. It tracks the V_{CCB} supply.			
7	7	B1	Input/Output. It tracks the V_{CCB} supply.			
8	8	V _{CCB}	Supply Voltage on B Ports.			

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, typical values are at T_A = +25°C. V_{CCI} is the supply voltage associated with the data input port, V_{CCO} is the supply voltage associated with the output port, unless otherwise noted.)

PARAMETER	SYMBOL	С	ONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
Cumulu Valtana	V _{CCA}			Full	1.65		5.5	V	
Supply voltage	V _{CCB}			Full	1.65		5.5	v	
			V _{CCI} = 1.65V to 1.95V	Full	$0.65 \times V_{CCI}$				
	.,		V _{CCI} = 2.3V to 2.7V	Full	1.7				
PARAMETER Supply Voltage High-Level Input Voltage Low-Level Input Voltage High-Level Output Voltage Low-Level Output Voltage Input Leakage Current Power-Off Leakage Off-State Output Current ⁽¹⁾ Supply Current	VIH	$ V_{CCA} = V_{CCA} = V_{CCB} = V_{$	V _{CCI} = 3V to 3.6V	Full	2			v	
			V _{CCI} = 1.65V to 1.95V	Full			0.35 × V _{CCI}		
1			V _{CCI} = 2.3V to 2.7V	Full			0.7		
Low-Level input voltage	VIL	Data and DIR inputs	V _{CCI} = 3V to 3.6V	Full			0.8	v	
			V _{CCI} = 4.5V to 5.5V	Full			0.3 × V _{CCI}		
			V _{CCO} = 1.65V to 4.5V, I _{OH} = -100µA	Full	V _{cco} - 0.03				
			V _{CCO} = 1.65V, I _{OH} = -4mA	Full	1.37			-	
High-Level Output Voltage	Vau	$V_{i} = V_{i}$	V _{CCO} = 2.3V, I _{OH} = -8mA	Full	2.00			V	
	V OH	VI – VIH	V _{CCO} = 3V, I _{OH} = -24mA	Full	2.44			Ň	
			V _{CCO} = 4.5V, I _{OH} = -32mA	Full	3.98				
			V _{CCO} = 5.5V, I _{OH} = -32mA	Full	5.04				
			V _{CCO} = 1.65V to 4.5V, I _{OL} = 100µA	Full			0.03		
			V _{CCO} = 1.65V, I _{OL} = 4mA	Full			0.24	-	
Low-Level Output Voltage	Vai	$V_{i} = V_{i}$	V _{CCO} = 2.3V, I _{OL} = 8mA	Full			0.25	V	
	V OL		$V_{CCO} = 3V$, $I_{OL} = 24mA$	Full			0.45	1	
			V _{CCO} = 4.5V, I _{OL} = 32mA	Full			0.50		
High-Level Output Voltage Low-Level Output Voltage Input Leakage Current Power-Off Leakage Current Off-State Output Current ⁽¹⁾ Supply Current Icc			V _{CCO} = 5.5V, I _{OL} = 32mA	Full			0.47	-	
Input Leakage Current	l _i	$V_I = V_{CCA}$ or GND, V_{CA}	_{CA} = V _{CCB} = 1.65V to 5.5V	Full			±1	μA	
Power-Off Leakage		$V_{0} = 0 V_{10} = 5 V_{10}$	A port, $V_{CCA} = 0V$, $V_{CCB} = 0V$ to 5.5V	Full			±1	-μA	
Current	OFF	v_1 or $v_0 = 0$ to 5.5 v	B port, $V_{CCB} = 0V$, $V_{CCA} = 0V$ to 5.5V	Full			±1		
Off-State Output Current (1)	l _{oz}	$V_{CCA} = V_{CCB} = 1.65V t$	to 5.5V, $V_0 = V_{CC0}$ or GND	Full			±1	μA	
			$V_{CCA} = V_{CCB} = 1.65V$ to 5.5V	Full			2		
	I _{CCA}		$V_{CCA} = 5V, V_{CCB} = 0V$	Full			2		
		$V_I = V_{CCI}$ or GND,	$V_{CCA} = 0V, V_{CCB} = 5V$	Full	-2				
Supply Current		$I_{\rm O} = 0$	$V_{CCA} = V_{CCB} = 1.65V$ to 5.5V	Full			2	μA	
	I _{CCB}		$V_{CCA} = 5V, V_{CCB} = 0V$	Full	-2				
			$V_{CCA} = 0V, V_{CCB} = 5V$	Full			2		
	$I_{CCA} + I_{CCB}$	$V_1 = V_{CC1}$ or GND, $I_0 = 0$	$V_{CCA} = V_{CCB} = 1.65V$ to 5.5V	Full			4		
	Alaas	One A port at V_{CCA} - C B port = open, V_{CCA} =	0.6V, DIR at V _{CCA} , = V _{CCB} = 3V to 5.5V	Full			10		
Additional Supply Current		DIR at V_{CCA} - 0.6V, A B port = open, V_{CCA} =	port at V_{CCA} or GND, $V_{CCB} = 3V$ to 5.5V	Full			10	μA	
	ΔI_{CCB}	One B port at V_{CCB} - (A port = open, V_{CCA} =	Full			10			
Input Capacitance	Cı	$V_{CCA} = V_{CCB} = 3.3V, D$	DIR input, $V_1 = V_{CCA}$ or GND	+25°C		4	1	pF	
Input/Output Capacitance	C _{IO}	$V_{CCA} = V_{CCB} = 3.3V, A$	and B ports, $V_0 = V_{CCA/B}$ or GND	+25°C		5		pF	

