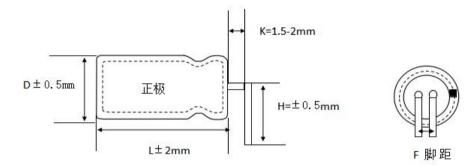
KNS 全球高端电	CHA 容器制造商	东莞市				
	<u>现格承认书</u> Specification for approval					
客户名称:						
(Custom	er Name)					
	名称:	铝电解电容				
(Produc	t Name)	Aluminum Ele	ectrolytic Capac	itor		
客户制	하号 :					
(Customer p	oart number)					
-			UF01EC6917			
(KNSCHA	number)	SHG400V10UF01EC6917				
	见格:	KNSCHA SHG 400V10μF Φ10*16L				
(Specifi	cations)	KNSCHA SHG 400V10μF Φ10*16L				
	制造			客户		
	(Manufacture					
	Approval		Approval			
拟制 (Fiction)	审 核 (Chief)	核 准 (Approval)	检验 (Inspect)	审 核 (Chief)	核 准 (Approval)	
刘淑芬	文川军军	徐贵南			· · · ·	
东莞市科尼盛电子有限公司						
DONG GUAN KNSCHA ELECTRONICS CO.,LTD.						
No. 8th floor, A3 building, R&D center (Phase I),						
Songshan Lake Intelligent Valley, Liaobu Town, Dongguan City						
TEL:0769-83698067 81035570 FAX: 0769-83861559						
Email : sales@knscha.com Website: http://www.knscha.com						

SHG Series

Aluminum Electrolytic Capacitors

Item Name	Rating	Case size	KNSCHA Lifetime
SHG400V10UF01EC6917	SHG400V10 μ F	Ф10*16L	10000 hours

1. Operating Temp. Range

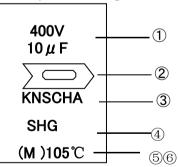

-40°C ~ + 105°C

2. Electrical Characteristics

See Table 1.

	-	-	-			-	
Rated Voltage VDC	Surge Voltage VDC	Nominal Static Capacitanc e (µ F)	Tolerance on Capacitance (%) 20°C 120Hz	(tan 0)max 20°⊂ 120⊔-		Permissible Ripple Current (mArms)max 105°C100KHz	Impedance(Ω) 100KHZ 20°C
400	450	10	$-20 \sim +20$	0.15	80	280	3.0

3. Dimensions


Unit(mm)

Unit(mm)					
ϕ D \pm 0.5Max	L±2Max	F±0.5	d±0.05	H±0.5	
10	16	5.0	0.6	13	

4. Marking

Following items are printed with white color on coffee color sleeve

Example of Marking

1 Rated voltage & Nominal Capacitance

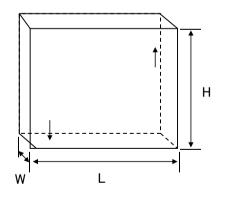
- 2 Polarity (negative)
- ③ Trade Mark
- (4) series
- (5) Symbol of Capacitance Tolerance (M)
- 6 Max Operating Temp.

1. Frequency Coefficient

	Freq.(Hz) Cap(μF)	60 (50)	120	1K	10K	100K
	0.1-47	0.75	0.80	0.85	0.90	1.00
	68-680	0.80	0.85	0.90	0.95	1.00
	1000-22000	0.85	0.87	0.89	0.92	1.00
2.	Temperature Coeffic	ient				
	Ambient Temperature(°C)	40	60	70	85	105
	Coefficient	2.40	2.10	1.78	1.65	1.00

