www.vishay.com Vishay Beyschlag ## **Professional Thin Film Chip Resistors** Automotive grade MC AT professional thin film chip resistors are the perfect choice for most fields of modern professional electronics where reliability and stability is of major concern. Typical applications include automotive, telecommunication, industrial, medical equipment, precision test, and measuring equipment. ### **FEATURES** - Operating temperature up to 175 °C - Rated dissipation P₈₅ up to 0.4 W for size 1206 AUTOMOTIVE - AEC-Q200 qualified - IECQ-CECC approved to EN 140401-801 - COMPLIANT - Advanced sulfur resistance verified according to ASTM B 809 - Superior temperature cycling robustness - Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u> ### **APPLICATIONS** - Automotive - Telecommunication - Medical equipment - Industrial equipment | TECHNICAL SPECIFICATIONS | TECHNICAL SPECIFICATIONS | | | | | | | | | | |---|--------------------------|--------------------|------------------|---|--|--|--|--|--|--| | DESCRIPTION | MCS 0402 AT | MCT 0603 AT | MCU 0805 AT | MCA 1206 AT | | | | | | | | Imperial size | 0402 | 0603 | 0805 | 1206 | | | | | | | | Metric size code | RR1005M | RR1608M | RR2012M | RR3216M | | | | | | | | Resistance range | 1 Ω to 221 kΩ; 0 Ω | 1 Ω to 511 kΩ; 0 Ω | 1 Ω to 1 MΩ; 0 Ω | 1 Ω to 1 M Ω ; 0 Ω | | | | | | | | Resistance tolerance | | ± 1 %, | ± 0.5 % | | | | | | | | | Temperature coefficient | ± 50 ppm/K; ± 25 ppm/K | | | | | | | | | | | Rated dissipation P ₈₅ ⁽¹⁾ | 0.100 W | 0.150 W | 0.200 W | 0.400 W | | | | | | | | Operating voltage, U _{max.} AC _{RMS} /DC | 50 V | 75 V | 150 V | 200 V | | | | | | | | Permissible film temperature, $\vartheta_{\text{F max.}}^{(1)}$ | 175 °C | | | | | | | | | | | Operating temperature range | | -55 °C to | o 175 °C | | | | | | | | | Internal thermal resistance (1) | 90 K/W | 63 K/W | 38 K/W | 32 K/W | | | | | | | | Permissible voltage against ambient (insulation): | | | | | | | | | | | | 1 min; U_{ins} | 75 V | 100 V | 200 V | 300 V | | | | | | | | Failure rate: FIT _{observed} ≤ 0.1 x 10 ⁻⁹ /h | | | | | | | | | | | #### Note ### **APPLICATION INFORMATION** When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded. Please consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (www.vishav.com/doc?28844) for information on the general nature of thermal resistance. These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime. ⁽¹⁾ Please refer to APPLICATION INFORMATION below www.vishay.com Vishay Beyschlag | MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION | | | | | | | | |--|-----------------------------|------------------------------|----------------------------|-------------------------|--|--|--| | OPERATION MODE | | STANDARD | POWER | ADVANCED
