

4-Bit Dual-Supply

Translating Transceiver with Configurable **Voltage Translation and 3-State Outputs**

GENERAL DESCRIPTION

The 74AVC4T245Q is a 4-bit, dual-supply voltage level transceiver with 3-state outputs and bidirectional level translation. The device can be used as two 2-bit transceivers or one 4-bit transceiver. The nAn and nBn are four data input-output ports. nDIR are the direction control inputs and nOE are the output enable inputs. V_{CCA} and V_{CCB} are the supply pins. The supply voltage of V_{CCA} and V_{CCB} can range from 0.8V to 3.6V, making the device suitable for bidirectional translating among any of the 0.8V, 1.2V, 1.5V, 1.8V, 2.5V and 3.3V voltage nodes. The nAn, nDIR and nOE signals are referenced to V_{CCA} and nBn signals are referenced to $V_{\text{CCB}}.$

When nDIR is set high, it allows transmission from nAn to nBn. When nDIR is set low, it allows transmission from nBn to nAn. nOE can be used to make the outputs disabled so that the buses are effectively isolated. In suspend mode, both nAn and nBn are in high-impedance state when either V_{CCA} or V_{CCB} input is at GND level.

This device is highly suitable for partial power-down applications using power-off leakage current (I_{OFF}) circuit. When the device is powered down, the current backflow will be prevented from passing through the device.

This device is AEC-Q100 qualified (Automotive Electronics Council Standard Q100 Grade 1) and the use of this device is suitable for automotive applications.

FEATURES

 AEC-Q100 Qualified for Automotive Applications **Device Temperature Grade 1**

74AVC4T245Q

- $T_A = -40^{\circ}C$ to $+125^{\circ}C$
- V_{CCA} Supply Voltage Range: 0.8V to 3.6V
- V_{CCB} Supply Voltage Range: 0.8V to 3.6V
- Inputs Accept Voltages up to 3.6V
- +12mA/-12mA Output Current
- Data Rates:
 - 380Mbps (≥ 1.8V to 3.3V Translation)
 - 200Mbps (≥ 1.1V to 3.3V Translation)
 - 200Mbps (≥ 1.1V to 2.5V Translation)
 - 200Mbps (≥ 1.1V to 1.8V Translation)
 - 150Mbps (≥ 1.1V to 1.5V Translation)
 - 100Mbps (≥ 1.1V to 1.2V Translation)
- Outputs in High-Impedance State when V_{CCA} or $V_{CCB} = 0V$
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-16 Package

APPLICATIONS

Personal Electronic Industrial Equipment **Enterprise Infrastructures** Telecom Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE SPECIFIED TEMPERATURE RANGE		ORDERING NUMBER	PACKAGE TOP MARKING	PACKING OPTION
74AVC4T245Q	TSSOP-16	-40°C to +125°C	74AVC4T245QTS16G/TR	MEATS16 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXXXX

Vendor Code

Trace Code

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

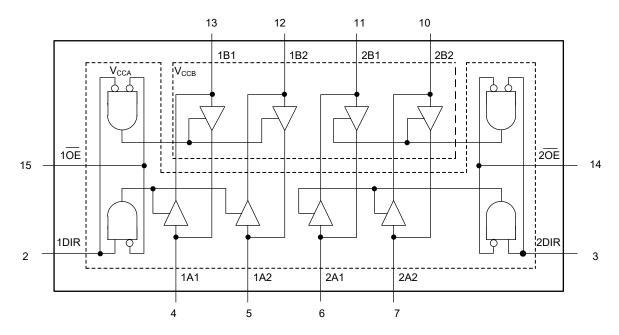
Supply Voltage Range, V _{CCA} 0.5V to	4.6V
Supply Voltage Range, V _{CCB}	
Input Voltage Range, V _I (2)0.5V to	4.6V
Output Voltage Range, V _O ⁽²⁾	
Suspend or 3-State Mode0.5V to	4.6V
Active Mode	
A Ports0.5V to MIN (4.6V, V _{CCA} + 0	
B Ports0.5V to MIN (4.6V, V _{CCB} + 0	.5V)
Output Current, $I_O(V_O = 0V \text{ to } V_{CC})$	
High-State or Low-State±5	0mA
Supply Current, I _{CC} , per V_{CCA} or V_{CCB} Pin	0mA
Ground Current, I _{GND} , per GND Pin10	0mA
Input Clamp Current, I _{IK} (V _I < 0)5	0mA
Output Clamp Current, I _{OK} (V _O < 0)5	0mA
Junction Temperature (3)+15	
Storage Temperature Range65°C to +15	50°C
Lead Temperature (Soldering, 10s)+26	30°C
ESD Susceptibility	
HBM60	V000
CDM10	V000

