

74AHC595 8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register with Output Latches

GENERAL DESCRIPTION

The 74AHC595 is a high-speed Si-gate CMOS device. The device is an 8-bit serial-in/serial-out or parallel-out shift register with output latches.

This device features a serial input and a serial standard output for cascading. All of the 8 shift register stages have the asynchronous reset function when active low. When \overline{OE} is held low, the data in storage register will appear at the output. When \overline{OE} is held high, all outputs except Q7S are in high-impedance state.

Both the shift register and storage register have separate clocks. The shift register clock (SHCP) is positive-edge triggered. Data is shifted on the positive-going transitions of the SHCP. The storage register clock (STCP) is also positive-edge triggered. The data in each register is transferred to the storage register on a positive-going transition of the STCP. If the SHCP and STCP are connected together, the shift register is always one clock pulse ahead of the storage register.

FEATURES

- Wide Operating Voltage Range: 2.0V to 5.5V
- Inputs Accept Voltages Higher than the Supply Voltage
- All Inputs with Schmitt-Trigger Actions
- Balanced Propagation Delays
- Operate with CMOS Input Level
- -40°C to +125°C Operating Temperature Range
- Available in Green TSSOP-16 and SOIC-16 Packages

APPLICATIONS

Remote Control Holding Registers Serial-to-Parallel Data Conversion

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74440505	TSSOP-16	-40°C to +125°C	74AHC595XTS16G/TR	74AHC595 XTS16 XXXXX	Tape and Reel, 4000
74AHC595	SOIC-16	-40°C to +125°C	74AHC595XS16G/TR	74AHC595XS16 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXXX = Date Code, Trace Code and Vendor Code.

- Trace Code
 - Date Code Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage, V _{CC}	0.5V to 7V
Input Voltage, V _I	0.5V to 7V
Input Clamping Current, I_{IK} ⁽²⁾ (V _I < -0.5V)	20mA
Output Clamping Current, I_{OK} ⁽²⁾ (V _O < -0.5V or V	$V_{\rm O} > V_{\rm CC} + 0.5 V$)
	±20mA
Output Current, I_O (V _O = -0.5V to V _{CC} + 0.5V).	±25mA
Supply Current, Icc	75mA
Ground Current, I _{GND}	75mA
Junction Temperature ⁽³⁾	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Supply Voltage, V _{CC}	2.0V to 5.5V
Input Voltage, V _I	0V to 5.5V
Output Voltage, Vo	0V to V _{CC}
Input Transition Rise and Fall Rate, $\Delta t/\Delta V$	
V _{CC} = 3.0V to 3.6V	100ns/V (MAX)
V _{CC} = 4.5V to 5.5V	20ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
15, 1, 2, 3, 4, 5, 6, 7	Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	Parallel Data Outputs.
8	GND	Ground.
9	Q7S	Serial Data Output.
10	MR	Master Reset (Active Low).
11	SHCP	Shift Register Clock Input.
12	STCP	Storage Register Clock Input.
13	ŌĒ	Output Enable Input (Active Low).
14	DS	Serial Data Input.
16	V _{CC}	Supply Voltage.

FUNCTIONAL DIAGRAM

LOGIC SYMBOL

LOGIC DIAGRAM

8-Bit Serial-In/Serial-Out or Parallel-Out Shift Register with Output Latches

FUNCTION TABLE

	CONTRO		Г	INPUT OUTPUT		PUT	FUNCTION	
SHCP	STCP	ŌĒ	MR	DS	Q7S	Qn	FUNCTION	
X	X	L	L	X	L	NC	A low-level on $\overline{\rm MR}$ only affects the shift registers.	
X	↑	L	L	X	L	L	Empty shift register loaded into storage register.	
X	Х	Н	L	X	L	Z	Shift register clear, parallel outputs in high-impedance off-state.	
↑ (x	L	н	н	Q6S	NC	Logic high-level shifted into shift register Stage 0. Contents of all shift register stages shifted through, e.g. previous state of Stage 6 (internal Q6S) appears on the serial output (Q7S).	
x	Ť	L	н	x	NC	QnS	Contents of shift register stages (internal QnS) are transferred to the storage register and parallel output stages.	
↑	1	L	н	x	Q6S	QnS	Contents of shift register shifted through, previous contents of the shift register are transferred to the storage register and parallel output stages.	