TEMPERATURE | | | | | | | P ₇₀ | P ₇₀ | P ₈₅ | | | | | | MCS 0402 AT | 0.063 W | 0.100 W | 0.100 W | | | | | Pated dissination | MCT 0603 AT | 0.100 W | 0.125 W | 0.150 W | | | | | Rated dissipation | MCU 0805 AT | 0.125 W | 0.200 W | 0.200 W | | | | | | MCA 1206 AT | 0.250 W | 0.400 W | 0.400 W | | | | | Operating temperature range | Operating temperature range | | -55 °C to 155 °C | -55 °C to 175 °C | | | | | Permissible film temperature, $\vartheta_{\text{F max}}$ | | 125 °C | 155 °C | 175 °C | | | | | | MCS 0402 AT | 1 Ω to 221 k Ω | 1 Ω to 221 kΩ | 1 Ω to 221 kΩ | | | | | | MCT 0603 AT | 1 Ω to 511 kΩ | 1 Ω to 511 kΩ | 1 Ω to 511 kΩ | | | | | Max. resistance change at rated | MCU 0805 AT | 1 Ω to 1 M Ω | 1 Ω to 1 M Ω | 1 Ω to 1 MΩ | | | | | dissipation for resistance range, $ \Delta R/R $ after: | MCA 1206 AT | 1 Ω to 1 MΩ | 1 Ω to 1 MΩ | 1 Ω to 1 MΩ | | | | | | 1000 h | ≤ 0.15 % | ≤ 0.3 % | ≤ 0.5 % | | | | | | 8000 h | ≤ 0.25 % | ≤ 0.5 % | - | | | | | | 225 000 h | ≤ 1.0 % | - | - | | | | #### Note The presented operation modes do not refer to different types of resistors, but actually show examples of different loads, that lead to different film temperatures and different achievable load-life stability (drift) of the resistance value. A suitable low thermal resistance of the circuit board assembly must be safeguarded in order to maintain the film temperature of the resistors within the specified limits. Please consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (www.vishay.com/doc?28844) for information on the general nature of thermal resistance | TEMPERATURE COEFFICIENT AND RESISTANCE RANGE (1) | | | | | | | | | |--|--|-----------|----------------|-----------|--|--|--|--| | TYPE / SIZE | TCR | TOLERANCE | RESISTANCE | E-SERIES | | | | | | | ± 50 ppm/K | ± 1 % | 1 Ω to 221 kΩ | E24; E96 | | | | | | MCS 0402 AT | ± 25 ppm/K | ± 0.5 % | 10 Ω to 221 kΩ | E24; E192 | | | | | | | Jumper ⁽²⁾ , I _{max.} = 0.63 A | ≤ 20 mΩ | 0 Ω | - | | | | | | | ± 50 ppm/K | ± 1 % | 1 Ω to 511 kΩ | E24; E96 | | | | | | MCT 0603 AT | ± 25 ppm/K | ± 0.5 % | 10 Ω to 511 kΩ | E24; E192 | | | | | | | Jumper ⁽²⁾ , I _{max.} = 1 A | ≤ 20 mΩ | 0 Ω | - | | | | | | | ± 50 ppm/K | ± 1 % | 1 Ω to 1 MΩ | E24; E96 | | | | | | MCU 0805 AT | ± 25 ppm/K | ± 0.5 % | 10 Ω to 1 MΩ | E24; E192 | | | | | | | Jumper ⁽²⁾ , I _{max.} = 1.5 A | ≤ 20 mΩ | 0 Ω | - | | | | | | | ± 50 ppm/K | ± 1 % | 1 Ω to 1 MΩ | E24; E96 | | | | | | MCA 1206 AT | ± 25 ppm/K | ± 0.5 % | 10 Ω to 1 MΩ | E24; E192 | | | | | | | Jumper ⁽²⁾ , I _{max.} = 2 A | ≤ 20 mΩ | 0 Ω | - | | | | | ⁽¹⁾ For the approved IECQ-CECC resistance range, please refer to www.vishay.com/doc?28945 $^{^{(2)}}$ The temperature coefficient of resistance (TCR) is not specified for 0 Ω jumpers www.vishay.com Vishay Beyschlag | PACKAGING | | | | | | | | | |---------------------------|----|--------|---|------|-------|----------------------|--|--| | TYPE / SIZE CODE QUANTITY | | | PACKAGING STYLE WIDTH | | PITCH | PACKAGING DIMENSIONS | | | | MCS 0402 AT | E5 | 5000 | Paper tape acc.