RECOMMENDED OPERATING CONDITIONS

RECOMMENDED OPERATING	CONDITIONS
Supply Voltage Range, V _{CCA}	0.8V to 3.6V
Supply Voltage Range, V _{CCB}	0.8V to 3.6V
Input Voltage Range, V _I	0V to 3.6V
Output Voltage Range, V ₀	
Suspend or 3-State Mode	0V to 3.6V
Active Mode	
A Ports	0V to V _{CCA}
B Ports	0V to V _{CCB}
High-State or Low-State Output Current, Id	o±12mA
Input Transition Rise or Fall Rate, Δt/ΔV	
V _{CCI} = 0.8V to 3.6V	5ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

LOGIC DIAGRAM

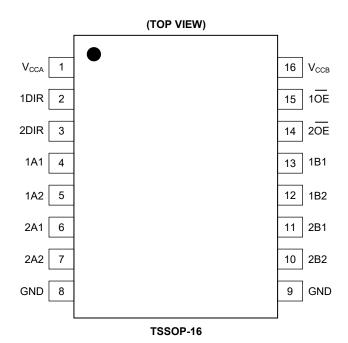
FUNCTION TABLE

SUPPLY VOLTAGE	CONTRO	L INPUT	INPUT/OUTPUT			
V _{CCA} , V _{CCB} (1)	nŌĒ	nDIR	nAn	nBn		
0.8V to 3.6V	L	L	nAn = nBn	Inputs		
0.8V to 3.6V	L	Н	Inputs	nBn = nAn		
0.8V to 3.6V	Н	X	Z	Z		
GND (2)	X	X	Z	Z		

H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State


X = Don't Care

NOTES:

1. The nAn, nDIR and $n\overline{OE}$ signals are referenced to V_{CCA} . The nBn signals are referenced to V_{CCB} .

2. If at least one of V_{CCA} or V_{CCB} is at GND level, the device enters suspend mode.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	Vcca	Supply Voltage V _{CCA} . The nAn, nDIR and nOE signals are referenced to V _{CCA} .
2, 3	1DIR, 2DIR	Direction Control Inputs.
4, 5	1A1, 1A2	Data Inputs/Outputs.
6, 7	2A1, 2A2	Data Inputs/Outputs.
8, 9	GND	Ground.
11, 10	2B1, 2B2	Data Inputs/Outputs.
13, 12	1B1, 1B2	Data Inputs/Outputs.
15, 14	1 OE , 2 OE	Output Enable Inputs (Active Low).
16	V _{CCB}	Supply Voltage V _{CCB} . The nBn signals are referenced to V _{CCB} .