NOTE:

1. For I/O ports, the parameter I_{OZ} includes the input leakage current.

2-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation

DYNAMIC CHARACTERISTICS

(For test circuit see Figure 1. Minimum and maximum values are at $T_A = -40^{\circ}$ C to $+125^{\circ}$ C, typical values are at $T_A = +25^{\circ}$ C, unless otherwise noted.)

								Va	св						
PARAMETER	SYMBOL	CONDITIONS	1.8	SV ± 0.1	15V	2.	5V ± 0.:	2V	3.	3V ± 0.	3V	5	V ± 0.5	V	UNITS
			MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	
$V_{CCA} = 1.8V \pm 0.$	15V														
	t _{PLH}	A to B	1.5	6	13	1	4.5	9	1	4	7.5	1	4	7	
Propagation	t _{PHL}	A to D	1.5	6	13	1	4.5	8.5	1	4	7.5	1	4	7	ne
Delay	t _{PLH}	R to A	1.5	6	13	1	5	12	1	5	11.5	1	5	11	115
	t _{PHL}	DIOA	1.5	6	13	1	5	12	1	5	11.5	1	5	11.5	
	t _{PHZ}		3	10.5	16	3	10.5	16	3	10.5	16	3	10.5	16	
Disable Time	t _{PLZ}	DIR to A	2.5	7	11.5	2.5	7.5	11.5	2.5	7	12	2.5	8.5	13	
	t _{PHZ}		3	14	22	2.5	9	14	2.5	6	11	2.5	5.5	9	115
	t _{PLZ}		3	10	17	2	6	11	2.5	6.5	10	2	5	8	
	t _{PZH}	DIR to A		16	30		11	23		11.5	21.5		10	19	
	t _{PZL}	DIR IO A		20	35		14	26		11	22.5		10.5	20.5	
Enable Time V	t _{PZH}	DIR to B		13	24.5		12	20.5		11	19.5		12.5	20	
	t _{PZL}			16.5	29		15	24.5		14.5	23.5		14.5	23	
$V_{CCA} = 2.5V \pm 0.2$	2V								•						
	t _{PLH}		1	5	12	1	3.5	7.5	1	3	6	0.7	3	5.5	
Propagation	t _{PHL}	ALOB	1	5	12	1	3.5	7.5	1	3	6	0.7	3	5.5	
Delay	t _{PLH}	R to A	1	4.5	9	1	3.5	7.5	1	3.5	7	1	3.5	7	115
	t _{PHL}	BIOA	1	4.5	8.5	1	3.5	7.5	1	3.5	7	0.9	3.5	7	
	t _{PHZ}		2	7	10	2	7	10	2	7	10	2	7.5	11	
Dischle Time	t _{PLZ}	DIR IO A	1.5	3.5	8	1.5	3.5	8	1.5	3.5	8	1.5	4	8	
Disable Time	t _{PHZ}		3.5	12.5	20.5	2.5	7.5	12	2.5	5	10	2	4	7.5	ns
	t _{PLZ}		3	9	16	2	5	10	2.5	5.5	9	2	4	7	
	t _{PZH}			13.5	25		8.5	17.5		9	16		7.5	14	
	t _{PZL}	DIR IO A		17	29		11	19.5		8.5	17		7.5	14.5	1
	t _{PZH}			8.5	20		7	15.5		6.5	14		7	13.5	ns
	t _{PZL}	אוע וט א		12	22		10.5	17.5		10	16		10.5	16.5	