H = High Voltage Level

L = Low Voltage Level

 \uparrow = Low-to-High Clock Transition

Z = High-Impedance State

NC = No Change

X = Don't Care

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at TA = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
		V _{CC} = 2.0V	V _{CC} = 2.0V		1.5				
High-Level Input Voltage	V _{IH}	V _{CC} = 3.0V		Full	2.1			V	
		V _{CC} = 5.5V		Full	3.85				
		V_{CC} = 2.0V		Full			0.5		
Low-Level Input Voltage	VIL	$V_{CC} = 3.0V$		Full			0.9	V	
		V_{CC} = 5.5V		Full			1.65		
			V_{CC} = 2.0V to 4.5V, I_{O} = -50 μA	Full	V _{CC} - 0.1	V _{CC} - 0.005			
High-Level Output Voltage	V _{он}	$V_I = V_{IH} \text{ or } V_{IL}$	V_{CC} = 3.0V, I_{O} = -4.0mA	Full	2.4	2.8		V	
			V_{CC} = 4.5V, I _O = -8.0mA	Full	3.7	4.2			
	V _{OL}	$V_{I} = V_{IH} \text{ or } V_{IL}$	V_{CC} = 2.0V to 4.5V, I_{O} = 50 μA	Full		0.005	0.1		
Low-Level Output Voltage			V_{CC} = 3.0V, I_{O} = 4.0mA	Full		0.2	0.55	V	
			V_{CC} = 4.5V, I _O = 8.0mA	Full		0.3	0.55		
Input Lookago Current		V_{cc} = 0V to 5.5V, V _I = 5.5V or GND		+25°C		±0.1	±1		
Input Leakage Current	IJ			Full			±2		
Off State Output Current		V = V or V	V = V or CND $V = 5.5V$	+25°C		±0.1	±1		
On-State Output Current	IOZ	$v_{I} = v_{IH}$ or v_{IL} , $v_{O} = v_{CC}$ or GND, $v_{CC} = 5.5V$		Full			±10	μA	
Supply Current		$V_{\rm CC}$ = 5.5V, $V_{\rm I}$ = $V_{\rm CC}$ or GND, $I_{\rm O}$ = 0A		+25°C		0.1	2		
	ICC			Full			20	μΑ	
Input Capacitance	Cı			+25°C		6		pF	

DYNAMIC CHARACTERISTICS

(For test circuit, see Figure 2. Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, V_{CC} = 3.3V and V_{CC} = 5.0V respectively, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			TEMP	MIN ⁽¹⁾	ТҮР	MAX ⁽¹⁾	UNITS
				C _L = 15pF	Full	0.5	8	16.5	20
		SHCP to Q7S ⁽²⁾ ,	$v_{\rm CC} = 3.00 \ 10 \ 3.00$	C _L = 50pF	Full	0.5	10	20	ns
		see Figure 3		C _L = 15pF	Full	0.5	6	11.5	20
			$v_{\rm CC}$ = 4.5V to 5.5V	C _L = 50pF	Full	0.5	8	13.5	ns
	t _{PD}	STCP to Qn ⁽²⁾ , see Figure 4	V _{CC} = 3.0V to 3.6V	C _L = 15pF	Full	0.5	8	14.5	ns
Dranagation Dalay				C _L = 50pF	Full	0.5	10.5	19	
Propagation Delay			V_{CC} = 4.5V to 5.5V	C _L = 15pF	Full	0.5	6	10.5	20
				C _L = 50pF	Full	0.5	8	12.5	IIS
			V _{CC} = 3.0V to 3.6V	C _L = 15pF	Full	0.5	6.5	14	20
		MR to Q7S ⁽³⁾ , see Figure 6		C _L = 50pF	Full	0.5	8	17.5	IIS
			V _{CC} = 4.5V to 5.5V	C _L = 15pF	Full	0.5	5	9.5	ns
				C _L = 50pF	Full	0.5	6	11.5	

DYNAMIC CHARACTERISTICS (continued)