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are at T_A = +25°C. V_{CCI} is the supply voltage associated with the data input port, V_{CCO} is the supply voltage associated with the data output port, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
			V _{CCI} = 0.8V	Full	0.70 × V _{CCI}				
			V _{CCI} = 1.1V to 1.95V	Full	0.65 × V _{CCI}			1 ,,	
		Data Inputs	V _{CCI} = 2.3V to 2.7V	Full	1.6			V	
High-Level Input			V _{CCI} = 3.0V to 3.6V	Full	2			1	
Voltage	V_{IH}		V _{CCA} = 0.8V	Full	0.70 × V _{CCA}				
		nDIR, nOE	V _{CCA} = 1.1V to 1.95V	Full	0.65 × V _{CCA}			V	
		inputs	V _{CCA} = 2.3V to 2.7V	Full	1.6] V	
			V _{CCA} = 3.0V to 3.6V	Full	2				
			V _{CCI} = 0.8V	Full			0.30 × V _{CCI}		
		Data Innuita	V _{CCI} = 1.1V to 1.95V	Full			0.35 × V _{CCI}] ,,	
		Data Inputs	V _{CCI} = 2.3V to 2.7V	Full			0.7	V	
Low-Level Input	V		V _{CCI} = 3.0V to 3.6V	Full			0.8		
Voltage ·	V_{IL}	nDIR, nOE inputs	V _{CCA} = 0.8V	Full			0.30 ×V _{CCA}		
			V _{CCA} = 1.1V to 1.95V	Full			0.35 ×V _{CCA}		
			V _{CCA} = 2.3V to 2.7V	Full			0.7] V	
			V _{CCA} = 3.0V to 3.6V	Full			0.8		
			$I_{O} = -100\mu A$, $V_{CCA} = V_{CCB} = 0.8V$ to 3.6V	Full	V _{CCO} - 0.1	V _{CCO} - 0.01			
			I_{O} = -3mA, V_{CCA} = V_{CCB} = 1.1V	Full	0.85	0.98			
High-level Output	V_{OH}	$V_I = V_{IH}$	$I_O = -6mA$, $V_{CCA} = V_{CCB} = 1.4V$	Full	1.05	1.22		V	
Voltage	- 011		I_{O} = -8mA, V_{CCA} = V_{CCB} = 1.65V	Full	1.20	1.43			
			I_{O} = -9mA, V_{CCA} = V_{CCB} = 2.3V	Full	1.75	2.09			
			I_{O} = -12mA, V_{CCA} = V_{CCB} = 3.0V	Full	2.30	2.75			
			$I_O = 100\mu A$, $V_{CCA} = V_{CCB} = 0.8V \text{ to } 3.6V$	Full		0.01	0.1		
			$I_O = 3mA$, $V_{CCA} = V_{CCB} = 1.1V$	Full		0.10	0.25		
Low-Level Output	V_{OL}	$V_I = V_{IL}$	$I_{O} = 6mA, V_{CCA} = V_{CCB} = 1.4V$	Full		0.16	0.35	V	
Voltage	♥ OL	1	I _O = 8mA, V _{CCA} = V _{CCB} = 1.65V	Full		0.19	0.45		
			I _O = 9mA, V _{CCA} = V _{CCB} = 2.3V	Full		0.18	0.55		
			$I_{O} = 12\text{mA}, V_{CCA} = V_{CCB} = 3.0V$	Full		0.23	0.70		

ELECTRICAL CHARACTERISTICS (continued)

(Full = -40°C to +125°C, all typical values are at T_A = +25°C. V_{CCI} is the supply voltage associated with the data input port, V_{CCO} is the supply voltage associated with the data output port, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
Input Leakage Current	I _I	nDIR, n \overline{OE} ir $V_{CCA} = V_{CCB} =$	puts, V _I = 0V or 3.6V, 0.8V to 3.6V	Full		±0.01	±5	μΑ	
		V _{CCA} = V _{CCB} =	3.6V, A or B ports, $V_0 = 0V$ or V_{CCO}	Full		±0.01	±5		
Off-State Output Current (1)	I _{oz}	$V_{CCA} = 3.6V$, $V_{O} = 0V$ or V_{C}	V _{CCB} = 0V, suspend mode A ports,	Full		±0.01	±5	μA	
		$V_0 = 0V \text{ or } V_0$	$_{CCO}$, $V_{CCA} = 0V$, $V_{CCB} = 3.6V$	Full		±0.01	±5		
Power-Off Leakage	,	V _{CCA} = 0V, V _C	$_{CB}$ = 0.8V to 3.6V, A ports, V_{I} or V_{O} = 0V to 3.6V	Full		±0.01	±5		
Current	I _{OFF}	V _{CCB} = 0V, V _C	$_{CA}$ = 0.8V to 3.6V, B ports, V_{I} or V_{O} = 0V to 3.6V	Full		±0.01	±5	μA	
			V _{CCA} = 0.8V to 3.6V, V _{CCB} = 0.8V to 3.6V	Full		1.4	10		
		A ports, V _I = 0V or V _{CCI} , I _O = 0A	V _{CCA} = 1.1V to 3.6V, V _{CCB} = 1.1V to 3.6V	Full		1.2	10		
			V _{CCA} = 3.6V, V _{CCB} = 0V	Full		0.01	5	μA	
			V _{CCA} = 0V, V _{CCB} = 3.6V	Full		0.01	5		
			V _{CCA} = 0.8V to 3.6V, V _{CCB} = 0.8V to 3.6V	Full		0.8	10		
Supply Current	I _{cc}	B ports,	V _{CCA} = 1.1V to 3.6V, V _{CCB} = 1.1V to 3.6V	Full		0.7	10		
		$V_1 = 0V$ or V_{CCI} , $I_0 = 0A$	V _{CCA} = 3.6V, V _{CCB} = 0V	Full		0.01	5	μA	
			V _{CCA} = 0V, V _{CCB} = 3.6V	Full		0.01	5		
			$S_{C}(I_{CCA} + I_{CCB}), I_{O} = 0A, V_{I} = 0V \text{ or } V_{CCI}, S_{CC} = 0.8V \text{ to } 3.6V, V_{CCB} = 0.8V \text{ to } 3.6V$	Full		1.4	15	μΑ	
			A plus B ports ($I_{CCA} + I_{CCB}$), $I_O = 0A$, $V_I = 0V$ or V_{CCI} , $V_{CCA} = 1.1V$ to 3.6V, $V_{CCB} = 1.1V$ to 3.6V			1.2	15	μA	
Input Capacitance	Cı	nDIR, nOE ir	nputs, V _I = 0V or 3.3V, V _{CCA} = V _{CCB} = 3.3V	+25°C		3.2		pF	
Input/Output Capacitance	C _{I/O}	A and B ports V _{CCA} = V _{CCB} =	s, suspend mode, $V_0 = V_{CCO}$ or GND, 3.3V	+25°C		4.5		pF	