DYNAMIC CHARACTERISTICS (continued)

(For test circuit see Figure 1. Minimum and maximum values are at $T_A = -40^{\circ}$ C to $+125^{\circ}$ C, typical values are at $T_A = +25^{\circ}$ C, unless otherwise noted.)

								Va	СВ						
PARAMETER	SYMBOL	CONDITIONS	1.8	BV ± 0.1	15V	2.	5V ± 0.	2V	3.	3V ± 0.	3V	5	V ± 0.5	V	UNITS
			MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	
$V_{CCA} = 3.3V \pm 0.$	3V														
	t _{PLH}	A to B	1	5	11.5	1	3.5	7	0.7	3	5.5	0.7	2.5	5	
Propagation	t _{PHL}		1	5	11.5	1	3.5	7	0.8	3	5.5	0.7	2.5	5	ne
Delay	t _{PLH}	B to A	1	4	7.5	1	3	6	0.7	3	5.5	0.6	3	5.5	115
	t _{PHL}	DIOA	1	4	7.5	1	3	6	0.8	3	5.5	0.7	3	5.5	
	t _{PHZ}		2	4	8.5	2	4	8.5	2	4	8.5	2	4	8.5	
Disable Time	t _{PLZ}	DIR IO A	1.5	3.5	8	1.5	3.5	8	1.5	4	8	1.5	4	8	ne
Disable Time	t _{PHZ}		3.5	12.5	20	2.5	8	12	2.5	5	10	2	4	7.5	115
	t _{PLZ}		3	8	15.5	2	4.5	10	2	5.5	8.5	1.5	3.5	7.5	
	t _{PZH}			12	23		7.5	16		8.5	14		6.5	13	
	t _{PZL}			16.5	27.5		11	18		8	15.5		7	13	ns
	t _{PZH}	DIR to B		8.5	19.5		7	15		7	13.5		6.5	13	
	t _{PZL}			9	20		7.5	15.5		7	14		6.5	13.5	
$V_{\rm CCA} = 5V \pm 0.5V$	/														
	t _{PLH}	A to B	1	5	11	1	3.5	7	0.6	3	5.5	0.5	2.5	5	
Propagation	t _{PHL}	AIUB	1	5	11.5	0.9	3.5	7	0.7	3	5.5	0.5	2.5	4.5	n 0
Delay	t _{PLH}	R to A	1	4	7	0.7	3	5.5	0.7	2.5	5	0.5	2.5	5	115
	t _{PHL}	DIUA	1	4	7	0.7	3	5.5	0.7	2.5	5	0.5	2.5	4.5	
	t _{PHZ}		1.5	4	6.5	1.5	4	6.5	1.5	4	6.5	1.5	4	7	
Dischla Time	t _{PLZ}	DIR IO A	1	3	5.5	1	3	5.5	1	3	5.5	1	3	5.5	
Disable Time	t _{PHZ}		3.5	12	19.5	2.5	8	12.5	2.5	5	10	2	4	7.5	ns
	t _{PLZ}		3	9.5	16	2	5.5	9	2	5.5	8.5	1.5	3.5	6	
	t _{PZH}			13.5	23		8.5	14.5		8	13.5		6	11	-
Enchlo Time ⁽²⁾	t _{PZL}			16	26.5		11	18		7.5	15		6.5	12	
	t _{PZH}			8	16.5		6.5	12.5		6	11		5.5	10.5	ns
	t _{PZL}	אוט א		9	18		7.5	13.5		7	12		6.5	11.5	