6. Characteristics

No.	Item	Perfor	mance	Test Method
1	Leakage Current	I= 80.0 μA I= Max Leakage Currer C=Ctatic Capacitor: V		Protection Resistor : $1000\pm10\Omega$ Applied Volt : Rated Voltage Mesauring time : 3minutes
2	Static Capacitance	8 \sim 12 μ F		Measured Frequency : 120Hz±20% Measured Voltage ≤ 0.5Vrms, 1.5 ~ 2.0VDC
3	Dissiption Factor (tanδ)	0.15 and Under		Same as condition of Capacitors
4	High Temp. Load Charac- teristics	Cap. Change $\leq \pm$ Dissipation Factor ≤ 20	e value specified in Table 1 20% of initial value 0% of value specified in Table remarkable abnormality	Test Temp. : 105±2°C Applied voltage: Rated voltage Test Time10,000 hours +72, −0 hours
5	High Temp. no load Charac- teristics	Cap. Change $\leq \pm$ Dissipation Factor ≤ 20	e value specified in Table 1 20% of initial value 0% of value specified in Table remarkable abnormality	Test Temp.: 105±2°C No voltage applied Test Time :1000 hours +24, −0 hurs
6	Terminal Strength		45N {4.5kg} 25N {2.5kg}	Keeping time Tensile 1~5sec Bending 30±5sec
7	Impedance Ratio	W V <u>Z-25°C/Z+20°</u> Z-40°C/Z+20°		
8	Temperature Charac – teristics	Stage Item Performance 2,3 Impedance Ratio less than the value mention 5 Cap, Change ≤±25% against value in state After the capacitor is held at tempereture of each s and reaches temperature stability, measure performance		age 4 2 $-25\pm3;$ 3 $-25\pm3;$ 4 20 ± 2 5 105 ± 2
9	Surge Voltage	ItemPerforemanceLeakage Current \leq the initial specified valueCap, Change $\leq \pm 15\%$ against value beDissipation Factor \leq the initial specified valueAppearanceNo remakable abnormalitTest Temp. 15~35°CTest volt. Surge Volt.SVoltage apply.1,000times of chage for 30 ± 5 sec, undand discharge for 5min30sec.		fore test ue y Specified in 2


No,KNS-22110216 (2/5)

6-2. Characteristics

No.	Item	Performance	Test Method
10	Vibration Resistance	CapacitanceStability requiredCap. Change $\leq \pm 5\%$ of the initial specifiAppearanceNo remarkable abnormaliFrequency : $10 \sim 55$ Hz/1min. Width of vibratY and Z directions, each for 2 hours (Total	ty tion, 1.5mm Direction and duration X,
11	Solderbility	3/4 area of surrounding directions of surface should be covered with new solder.	Solder: Sn-Ag, Sn-Cu Type Soldering Temp : 240±5°C Dipping degree : 2~2.5mm Flux : Ethanol solution (JIS K8101) or Isopropylalchol (JIS K8839) solution of Rosin (JIS K5902)
12	Resistance to Soldering	Leakage Current \leq Initial specified valueCap. Change $\leq \pm 10\%$ of initial valueDissipation Factor \leq Initial specified in valueAppearanceNo remarkable abnormality	Soldering Temp. 260±5°C Soldering Time . 3~5sec. Printed wiring board:≥1.6mm
13	Resistance to Humidity	Leakage Current \leq Initial specified valueCap. Change $\leq \pm 15\%$ of initial valueDissipation Factor \leq Initial spesified valueAppearanceNo remarkable abnormality	Test Temp. : $40 \pm 2^{\circ}$ C Humidity $90 \sim 95\%$ Test Time : 500 ± 8 hours After the above condition,restored to normal temp, and then measured.
14	Perssure valve moment charact– erstics	There must not be thing ignition, scattering the resolution that that case works safely	Dcmethod: impress the reverse voltage and of 1A, I cancel an electric current.

7 Packing method

Packaging shape, size, quantity

Component	Quanity
size	per
10*16	8000pcs.