NOTE:

1. For I/O ports, the parameter I_{OZ} includes the input leakage current.

ELECTRICAL CHARACTERISTICS (continued)

Typical Total Supply Current (I_{CCA} + I_{CCB})

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

V		V _{CCB}										
V _{CCA}	0V	0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS				
0V	0	0.01	0.01	0.01	0.01	0.01	0.01	μA				
V8.0	0.01	0.01	0.01	0.01	0.03	0.20	0.60	μA				
1.2V	0.01	0.01	0.01	0.01	0.01	0.10	0.40	μA				
1.5V	0.01	0.01	0.01	0.01	0.01	0.03	0.30	μA				
1.8V	0.01	0.05	0.01	0.01	0.01	0.01	0.20	μA				
2.5V	0.01	0.40	0.20	0.06	0.02	0.01	0.02	μA				
3.3V	0.01	1.10	0.70	0.50	0.30	0.03	0.01	μA				

Typical Power Dissipation Capacitance

($T_A = +25$ °C, $V_{CCA} = V_{CCB}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	V _{CCA} = V _{CCB}							
PARAMETER	STWIBOL	CONDITIONS	0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS	
		A ports: (direction nAn to nBn), output enabled	2.0	2.0	2.1	2.2	2.4	2.7		
	$C_{\mathtt{PD}}$	A ports: (direction nAn to nBn), output disabled	0.6	0.7	0.7	0.7	8.0	0.9		
		A ports: (direction nBn to nAn), output enabled	16.0	16.1	16.2	16.3	16.5	16.7		
Power Dissipation		A ports: (direction nBn to nAn), output disabled	1.4	1.3	1.4	1.4	1.6	1.7	, ₅ ,	
Capacitance (1) (2)		B ports: (direction nAn to nBn), output enabled	16.0	16.1	16.2	16.3	16.5	16.7	pF	
		B ports: (direction nAn to nBn), output disabled	1.4	1.3	1.4	1.4	1.6	1.7		
		ports: (direction nBn to nAn), output enabled 2.0 2.0		2.1	2.2	2.4	2.7			
		B ports: (direction nBn to nAn), output disabled	0.6	0.7	0.7	0.7	0.8	0.9		

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$

where:

 f_i = Input frequency in MHz.

f_o = Output frequency in MHz.

C_L = Output load capacitance in pF.

V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = Sum of the outputs.

2. f_i = 10MHz, V_I = GND to V_{CC} , t_R = t_F = 1ns, C_L = 0pF, R_L = ∞ .

DYNAMIC CHARACTERISTICS

Typical Dynamic Characteristics at $V_{CCA} = 0.8V$ and $T_A = +25^{\circ}C$

(For test circuit, see Figure 1, for waveforms see Figure 2 and Figure 3, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	V _{CCB}							
PARAMETER	STWIBOL		0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS	
Drangation Daloy (1)		nAn to nBn	31.9	11.1	9.8	9.5	9.7	10.2	20	
Propagation Delay (1)	t _{PD}	nBn to nAn	33.8	21.0	18.0	17.7	17.2	17.1	ns	
Disable Time		nOE to nAn	30.6	30.5	30.6	32.6	32.5	39.0		
Disable Time	t _{DIS}	nOE to nBn	31.2	20.2	19.3	19.4	18.8	19.8	ns	
Enable Time	t _{EN}	nOE to nAn	44.4	44.2	44.2	44.2	44.4	44.3	-	
Enable Time		t _{EN} n OE to nBn 38.4 18.2 16.9 16.6 16.	16.8	17.8	ns					