(For test circuit, see Figure 2. Full = -40°C to +125°C, all typical values are measured at T_A = +25°C, V_{CC} = 3.3V and V_{CC} = 5.0V respectively, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS		TEMP	MIN ⁽¹⁾	TYP	MAX ⁽¹⁾	UNITS
(4)		OF to On		C _L = 15pF	Full	0.5	7	14.5	
			$V_{CC} = 3.0V$ to 3.6V	C _L = 50pF	Full	0.5	9	18	ns
	ι _{EN}	see Figure 7		C _L = 15pF	Full	0.5	5.5	11	
			$v_{\rm CC} = 4.5 v$ to 5.5 v	C∟ = 50pF	Full	0.5	7	13	ns
				C _L = 15pF	Full	0.5	7	14	
Diachta Times ⁽⁵⁾		OE to Qn,	$V_{\rm CC} = 3.0V$ to 3.6V	C _L = 50pF	Full	0.5	12	18.5	ns
	t _{DIS}	see Figure 7		C _L = 15pF	Full	0.5	7	12.5	
			$v_{\rm CC} = 4.5 v$ to 5.5 v	C∟ = 50pF	Full	0.5	8	14	ns
Marian Francisco a		SHCP or STCP,	V _{CC} = 3.0V to 3.6V		Full	80	165		N 41 1-
Maximum Frequency	TMAX	see Figure 3 and Figure 4	V _{cc} = 4.5V to 5.5V		Full	110	165		MHZ
	t _w	SHCP high or low, see Figure 3	V _{CC} = 3.0V to 3.6V		Full	5			
			V _{cc} = 4.5V to 5.5V		Full	5			115
		STCP high or low, see Figure 4	V _{CC} = 3.0V to 3.6V		Full	5			
Puise width			V _{cc} = 4.5V to 5.5V		Full	5			115
		MR Low, see Figure 6	V _{CC} = 3.0V to 3.6V		Full	5			
			V _{CC} = 4.5V to 5.5V		Full	5			ns
		DS to SHCP,	V _{cc} = 3.0V to 3.6V		Full	3.5			
Cat Un Time		see Figure 5	V _{CC} = 4.5V to 5.5V		Full	3			ns
Set-Op Time	ι _{su}	SHCP to STCP,	V _{CC} = 3.0V to 3.6V	V _{cc} = 3.0V to 3.6V		8			
		see Figure 4	$V_{\rm CC}$ = 4.5V to 5.5V		Full	Full 5		ns	
Hald Time		DS to SHCP,	V _{CC} = 3.0V to 3.6V		Full	2.5			
Hold Time	ι _Η	see Figure 5	V _{CC} = 4.5V to 5.5V	V _{CC} = 4.5V to 5.5V		2			ns
D		MR to SHCP,	V _{CC} = 3.0V to 3.6V	V _{CC} = 3.0V to 3.6V		3			
Recovery time	t _{REC}	see Figure 6	V _{cc} = 4.5V to 5.5V		Full	2.5			ns
Power Dissipation Capacitance ^{(6) (7)}	C _{PD}	f _i = 1MHz, V _I = GI	ND to V _{CC}		+25°C		180		pF

NOTES:

- 1. Specified by design and characterization; not production tested.
- 2. t_{PD} is the same as t_{PHL} and $t_{\text{PLH}}.$
- 3. t_{PD} is the same as t_{PHL} only.
- 4. t_{EN} is the same as t_{PZL} and $t_{\text{PZH}}.$
- 5. t_{DIS} is the same as t_{PLZ} and $t_{\text{PHZ}}.$
- 6. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$ where:

- f_i = Input frequency in MHz.
- f_o = Output frequency in MHz.
- C_L = Output load capacitance in pF.
- V_{CC} = Supply voltage in Volts.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) =$ Sum of outputs.

7. All 9 outputs switching.

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions test circuit:

RL: Load resistance.

CL: Load capacitance (includes jig and probe).

 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

S1: Test selection switch.

Figure 2. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LOAD		S1 POSITION		
Vcc	Vı	t _R , t _F	C∟	R∟	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
2.0V to 5.5V	V _{CC}	\leq 3.0ns	15pF, 50pF	1kΩ	Open	GND	V _{CC}

WAVEFORMS

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Shift Clock Pulse, Maximum Frequency and Input to Output Propagation Delays

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 4. Storage Clock to Output Propagation Delays

WAVEFORMS (continued)

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 5. Data Set-Up and Hold Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 6. Master Reset to Output Propagation Delays

WAVEFORMS (continued)

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 7. Enable and Disable Times

Table 2. Measurement Points

SUPPLY VOLTAGE	INPUT	OUTPUT
Vcc	V _M ⁽¹⁾	V _M
2.0V to 5.5V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$

NOTE:

1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 3.0ns.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

SEPTEMBER 2022 – REV.A to REV.A.1	Page
Updated Electrical Characteristics section	
Updated Dynamic Characteristics section	7
Added SOIC-16 package	All
Changes from Original (SEPTEMBER 2021) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS

TSSOP-16

RECOMMENDED LAND PATTERN (Unit: mm)

Cymrhed	Dimensions In Millimeters						
Symbol	MIN	MOD	MAX				
A	-	-	1.200				
A1	0.050	-	0.150				
A2	0.800	-	1.050				
b	0.190	-	0.300				
с	0.090	-	0.200				
D	4.860	-	5.100				
E	4.300	-	4.500				
E1	6.200	-	6.600				
е		0.650 BSC					
L	0.450	-	0.750				
Н	0.250 TYP						
θ	0°	-	8°				
ccc		0.100					

NOTES:

1. This drawing is subject to change without notice.

2. The dimensions do not include mold flashes, protrusions or gate burrs.

3. Reference JEDEC MO-153.

PACKAGE OUTLINE DIMENSIONS SOIC-16

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimer In Milli	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	9.800	10.200	0.386	0.402	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

NOTES:

Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-16	13″	12.4	6.90	5.60	1.50	4.0	8.0	2.0	12.0	Q1
SOIC-16	13″	16.4	6.50	10.30	2.10	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width Height (mm) (mm)		Pizza/Carton]_
13″	386	280	370	5	00002