NOTE:

1. Specified by design and characterization; not production tested.

2. The enable time value is calculated. Calculate the enable times for the 74LVC2T45 using the following formulas:

• t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A)

• t_{PZL} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHL} (B to A)

• t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B)

• t_{PZL} (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B)

DYNAMIC CHARACTERISTICS (continued)

(For test circuit, see Figure 1, typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

DADAMETED	SYMPOL	CONDITIONS		$V_{CCA} = V_{CCB} = 1.8V$	$V_{CCA} = V_{CCB} = 2.5V$	$V_{CCA} = V_{CCB} = 3.3V$	$_{A} = V_{CCB} = 3.3V$ $V_{CCA} = V_{CCB} = 5V$	
PARAMETER	STWIDOL			ТҮР	TYP	TYP	TYP	UNITS
	C	$C_L = 0 pF$,	A Port Input, B Port Output	3	3	4	5	рE
Power Dissipation Capacitance ⁽¹⁾	OPDA	$t_{R} = t_{F} = 1$ ns	B Port Input, A Port Output	19	20	21	22	ρr
	C _{PDB}	$C_L = 0 p F,$	A Port Input, B Port Output	19	20	21	22	۶Ē
		$t_R = t_F = 1$ ns	B Port Input, A Port Output	3	3	4	5	μL

NOTE:

1. Power dissipation capacitance per transceiver. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$

where:

 f_i = input frequency in MHz.

 f_o = output frequency in MHz.

 C_L = output load capacitance in pF.

V_{CC} = supply voltage in Volts.

N = number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

2-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

RL: Load resistance.

CL: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

V_{EXT}: External voltage used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	IN	PUT	LC	AD	V _{EXT}			
V _{CCA} , V _{CCB}	VI ⁽¹⁾	t _R , t _F	C∟	R∟	t _{PHZ} , t _{PZH}	t_{PLZ}, t_{PZL} ⁽²⁾	t _{PLH} , t _{PHL}	
1.65V to 5.5V	V _{CCI}	≤ 2.5ns	15pF	2kΩ	GND	2 × V _{CCO}	Open	

NOTES:

1. V_{CCI} is the supply voltage related to the input port.

2. V_{CCO} is the supply voltage related to the output port.

WAVEFORMS

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (An, Bn) to Output (Bn, An) Propagation Delay Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

Table 2. Measurement Points

SUPPLY VOLTAGE	INF	TU	OUTPUT					
V_{CCA}, V_{CCB}	V ₁ ⁽¹⁾	V _M ⁽²⁾	V _M ⁽³⁾	Vx	V _Y			
1.65V to 2.7V	V _{CCI}	$0.5 \times V_{CCI}$	$0.5 \times V_{CCO}$	V _{OL} + 0.15V	V _{OH} - 0.15V			
3V to 5.5V	V _{CCI}	0.5 × V _{CCI}	$0.5 \times V_{CCO}$	V _{OL} + 0.3V	V _{OH} - 0.3V			

NOTES:

1. V_{CCI} is the supply voltage related to the input port.

2. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.

3. V_{CCO} is the supply voltage related to the output port.

Page

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (JUNE 2022) to REV.A

Changed from product provide to production data	11
changed from product preview to production data	111

PACKAGE OUTLINE DIMENSIONS

MSOP-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimer In Milli	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
с	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650) BSC	0.026	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

NOTES:

Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS

XTDFN-1.35×1-8L

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters					
	MIN	MOD	MAX			
A	-	0.310	0.330			
A1	0.000	-	0.050			
A2	0.100 REF					
D	1.250	1.350	1.450			
E	0.900	1.000	1.100			
b	0.110	0.160	0.210			
е	0.350 BSC					
L	0.250	0.300	0.350			
L1	0.300	0.350	0.400			
L2	0.075 REF					
eee	- 0.050 -					

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
MSOP-8	13″	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1
XTDFN-1.35×1-8L	7"	9.5	1.21	1.51	0.39	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7″	442	410	224	18	
13″	386	280	370	5	