NOTE:

Typical Dynamic Characteristics at $V_{CCB} = 0.8V$ and $T_A = +25^{\circ}C$

(For test circuit, see Figure 1, for waveforms see Figure 2 and Figure 3, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	V _{CCA}							
PARAMETER	STIVIBOL	CONDITIONS	0.8V	1.2V	1.5V	1.8V	2.5V	3.3V	UNITS	
Propagation Delay (1)	4	nAn to nBn	30.2	26.6	25.9	24.6	24.1	24.0	20	
Propagation Delay	t _{PD}	nBn to nAn	32.0	11.1	9.8	9.4	9.4	9.9	ns	
Diaghla Time		nOE to nAn	30.5	9.0	6.3	5.8	4.3	5.5	ns	
Disable Time	t _{DIS}	nOE to nBn	31.1	21.5	20.1	21.1	20.6	26.7		
Enable Time	t _{EN}	nOE to nAn	44.3	10.4	6.5	5.0	3.8	3.3	ns	
Enable Time		nOE to nBn	38.9	30.5	29.0	28.1	27.8	27.5		

NOTE:

1. t_{PD} is the same as t_{PLH} and t_{PHL} , t_{DIS} is the same as t_{PLZ} and t_{PHZ} , t_{EN} is the same as t_{PZL} and t_{PZH} .

^{1.} t_{PD} is the same as t_{PLH} and t_{PHL} , t_{DIS} is the same as t_{PLZ} and t_{PHZ} , t_{EN} is the same as t_{PZL} and t_{PZH} .

DYNAMIC CHARACTERISTICS (continued)

Dynamic Characteristics

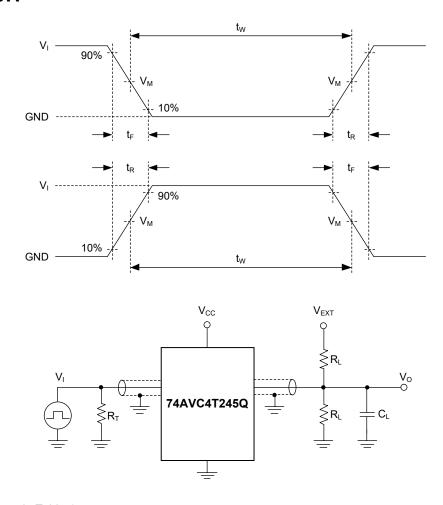
(For test circuit, see Figure 1, for waveforms see Figure 2 and Figure 3. Full = -40° C to $+125^{\circ}$ C, all typical values are at $T_A = +25^{\circ}$ C, unless otherwise noted.)