IEC 60286-3, Type 1a | 8 mm | 2 mm | Ø 180 mm / 7" | | | | | E0 | 10 000 | | | | | | | | MCT 0602 AT | P5 | 5000 | | | 4 mm | Ø 180 mm / 7" | | | | MCT 0603 AT | PW | 20 000 | | | | Ø 330 mm / 13" | | | | MCU 0805 AT | P5 | 5000 | | | | Ø 180 mm / 7" | | | | | PW | 20 000 | | | | Ø 330 mm / 13" | | | | MCA 1206 AT | P5 | 5000 | | | | Ø 180 mm / 7" | | | ### Note • Products can be ordered using either the PART NUMBER or the PRODUCT DESCRIPTION www.vishay.com Vishay Beyschlag ### **DESCRIPTION** Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of special metal alloy is deposited on a high grade ceramic substrate (Al_2O_3) and conditioned to achieve the desired temperature coefficient. Specially designed inner contacts are deposited on both sides. A special laser is used to achieve the target value by smoothly cutting a meander groove in the resistive layer without damaging the ceramics. The resistor elements are covered by a unique protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure matte tin on nickel plating. The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual chip resistors. This includes full screening for the elimination of products with potential risk of early field failures (feasible for $R \geq 10~\Omega$). Only accepted products are laid directly into the paper tape in accordance with **IEC 60286-3 Type 1a** ⁽¹⁾. ### **ASSEMBLY** The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapor phase as shown in **IEC 61760-1** ⁽¹⁾. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system. The resistors are RoHS-compliant; the pure matte tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. Solderability is specified for 2 years after production or requalification. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing. ## **MATERIALS** Vishay acknowledges the following systems for the regulation of hazardous substances: - IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein (2) - The Global Automotive Declarable Substance List (GADSL) (3) - The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) (4) for its supply chain The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see www.vishay.com/how/leadfree. Hence the products fully comply with the following directives: - 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II) - 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU - 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE) Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at www.vishay.com/doc?49037. ### **APPROVALS** Where applicable, the resistors are approved within the IECQ-CECC Quality Assessment System for Electronic Components to the detail specification **EN 140401-801** which refers to **EN 60115-1**, **EN 60115-8** and the variety of environmental test procedures of the **IEC 60068** (1) series. The detail specification refers to the climatic categories 55/125/56, which relates to the "standard operation mode" of this datasheet. Conformity is attested by the use of the CECC logo () as the mark of conformity on the package label. The resistors are qualified according to AEC-Q200. Vishay Beyschlag has achieved "Approval of Manufacturer" in accordance with IECQ 03-1. The release certificate for "Technology Approval Schedule" in accordance with CECC 240001 based on IECQ 03-3-1 is granted for the Vishay Beyschlag manufacturing process. ### **RELATED PRODUCTS** For more information about products with better TCR and tighter tolerance please refer to the **MC AT - Precision** datasheet (www.vishav.com/doc?28785). Chip resistor arrays may be used in sensing applications or precision amplifiers where close matching between multiple resistors is necessary. Please refer to the ACAS AT - Precision datasheet (www.vishay.com/doc?28770). **MC AT** series is also available with gold termination for conductive gluing: **MC ATAU - Precision**. Please refer to the datasheet (www.vishav.com/doc?28877). For high power and high temperature applications **MCW AT** wide terminal thin film chip resistors offer extremely high power ratings and extraordinary temperature cycling robustness. Please refer to the datasheets for precision (www.vishay.com/doc?28847) and professional (www.vishay.com/doc?28796) specification. These wide-terminal products are also available in low-ohmic values, **NCW AT** (www.vishay.com/doc?28849). - (1) The quoted IEC standards are also released as EN standards with the same number and identical contents - (2) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474 - (3) The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at www.gadsl.org - (4) The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table www.vishay.com ## **FUNCTIONAL PERFORMANCE** ## **Derating - Standard Operation** ## **Derating - Power Operation** **Derating - Advanced Power Operation** www.vishay.com ## Vishay Beyschlag ## **FUNCTIONAL PERFORMANCE** Maximum pulse load, single pulse; applicable if $\bar{P} \to 0$ and $n \le 1000$ and $\hat{U} \le \hat{U}_{max}$; for permissible resistance change equivalent to 8000 h operation in standard operation mode ## Single Pulse Maximum pulse load, continuous pulses; applicable if $\bar{P} \leq P$ (ϑ_{amb}) and $\hat{U} \leq \hat{U}_{max}$; for permissible resistance change equivalent to 8000 h operation in standard operation mode ### **Continuous Pulse** Maximum pulse voltage, single and continuous pulses; applicable if $\hat{P} \leq \hat{P}_{\text{max.}}$; for permissible resistance change equivalent to 8000 h operation in standard operation mode **Pulse Voltage** www.vishay.com ## **FUNCTIONAL PERFORMANCE** Pulse load rating in accordance with EN 60115-1 clause 4.27; 1.2 μ s/50 μ s; 5 pulses at 12 s interval; for permissible resistance change \pm (0.5 % R + 0.05 Ω) ### 1.2/50 Pulse Pulse load rating in accordance with EN 60115-1 clause 4.27; 10 μ s/700 μ s; 10 pulses at 1 min intervals; for permissible resistance change \pm (0.5 % R + 0.05 Ω) **10/700 Pulse** In accordance with IEC 60195 ### **Current Noise Voltage Ratio** ## **FUNCTIONAL PERFORMANCE** |Z|/R for 49.9 Ω chip resistor **RF-Behavior** ### **TESTS AND REQUIREMENTS** All tests are carried out in accordance with the following specifications: EN 60115-1, generic specification EN 60115-8, sectional specification EN 140401-801, detail specification IEC 60068-2-xx, test methods The components are approved under the IECQ-CECC quality assessment system for electronic components. The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-801. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those minimum requirements have been included. The testing also covers most of the requirements specified by EIA/ECA-703 and JIS-C-5201-1. The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied: Temperature: 15 °C to 35 °C Relative humidity: 25 % to 75 % Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar) A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days). The components are mounted for testing on printed circuit boards in accordance with EN 60115-8, 2.4.2, unless otherwise specified. www.vishay.com Vishay Beyschlag | | IEC 60068-2 (1) | AND REQUIREMENTS | | REQUIREMENTS | |----------------------|-----------------|---|--|--| | EN 60115-1
CLAUSE | TEST
METHOD | TEST | PROCEDURE | PERMISSIBLE CHANGE ($\triangle R$) | | | METHOD | | Chalailite fau and death and a | STABILITY CLASS 0.5 OR BETTER | | | | | Stability for product types: | 1.0 1- 001 1-0 | | | | | MCS 0402 AT | 1 Ω to 221 kΩ | | | | | MCT 0603 AT | 1 Ω to 511 kΩ | | | | | MCU 0805 AT | 1 Ω to 1 ΜΩ | | 4.5 | 1 1 | Desistance | MCA 1206 AT | 1 Ω to 1 ΜΩ | | 4.5 | - | Resistance | A+ (00/ 55/00) °C and | ± 1 % R; ± 0.5 % R | | 4.8 | - | Temperature coefficient | At (20/-55/20) °C and (20/155/20) °C | ± 50 ppm/K; ± 25 ppm/K | | | | Endurance at 70 °C:
