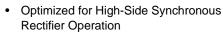


N-Channel 30-V (D-S) MOSFET

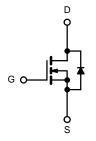
PRODUCT SUMMARY						
V _{DS} (V)	$R_{DS(on)}$ (Ω)	I _D (A) ^a	Q _g (Typ.)			
30	0.008 at V _{GS} = 10 V	13	6.1 nC			
30	0.011 at V _{GS} = 4.5 V	11	0.1110			


SO-8

Top View

D D

FEATURES


- · Halogen-free
- TrenchFET® Power MOSFET

- 100 % R_g Tested
- 100 % UIS Tested

APPLICATIONS

- Notebook CPU Core
 - High-Side Switch

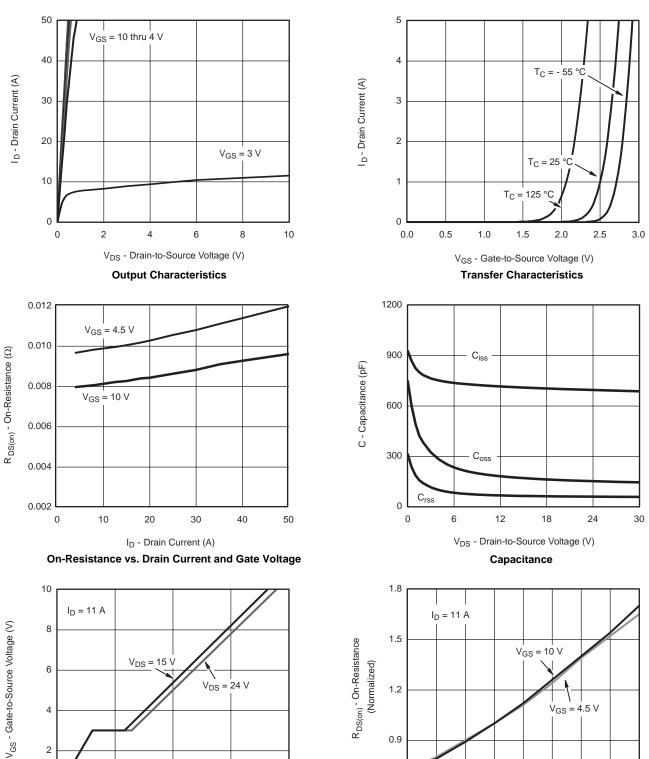
N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS	S $T_A = 25 ^{\circ}C$, unles	s otherwise note	ed			
Parameter		Symbol	Limit	Unit		
Drain-Source Voltage		V _{DS}	30	V		
Gate-Source Voltage		V_{GS}	± 20	1		
	T _C = 25 °C		13			
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C		10	1		
Continuous Diairi Current (1) = 150 °C)	T _A = 25 °C	I _D	9 ^{b, c}			
	T _A = 70 °C		7 ^{b, c}			
Pulsed Drain Current	•	I _{DM}	45	A		
Continuous Course Desir Die de Current	T _C = 25 °C		3.7			
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	2.0 ^{b, c}	1		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	20			
Avalanche Energy	L = 0.1 IIII	E _{AS}	21	mJ		
	T _C = 25 °C		4.1			
Maximum Davier Disable stice	T _C = 70 °C	ь	2.5	10/		
Maximum Power Dissipation	T _A = 25 °C	P _D	2.2 ^{b, c}	W		
	T _A = 70 °C		1.3 ^{b, c}			
Operating Junction and Storage Temperature Ra	T _J , T _{stg}	- 55 to 150	°C			

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R _{thJA}	39	55	°C/W
Maximum Junction-to-Foot (Drain)	Steady State	R_{thJF}	25	29	C/VV

Notes:

- a. Base on $T_C = 25$ °C.
- b. Surface Mounted on 1" x 1" FR4 board.
- c. t = 10 s.
- d. Maximum under Steady State conditions is 85 °C/W.