			V _{CCB}									
PARAMETER	SYMBOL	CONDITIONS	1	.2V ± 0.1	V	1	.5V ± 0.1	I V	1.	8V ± 0.1	5V	UNITS
			MIN (1)	TYP	MAX (1)	MIN (1)	TYP	MAX (1)	MIN (1)	TYP	MAX (1)	
V _{CCA} = 1.1V to 1.3V	•											
Propagation Delay (2)		nAn to nBn	0.5	8.9	15.0	0.5	6.5	10.5	0.5	5.9	9.4	
Propagation Delay	t _{PD}	nBn to nAn	0.5	8.9	14.9	0.3	7.6	12.3	0.1	7.1	11.7	ns
Disable Time	+	nOE to nAn	1.8	10.5	15.0	1.8	10.2	15.4	1.8	10.5	15.8	ne
Disable Time	t _{DIS}	nOE to nBn	1.9	10.0	15.2	1.9	8.4	12.3	1.9	8.0	11.7	ns
Enable Time	t	nOE to nAn	1.4	12.6	20.3	1.4	12.9	20.3	1.4	13.2	20.4	ne
Eliable Tille	t _{EN}	nOE to nBn	1.1	11.1	17.5	1.1	8.9	13.2	1.1	8.3	12.0	ns
V _{CCA} = 1.4V to 1.6V												
Propagation Delay ⁽²⁾	t _{PD}	nAn to nBn	0.3	7.4	12.1	0.3	5.4	8.4	0.3	4.7	7.4	ns
Fropagation Delay	чPD	nBn to nAn	0.5	6.4	10.4	0.3	5.3	8.4	0.1	4.8	7.6	115
Disable Time	+	nOE to nAn	1.8	6.9	11.8	1.8	6.3	11.8	1.5	7.4	11.8	ns
Disable Time	t _{DIS}	nOE to nBn	1.9	7.7	13.0	1.9	6.0	11.9	1.9	5.6	10.6	115
Enable Time		nOE to nAn	1.1	7.1	10.9	1.1	7.3	11.0	0.7	7.5	11.0	ns
Eliable Tille	t _{EN}	nOE to nBn	1.4	8.9	11.1	1.1	6.6	9.0	0.9	5.7	9.0	115
V _{CCA} = 1.65V to 1.95V												
Propagation Delay (2)	t _{PD}	nAn to nBn	0.1	7.0	11.7	0.1	4.8	7.7	0.1	4.1	6.6	ne
	чPD	nBn to nAn	0.5	5.8	9.3	0.3	4.7	7.0	0.1	4.1	6.5	ns
Disable Time	t _{DIS}	nOE to nAn	1.8	6.0	11.8	1.6	5.2	10.0	1.8	5.5	10.0	ns
Disable Time	UIS	nOE to nBn	1.7	7.2	12.5	1.7	5.3	11.4	1.6	5.1	10.1	1.5
Enable Time		nOE to nAn	1.0	5.4	8.5	1.0	5.5	8.5	1.0	5.4	8.5	ne
Lilable Tille	t _{EN}	nOE to nBn	1.2	8.1	13.4	1.2	5.6	10.7	1.0	5.1	8.7	ns
V _{CCA} = 2.3V to 2.7V												
Propagation Delay (2)	t _{PD}	nAn to nBn	0.1	6.6	11.1	0.1	4.4	7.1	0.1	3.7	5.9	ns
1 Topagation Delay	ΨD	nBn to nAn	0.5	5.2	8.4	0.3	4.1	6.2	0.1	3.5	5.5	115
Disable Time	t	nOE to nAn	4.3	5.0	7.4	1.0	4.1	7.4	1.0	4.9	7.4	ne
Disable Time	t _{DIS}	nOE to nBn	6.7	6.7	12.0	1.5	4.8	10.9	1.3	4.5	9.6	ns
Enable Time	+	nOE to nAn	0.7	3.7	5.8	0.7	3.8	5.8	0.7	3.8	5.8	ns
Lilable Tille	t _{EN}	nOE to nBn	0.9	7.3	12.9	0.9	4.9	10.2	0.8	4.3	8.2	115
V _{CCA} = 3.0V to 3.6V												
Propagation Delay ⁽²⁾	t _{PD}	nAn to nBn	0.1	6.4	10.8	0.1	4.3	6.8	0.1	3.6	5.7	ns
1 Topagation Delay	ФD	nBn to nAn	0.5	5.2	8.3	0.3	3.9	5.8	0.3	3.3	5.0	115
Disable Time	tere	nOE to nAn	0.7	3.8	6.7	0.7	3.7	6.7	0.7	3.9	6.7	ne
Disable Hille	t _{DIS}	nOE to nBn	1.4	6.6	11.8	1.4	4.7	10.8	1.2	4.3	9.5	ns
Enable Time	ten	nOE to nAn	0.6	3.2	4.7	0.6	3.1	4.7	0.6	3.2	4.7	ne
LIIADIC TIITIC	t _{EN}	nOE to nBn	0.8	7.2	12.9	0.8	4.6	10.1	0.6	4.0	8.0	ns

- 1. Specified by design and characterization, not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} , t_{DIS} is the same as t_{PLZ} and t_{PHZ} , t_{EN} is the same as t_{PZL} and t_{PZH} .

DYNAMIC CHARACTERISTICS (continued)