standard operation mode | $U = \sqrt{P_{70}} \times R$ or $U = U_{\text{max.}}$;
whichever is the less severe;
1.5 h on; 0.5 h off;
70 °C; 1000 h
70 °C; 8000 h | ± (0.15 % R + 0.05 Ω)
± (0.25 % R + 0.05 Ω) | | 4.25.1 | - | Endurance at 70 °C:
power operation mode | $U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$;
whichever is the less severe;
1.5 h on; 0.5 h off;
70 °C; 1000 h
70 °C; 8000 h | \pm (0.3 % R + 0.05 Ω)
\pm (0.5 % R + 0.05 Ω) | | | | Endurance at 85 °C:
advanced temperature
operation mode | $U = \sqrt{P_{85} \times R}$ or $U = U_{\text{max.}}$;
whichever is the less severe;
1.5 h on; 0.5 h off;
85 °C; 1000 h | ± (0.5 % R + 0.05 Ω) | | | | Endurance at | 125 °C; 1000 h | $\pm (0.15 \% R + 0.05 \Omega)$ | | 4.25.3 | - | upper category
temperature | 155 °C; 1000 h
175 °C; 1000 h | $\pm (0.3 \% R + 0.05 \Omega)$
$\pm (0.5 \% R + 0.05 \Omega)$ | | 4.24 | 78 (Cab) | Damp heat,
steady state | (40 ± 2) °C; 56 days;
(93 ± 3) % RH | ± (0.1 % R + 0.05 Ω) | | 4.37 | 67 (Cy) | Damp heat,
steady state,
accelerated
Standard operation mode | $(85 \pm 2) \text{ °C}$ $(85 \pm 5) \text{ ° RH}$ $U = \sqrt{0.1} \times P_{70} \times R;$ $U \le 0.3 \times U_{\text{max}}; 1000 \text{ h}$ | $\pm (0.5 \% R + 0.05 \Omega)$ | | 4.23 | | Climatic sequence: standard operation mode | | | | 4.23.2 | 2 (Bb) | dry heat | 155 °C; 16 h | | | 4.23.3 | 30 (Db) | damp heat, cyclic | 55 °C; 24 h; ≥ 90 % RH;
1 cycle | | | 4.23.4 | 1 (Ab) | cold | -55 °C; 2 h | $\pm (0.5 \% R + 0.05 \Omega)$ | | 4.23.5 | 13 (M) | low air pressure | 8.5 kPa; 2 h; (25 ± 10) °C | | | 4.23.6 | 30 (Db) | damp heat, cyclic | 55 °C; 24 h; ≥ 90 % RH;
5 cycles | | | 4.23.7 | _ | DC load | $U = \sqrt{P_{70} \times R} \le U_{\text{max.}}; 1 \text{ min}$ | | | - | 1 (Aa) | Storage at low temperature | -55 °C; 2 h | ± (0.1 % R + 0.01 Ω) | | | | Rapid change of temperature | 30 min at -55 °C and
30 min at 155 °C;
1000 cycles | $\pm (0.25 \% R + 0.05 \Omega)$ | | 4.19 | 14 (Na) | Extended rapid change of temperature | 30 min at -40 °C;
30 min at 125 °C ⁽²⁾ ;
MCS 0402 AT: 3000 cycles
MCT 0603 AT: 2000 cycles
MCU 0805 AT: 1500 cycles
MCA 1206 AT: 1000 cycles | \pm (0.25 % R + 0.05 Ω); (≥ 50 % of initial shear force) | | 4.13 | _ | Short time overload; standard operation mode | $U = 2.5 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{\text{max.}}$; | $\pm (0.1 \% R + 0.01 \Omega)$ | | 5 | | Short time overload; power operation mode | whichever is the less severe; 5 s | $\pm (0.25 \% R + 0.05 \Omega)$ | www.vishay.com Vishay Beyschlag | CLAUSE TEST | IEC 60068-2 ⁽¹⁾
TEST | TEST | PROCEDURE | REQUIREMENTS PERMISSIBLE CHANGE (ΔR) | |-------------|------------------------------------|---|---|--| | | METHOD | | | STABILITY CLASS 0.5 OR BETTER | | | | | Stability for product types: | | | | | | MCS 0402 AT | 1 Ω to 221 k Ω | | | | | MCT 0603 AT | 1 Ω to 511 k Ω | | | | | MCU 0805 AT | 1 Ω to 1 M Ω | | | | | MCA 1206 AT | 1 Ω to 1 M Ω | | 4.27 | _ | Single pulse high
voltage overload:
standard operation mode | Severity no. 4:
$U = 10 \times \sqrt{P_{70} \times R}$
$U = 2 \times U_{\text{max}}$; | $\pm (0.25 \% R + 0.05 \Omega)$ | | 4.21 | | Single pulse high voltage overload: power operation mode | whichever is the less severe;
10 pulses 10 µs/700 µs | $\pm (0.5 \% R + 0.05 \Omega)$ | | 4.39 | _ | Periodic electric
overload:
standard operation mode | $U = \sqrt{15 \times P_{70} \times R}$ $U = 2 \times U_{\text{max.}}$ whichever is the less severe; | $\pm (0.5 \% R + 0.05 \Omega)$ | | 4.00 | | Periodic electric
overload:
power operation mode | 0.1 s on; 2.5 s off;
1000 cycles | $\pm (1.0 \% R + 0.05 \Omega)$ | | 4.38 | - | Electro static discharge
(human body model) | IEC 61340-3-1 ⁽¹⁾ ;
3 pos. + 3 neg.