Static Drain-Source Breakdown Voltage V _{DS} V _{GS} = 0 V. I _D = 250 μA 30 V V _{DS} Temperature Coefficient ΔV _{DS} T _J I _D = 250 μA 26 mV/°C Gate-Source Threshold Voltage V _{GS(th)} V _{DS} = 420 μA 1.0 3.0 V Gate-Source Leakage I _{GSS} V _{DS} = 0 V. V _{GS} = ± 20 V ± 100 nA Zero Gate Voltage Drain Current I _{DSS} V _{DS} = 0 V. V _{GS} = 0 V. V _{GS} = 0 V ± 100 nA On-State Drain Current ^a I _{D(Dn)} V _{DS} = 30 V. V _{GS} = 0 V 20 A On-State Drain Current ^a I _{D(Dn)} V _{DS} = 5 V. V _{GS} = 10 V 20 A Drain-Source On-State Resistance ^a R _{DS(nn)} V _{DS} = 15 V. V _{GS} = 10 V. I _D = 10 A 0.008 D Forward Transconductance ^a 9 _{IS} V _{DS} = 15 V. V _{DS} = 0 0.011 Ω Sourpeachtance C _{GSS} V _{DS} = 15 V. V _{GS} = 0 V. f = 1 MHz 800	SPECIFICATIONS $T_J = 25 ^{\circ}\text{C}$ Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Cymbol	rest conditions	141111.	l igh.	IVIOA.	_ Oilit	
Vos Temperature Coefficient Δ/Os/NJ (Vosite) Femperature Coefficient Δ/Os/NJ (Vosite) Femperature Coefficient Δ/Os/NJ (Vosite)		V _{DS}	V _{GS} = 0 V, I _D = 250 μA	30			V	
Vas(m) Temperature Coefficient ΔV _{GS(m)} /T _J V _{DS} = V _{GS} , I _D = 250 μA 1.0 3.0 V V _{DS} = V _{GS} V _{DS} = 20 V V _{DS} =			50 5		26		mV/°C	
Gate-Source Threshold Voltage V _{GS(th)} V _{DS} = V _{GS} , I _D = 250 μA 1.0 3.0 V V _{GS} = 4.50 μA 1.0 3.0 V V _{GS} = 5.0 μA 1.0 3.0 V V _{GS} = 4.50 μA 1.0 3.0 Max M			$I_D = 250 \mu\text{A}$					
Sate-Source Leakage Sass	· ,	+	V _{DS} = V _{GS} , I _D = 250 μA	1.0		3.0	V	
Vos = 30 V, Vos = 0 V Vos = 0 V Vos = 0 V Vos = 0 V Vos = 30 V, Vos = 0 V Vos = 5 °C Vos = 30 V, Vos = 0 V Vos = 5 °C Vos = 30 V, Vos = 0 V Vos = 5 °C Vos = 30 V, Vos = 0 V, V		1					nA	
Description						1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zero Gate Voltage Drain Current	I _{DSS}				10	μA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	On-State Drain Current ^a	I _{D(on)}		20			Α	
Drain-Source On-State Resistances No			V _{GS} = 10 V, I _D = 10 A					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = 4.5 V, I _D = 9 A				Ω	
Input Capacitance C_{iss} $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ 800 pF Output Capacitance C_{oss} $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ 165 pF Reverse Transfer Capacitance C_{rss} $V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 10 \text{ A}$ 15 23 Total Gate Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$ 15 23 Gate-Source Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$ 2.5 06.8 10.2 Gate-Drain Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$ 2.3 0 Gate-Drain Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$ 2.3 0 Gate-Drain Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$ 16 2.3 Gate-Drain Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ A}$ 16 2.3 Turn-On Delay Time $V_{GS} = 10 \text{ V}, V_{GS} = 10 \text{ A}$ 16 2.3 Fall Time $V_{CS} = 10 \text{ V}, V_{CS} = 10 \text{ V}, V_{CS} = 10 \text{ V}, V_{CS} = 10 \text{ V}$	Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 10 A		50		S	
Input Capacitance C_{iss} $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ 800 pF Output Capacitance C_{oss} $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ 165 pF Reverse Transfer Capacitance C_{rss} $V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 10 \text{ A}$ 15 23 Total Gate Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$ 15 23 Gate-Source Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$ 2.5 06.8 10.2 Gate-Drain Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$ 2.3 0 Gate-Drain Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$ 2.3 0 Gate-Drain Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$ 16 2.3 Gate-Drain Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ A}$ 16 2.3 Turn-On Delay Time $V_{GS} = 10 \text{ V}, V_{GS} = 10 \text{ A}$ 16 2.3 Fall Time $V_{CS} = 10 \text{ V}, V_{CS} = 10 \text{ V}, V_{CS} = 10 \text{ V}, V_{CS} = 10 \text{ V}$	Dynamic ^b						ı	