Dynamic Characteristics


(For test circuit, see Figure 1, for waveforms see Figure 2 and Figure 3. Full = -40° C to $+125^{\circ}$ C, all typical values are at $T_A = +25^{\circ}$ C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	2.5V ± 0.2V			3.3V ± 0.3V			UNITS
			MIN (1)	TYP	MAX (1)	MIN (1)	TYP	MAX (1)	
V _{CCA} = 1.1V to 1.3V									
D (2)		nAn to nBn	0.5	5.3	8.5	0.5	5.1	8.4	ns
Propagation Delay (2)	t _{PD}	nBn to nAn	0.1	6.6	11.1	0.1	6.4	10.7	
Disable Times		nOE to nAn	1.8	10.2	15.5	1.8	11.2	16.0	
Disable Time	t _{DIS}	nOE to nBn	1.4	7.4	10.8	1.2	8.7	12.4	ns
Fueble Time		nOE to nAn	1.4	14.5	22.5	1.4	15.9	23.4	
Enable Time	t _{EN}	nOE to nBn	1.0	7.7	11.2	1.0	7.6	11.1	ns
V _{CCA} = 1.4V to 1.6V	•		•	•			•		
Propagation Delay (2)	4	nAn to nBn	0.3	4.1	6.2	0.3	3.9	5.8	no
Propagation Delay	t _{PD}	nBn to nAn	0.1	4.3	6.9	0.1	4.2	6.7	ns
Diaghla Time	4	nOE to nAn	1.3	6.3	11.8	1.6	8.3	11.8	no
Disable Time	t _{DIS}	nOE to nBn	1.4	5.0	8.7	1.2	5.3	8.9	ns
Enable Time		nOE to nAn	0.7	7.7	11.1	0.4	8.1	11.9	ns
Enable Time	t _{EN}	nOE to nBn	0.9	5.4	7.9	0.9	5.2	7.7	
V _{CCA} = 1.65V to 1.95V					-				
Propagation Delay (2)	4	nAn to nBn	0.1	3.5	5.4	0.3	3.3	5.1	ns
	t _{PD}	nBn to nAn	0.1	3.7	5.9	0.1	3.6	5.7	
Disable Time		nOE to nAn	1.3	5.1	10.0	1.6	6.5	10.0	no
Disable Time	t _{DIS}	nOE to nBn	1.2	4.4	8.1	1.0	4.7	8.1	ns
Enable Time	4	nOE to nAn	0.6	5.5	8.5	0.4	5.9	8.6	ns
Enable Time	t _{EN}	nOE to nBn	0.8	5.8	7.7	0.8	5.5	7.3	
V _{CCA} = 2.3V to 2.7V		•							
Propagation Delay (2)		nAn to nBn	0.2	3.1	4.7	0.1	2.8	4.5	ns
Propagation Delay	t _{PD}	nBn to nAn	0.2	3.1	4.8	0.1	3.0	4.6	
Disable Time	t	nOE to nAn	1.0	3.9	7.4	1.0	5.0	7.4	ns
Disable Time	t _{DIS}	nOE to nBn	1.1	3.8	7.4	0.9	4.2	6.3	
Enable Time	+	nOE to nAn	0.6	3.9	5.8	0.4	3.9	5.8	ne
Lilable Tillle	t _{EN}	nOE to nBn	0.6	3.6	5.8	0.6	3.4	4.9	ns
$V_{CCA} = 3.0V \text{ to } 3.6V$									
Propagation Delay (2)	t _{PD}	nAn to nBn	0.1	3.0	4.5	0.1	2.7	4.1	ns
Topagation Delay		nBn to nAn	0.1	2.9	4.5	0.1	2.8	4.2	
Disable Time	t _{DIS}	nOE to nAn	0.7	3.7	6.7	0.7	4.4	6.7	ns
Disable Tille		nOE to nBn	1.0	3.8	7.6	0.8	4.0	7.4	
Enable Time	t	nOE to nAn	0.6	3.2	4.7	0.4	3.3	4.7	ne
Liable Tille	t _{EN}	nOE to nBn	0.5	3.3	5.7	0.5	3.1	4.7	ns

- 1. Specified by design and characterization, not production tested.
- 2. t_{PD} is the same as t_{PLH} and t_{PHL} , t_{DIS} is the same as t_{PLZ} and t_{PHZ} , t_{EN} is the same as t_{PZL} and t_{PZH} .

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L: Load resistance.

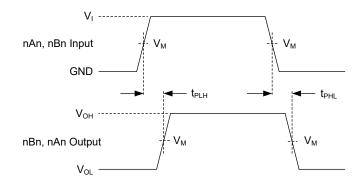
C_L: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

 $\ensuremath{V_{\text{EXT}}}\xspace$: External voltage used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

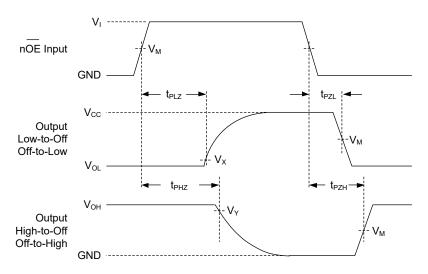
Table 1. Test Conditions


SUPPLY VOLTAGE	INPUT		LOAD				
V _{CCA} , V _{CCB}	V _I ⁽¹⁾	Δt/ΔV	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} (2)
0.8V to 1.6V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}
1.65V to 2.7V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}
3.0V to 3.6V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}

NOTES:

- 1. V_{CCI} is the supply voltage associated with the data input port.
- 2. V_{CCO} is the supply voltage associated with the data output port.

WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (nAn, nBn) to Output (nBn, nAn) Propagation Delay Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

Table 2. Measurement Points

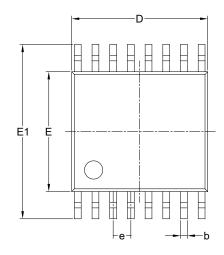
SUPPLY VOLTAGE	INPU	T ⁽¹⁾	OUTPUT			
V _{CCA} , V _{CCB}	Vı	V_{M} ⁽²⁾	V _M ⁽³⁾	V _X	V _Y	
0.8V to 1.6V	V _{CCI}	$0.5 \times V_{CCI}$	0.5 × V _{CCO}	V _{OL} + 0.1V	V _{OH} - 0.1V	
1.65V to 2.7V	V _{CCI}	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.15V	V _{OH} - 0.15V	
3.0V to 3.6V	V _{CCI}	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.3V	V _{OH} - 0.3V	

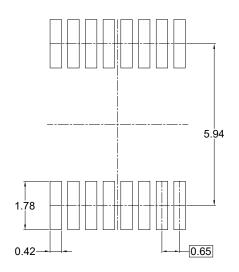
NOTES:

- 1. V_{CCI} is the supply voltage associated with the data input port.
- 2. The measurement points should be V_{IH} or V_{IL} when $\Delta t/\Delta V > 1.0 ns/V$.
- 3. V_{CCO} is the supply voltage associated with the data output port.

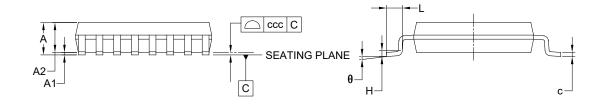
74AVC4T245Q

4-Bit Dual-Supply Translating Transceiver with Configurable Voltage Translation and 3-State Outputs


REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

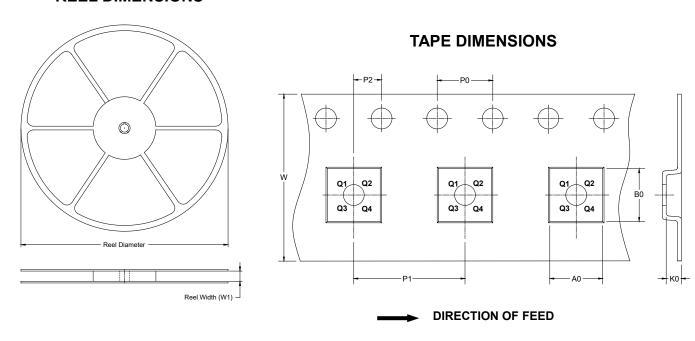
Changes from Original (SEPTEMBER 2022) to REV.A


Page

PACKAGE OUTLINE DIMENSIONS TSSOP-16

RECOMMENDED LAND PATTERN (Unit: mm)

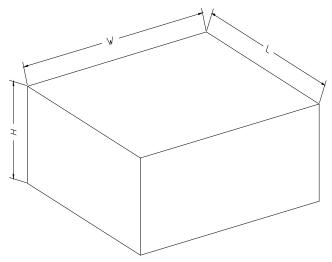
Complete	Dimensions In Millimeters							
Symbol	MIN	MOD	MAX					
Α	-	-	1.200					
A1	0.050	-	0.150					
A2	0.800	-	1.050					
b	0.190	-	0.300					
С	0.090	-	0.200					
D	4.860	-	5.100					
E	4.300	-	4.500					
E1	6.200	-	6.600					
е	0.650 BSC							
L	0.450	-	0.750					
Н	0.250 TYP							
θ	0°	-	8°					
ccc	0.100							


NOTES:

- 1. This drawing is subject to change without notice.
- 2. The dimensions do not include mold flashes, protrusions or gate burrs.
- 3. Reference JEDEC MO-153.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-16	13"	12.4	6.80	5.40	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5