(equivalent to MIL-STD-883,
method 3015)
MCS 0402 AT: 500 V
MCT 0603 AT: 1000 V
MCU 0805 AT: 1500 V
MCA 1206 AT: 2000 V | \pm (0.5 % R + 0.05 Ω) | | 4.22 | 6 (Fc) | Vibration | Endurance by sweeping;
10 Hz to 2000 Hz;
no resonance;
amplitude ≤ 1.5 mm or
≤ 200 m/s²; 7.5 h | \pm (0.1 % R + 0.01 Ω)
no visible damage | | | | | Solder bath method;
SnPb40; non-activated flux
(215 ± 3) °C; (3 ± 0.3) s | Good tinning (≥ 95 % covered);
no visible damage | | 4.17 | 58 (Td) | Solderability | Solder bath method;
SnAg3Cu0.5 or SnAg3.5;
non-activated flux;
(235 ± 3) °C; (2 ± 0.2) s | Good tinning (≥ 95 % covered);
no visible damage | | 4.18 | 58 (Td) | Resistance to soldering heat | Solder bath method;
(260 ± 5) °C; (10 ± 1) s | \pm (0.1 % R + 0.01 Ω) no visible damage | | 4.29 | 45 (XA) | Component solvent resistance | Isopropyl alcohol +50 °C;
method 2 | No visible damage | | 4.32 | 21 (Ue ₃) | Shear (adhesion) | MCS 0402 AT and
MCT 0603 AT; 9 N | No visible damage | | | | | MCU 0805 AT and
MCA 1206 AT; 45 N | | | 4.33 | 21 (Ue ₁) | Substrate bending | Depth 2 mm, 3 times | \pm (0.1 % R + 0.01 Ω)
no visible damage;
no open circuit in bent position | | 4.7 | - | Voltage proof | $U_{\rm RMS} = U_{\rm ins}; (60 \pm 5) {\rm s}$ | No flashover or breakdown | | 4.35 | - | Flammability | IEC 60695-11-5 ⁽¹⁾
needle flame test; 10 s | No burning after 30 s | ⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents ⁽²⁾ Tested on a 4-layer printed circuit board with SAC micro alloy ### **DIMENSIONS** | DIMENSIONS AND MASS | | | | | | | | | | | |---------------------|-------------------|-----------------|-------------|------------------------|------------------------|------------------------|--------------|--|--|--| | TYPE / SIZE | H
(mm) | L
(mm) | W
(mm) | W _T
(mm) | T _t
(mm) | T _b
(mm) | MASS
(mg) | | | | | MCS 0402 AT | 0.32 ± 0.05 | 1.0 ± 0.05 | 0.5 ± 0.05 | > 75 % of W | 0.2 + 0.1/- 0.15 | 0.2 ± 0.1 | 0.6 | | | | | MCT 0603 AT | 0.45 + 0.1/- 0.05 | 1.55 ± 0.05 | 0.85 ± 0.1 | > 75 % of W | 0.3 + 0.15/- 0.2 | 0.3 + 0.15/- 0.2 | 1.9 | | | | | MCU 0805 AT | 0.52 ± 0.1 | 2.0 ± 0.1 | 1.25 ± 0.15 | > 75 % of W | 0.4 + 0.1/- 0.2 | 0.4 + 0.1/- 0.2 | 4.6 | | | | | MCA 1206 AT | 0.55 ± 0.1 | 3.2 + 0.1/- 0.2 | 1.6 ± 0.15 | > 75 % of W | 0.5 ± 0.25 | 0.5 ± 0.25 | 9.2 | | | | ### **SOLDER PAD DIMENSIONS** | RECOMMENDED SOLDER PAD DIMENSIONS | | | | | | | | | | |-----------------------------------|------|-----------|-----------|-----------|------------------|-----------|-----------|-----------|--| | TYPE / SIZE G (mm) | | WAVE SO | LDERING | | REFLOW SOLDERING | | | | | | | | Y
(mm) | X
(mm) | Z
(mm) | G
(mm) | Y
(mm) | X
(mm) | Z
(mm) | | | MCS 0402 AT | - | - | - | - | 0.35 | 0.55 | 0.55 | 1.45 | | | MCT 0603 AT | 0.55 | 1.10 | 1.10 | 2.75 | 0.65 | 0.70 | 0.95 | 2.05 | | | MCU 0805 AT | 0.80 | 1.25 | 1.50 | 3.30 | 0.90 | 0.90 | 1.40 | 2.70 | | | MCA 1206 AT | 1.40 | 1.50 | 1.90 | 4.40 | 1.50 | 1.15 | 1.75 | 3.80 | | - The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g. in standards IEC 61188-5-x ⁽¹⁾, or in publication IPC-7351 - (1) The quoted IEC standards are also released as EN standards with the same number and identical contents ## **Legal Disclaimer Notice** Vishay ## **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.