$ \begin{array}{ c c c c c } \hline \text{Output Capacitance} & C_{\text{OSS}} \\ \hline \text{Reverse Transfer Capacitance} & C_{\text{rss}} \\ \hline \hline \text{Reverse Transfer Capacitance} & C_{\text{rss}} \\ \hline \hline \text{Total Gate Charge} & Q_g \\ \hline \text{Gate-Source Charge} & Q_{gs} \\ \hline \text{Gate-Drain Charge} & Q_{gd} \\ \hline \text{Gate Resistance} & R_g \\ \hline \text{Surr-On Delay Time} & t_{d(\text{on})} \\ \hline \text{Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_{d(\text{off})} \\ \hline \text{Fall Time} & t_f \\ \hline \text{Fall Time} & t_f \\ \hline \text{Fall Time} & t_{d(\text{off})} \\ \hline \text{Fall Time} & t_{d(\text{off})} \\ \hline \text{Fall Time} & t_{d(\text{off})} \\ \hline \text{Fall Time} & t_f \\ \hline \text{Purn-Off Delay Time} & t_{d(\text{off})} \\ \hline \text{Rise Time} & t_f \\ \hline \text{Continuous Source-Drain Diode Current} & l_S \\ \hline \text{Mos} = 15 \text{ V, } V_{\text{GS}} = 0 \text{ V, } f = 1 \text{ MHz} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{GS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{GS}} = 5 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{CS}} = 5 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{CS}} = 5 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 5 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 \text{ V, } I_{\text{D}} = 10 \text{ A} \\ \hline \text{NDS} = 15 \text{ V, } V_{\text{DS}} = 10 V,$	Input Capacitance	C _{iss}			800		pF	
Reverse Transfer Capacitance C_{rss} Total Gate Charge Q_g $V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$ 15 23 Gate-Source Charge Q_{gs} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 10 \text{ A}$ 2.5 — Gate-Drain Charge Q_{gd} $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 10 \text{ A}$ 2.5 — Gate Resistance R_g $f = 1 \text{ MHz}$ 0.36 1.8 3.6 Ω Turn-On Delay Time $t_d(on)$ $V_{DD} = 15 \text{ V}, R_L = 1.4 \Omega$ 16 23 Fall Time t_f $V_{DD} = 15 \text{ V}, R_L = 1.4 \Omega$ 16 22 Fall Time t_f $V_{DD} = 15 \text{ V}, R_L = 1.4 \Omega$ 10 18 Turn-Off Delay Time t_f $V_{DD} = 15 \text{ V}, R_L = 1.4 \Omega$ 10 20 Fall Time t_f $V_{DD} = 15 \text{ V}, R_L = 1.4 \Omega$ 10 20 Turn-Off Delay Time t_f $V_{DD} = 15 \text{ V}, R_L = 1.4 \Omega$ 10 20 Fall Time t_f $V_{DD} = 15 \text{ V}, R_L = 1.4 \Omega$ 10 20 Transition of Delay	Output Capacitance		$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		165			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance				73			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{DS} = 15 V, V _{GS} = 10 V, I _D = 10 A		15	23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Qg			6.8	10.2	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge	Q _{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$		2.5		- nC	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge	Q _{gd}			2.3			
$ \begin{array}{ c c c c c }\hline \text{Rise Time} & & & & & & & & & & & & & & & & & & &$	Gate Resistance	R _g	f = 1 MHz	0.36	1.8	3.6	Ω	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}			16	23		
Fall Time t_f 10 18 Turn-On Delay Time $t_{d(on)}$ 8 16 Rise Time t_r $V_{DD} = 15 \text{ V}, R_L = 1.4 \Omega$ 10 20 Turn-Off Delay Time $t_{d(off)}$ 16 22 Fall Time t_f 8 15 Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current t_g t_g t_g t_g Pulse Diode Forward Current ^a t_g t_g t_g t_g t_g Body Diode Voltage t_g	Rise Time	t _r			12	16		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 9 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		16	22		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	t _f			10	18] nc	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}			8	16	115	
Fall Time t_f	Rise Time	t _r	V_{DD} = 15 V, R_L = 1.4 Ω		10	20		
	Turn-Off Delay Time	t _{d(off)}	$I_D\cong 9$ A, V_{GEN} = 10 V, R_g = 1 Ω		16	22		
	Fall Time	t _f			8	15		
Pulse Diode Forward Current ^a I_{SM} 50 Body Diode Voltage V_{SD} $I_{S} = 9 A$ 0.8 1.2 V Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_{a} $I_{F} = 9 A$, $dI/dt = 100 A/\mu s$, $T_{J} = 25 ^{\circ}C$ $R_{C} = 9 A$	Drain-Source Body Diode Characterist	tics						
Pulse Diode Forward Currenta I_{SM} 50Body Diode Voltage V_{SD} $I_S = 9 A$ 0.81.2 V Body Diode Reverse Recovery Time t_{rr} 1530nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 9 A$, $dI/dt = 100 A/\mu s$, $T_J = 25 °C$ 612nCReverse Recovery Fall Time t_a t_a t_a t_a t_a t_a	Continuous Source-Drain Diode Current	I _S	$T_C = 25 ^{\circ}C$			10	^	
Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 9 \text{ A, dI/dt} = 100 \text{ A/µs, T}_J = 25 \text{ °C}$ 8 ns	Pulse Diode Forward Current ^a					50	_ ^	
Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = 9 \text{ A, dI/dt} = 100 \text{ A/µs, T}_J = 25 \text{ °C}$ $6 \qquad 12 \qquad \text{nC}$ $8 \qquad \qquad ns$	Body Diode Voltage	V _{SD}	I _S = 9 A		0.8	1.2	V	
Reverse Recovery Fall Time t _a	Body Diode Reverse Recovery Time	t _{rr}			15	30	ns	
Reverse Recovery Fall Time t _a	Body Diode Reverse Recovery Charge	Q _{rr}	L = 0 A dl/dt = 100 A/us T = 25 °C		6	12	nC	
Reverse Recovery Rise Time t _b ns	Reverse Recovery Fall Time		$I_F = 9 \text{ A}, \text{ al/at} = 100 \text{ A/}\mu\text{s}, I_J = 25 \text{ °C}$		8			
	Reverse Recovery Rise Time	t _b			7		- ns	