Related Standards JIS C 5141 8

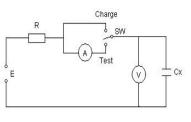
Marking on packing box 9

- Item name
 Series name
- ③ Rated Voltage
- (4) Nominal Static Capacitance
- $\check{\mathbf{5}}$ Case size
- 6 Lot No.
- ⑦ Quantity

10 Leakage

current <Condition>

Connecting the capacitor with a protective resistor $(1k\Omega \pm 10\Omega)$ in series for


2 minutes, and then, measure leakage currer

<Criteria

I : Leakage current (μA)

I (μA) \leq 0.02CVor 3 (μA) whichever is greater,

measurement circuit refer to right drawing. C: Capacitance (μF)

11 Soldeing

11-1 Soldering by soldering iron

Temperature of iron top : $270 \sim 350^{\circ}$ C Operating time : within 3 sec.

11-2 Flow soldering.

Preheat : PCB surface temperature 120°C±5°C Solder Temp : 260°C±5°C Solder Dipping Temp. : 2~4sec.

12 Cleaning of PC boad after soldering

Using follwing solvents is possible but make sure followingcondition Solvent

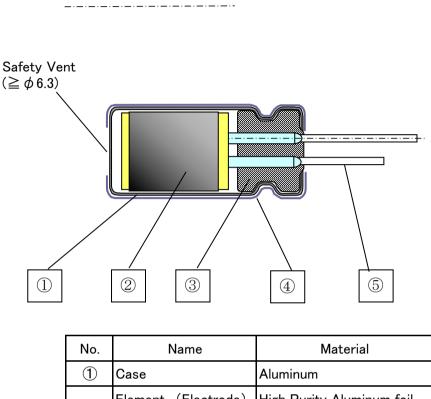
IPA or Alcoholic agent like Pinealpha ST-100S, Cleanthrough 750H, 750L, 710M, 750K, or Technocare FRW-14 \sim 17

- 1 Cleaning should be made by ultrasonic within 5min, at the temperature less then 60°C.
- 2 Control of pollution is necessary (conductivity,pH, specific gravity, water volume)
- ③ Please do not keep near cleaning agent. Please do not store in air-tight container. Please let it dry by hot air at the temperature less than maximum operating temp.

13 The situation of using

- Please do not use a condenser in the next use environment.
- ① One circumference environment(weatherability) condition.
- (a) Direct water, salt water and environment oil works or become a dew condensation state.
- (b) Environment full of harmful gas (a hydrogen chloride, sulfurous acid. nitrous acid hydrochloric acid, ammonia).
- (c) Ozone, infrared rays and the environment where radioactive rays are done collation of
- 2 Vibration shock condition is extreme environment more than rule ranges of delivery specifications.

14 A country of origin


A country of origin of an KNSCHA SHG series alminum electrolysis condenser of specifications: China

15 Effective life for storage

Storage conditions:

- (1) Temperature range must be between $5-35^{\circ}$ C
- 2 Relative humidity must be less than 75%
- 3 Must be stored indoor
- ④ Must be free from water, oil or salt water
- (5) Must be free from toxic gasses (hydrogen sulfide, sulfurous acid, chlorine, ammonium, etc.)
- 6 Must be free from ozone, ultraviolet rays or any other radiation
- \bigcirc Must be kept in capacitor original package

Aluminum Electrolytic Capacitor SHG Series Structure

	1	Case	Aluminum	
		Element (Electrode)	High Purity Aluminum foil	
	2	(Separator)	Manila hemp pulp	
		(Electrolyte)		
	3	Rubber Bung	Synthetic Rubber	
ſ	4	Sleeve	PET	
ſ	5	Lead Wire	Tin plated Steel Wire	

Controls of ozone layer destructive chemical materials

Regulated materials : CFCs, Halon, Carbon Tetrachloride, 1.1.1–Trichloroethane The products and parts do not include the above materials The products and parts are not used the above materials on process.

The products and parts are not used PBBOs (Poly Bromo Bi-phenyl Oxides).

All materials are mentioned as existing chemical material in the "Law of examine and control of Production of Chemical Material"

The products are not listed in Appendix 1 of Export Trade Rule and Regulation

A condenser of this series supports RoHS regulation.