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$ b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

0.6

- 50

- 25

0

25

50

T_J - Junction Temperature (°C)

On-Resistance vs. Junction Temperature

75

100

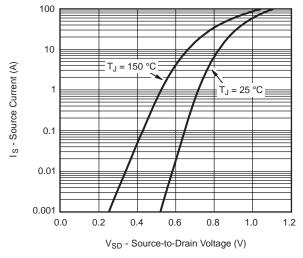
125

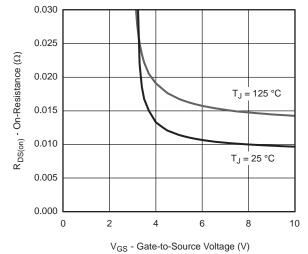
150

16

服务热线:400-655-8788

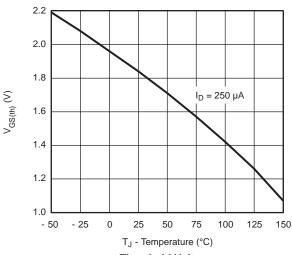
0

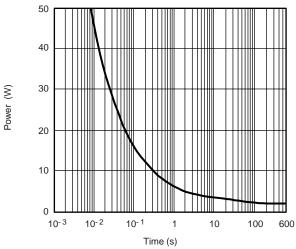

0


8

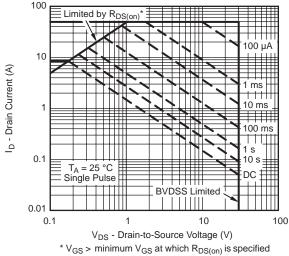
Q_q - Total Gate Charge (nC)

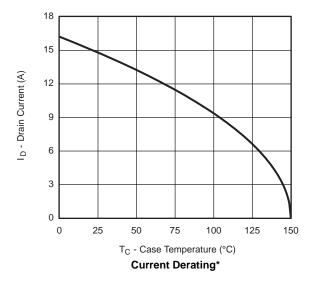
Gate Charge

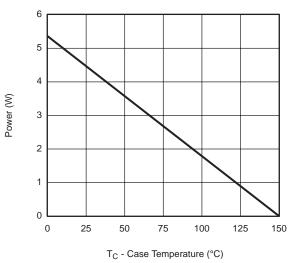


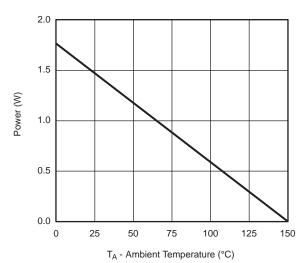


Source-Drain Diode Forward Voltage

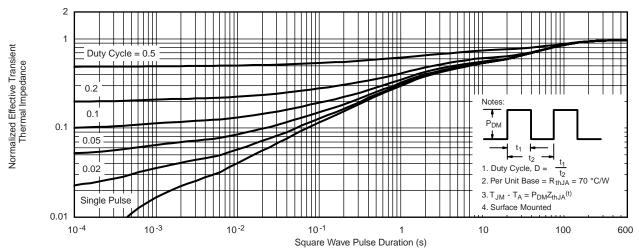


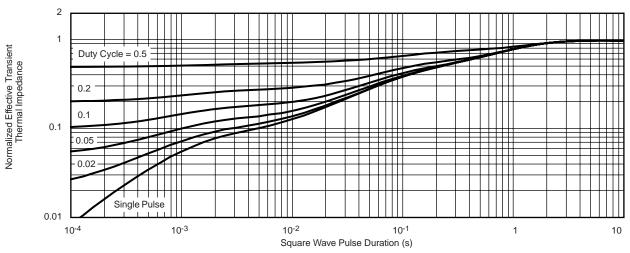

Threshold Voltage


Single Pulse Power, Junction-to-Ambient

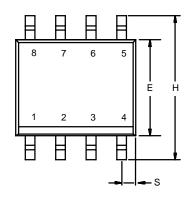


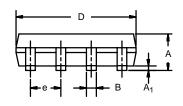
Safe Operating Area, Junction-to-Ambient

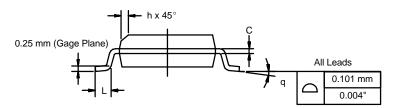



Power Derating, Junction-to-Foot Power Derating, Junction-to-Ambient

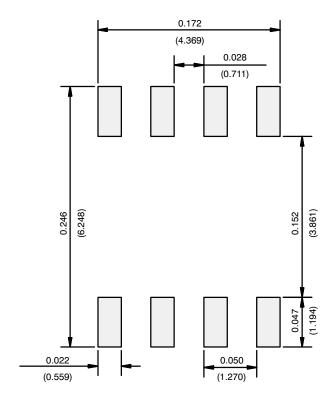
^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.


Normalized Thermal Transient Impedance, Junction-to-Ambient




Normalized Thermal Transient Impedance, Junction-to-Foot

SOIC (NARROW): 8-LEAD



	MILLIMETERS		INCHES			
DIM	Min	Max	Min	Max		
Α	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.35	0.51	0.014	0.020		
С	0.19	0.25	0.0075	0.010		
D	4.80	5.00	0.189	0.196		
E	3.80	4.00	0.150	0.157		
е	1.27 BSC		0.050	0.050 BSC		
Н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.020		
L	0.50	0.93	0.020	0.037		
q	0°	8°	0°	8°		
S	0.44	0.64	0.018	0.026		
FCN: C-06527-Rev I 11-Sep-06						

ECN: C-06527-Rev. I, 11-Sep-06 DWG: 5498

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.