Built-in lens achieves 3 mm focal length

Small surface mounting type reflection sensor

- PCB surface mounting type.

Be sure to read Safety Precautions on page 3.
RoHS Compliant
Model Number Structure
EE-S
(1)
Y 1
(2)
(3)
201
(4)
(1)
(2)
(3)
Phototransistor output
(4)
Photomicrosensor
Reflective
Serial number

Ordering Information

Photomicrosensor

Appearance	Sensing method	Connecting method	Sensing distance	Output type	Model	Minimum packing unit (Unit: pcs)
	Reflective	SMT	3.0 mm	Phototransistor	EE-SY1201	1,000

Note: Order in multiples of minimum packing unit.

Ratings, Characteristics and Exterior Specifications

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Rated value	Unit
Emitter			
Forward current	IF	50 *1	mA
Reverse voltage	VR	6	V
Detector			
Collector-emitter voltage	Vceo	35	V
Emitter-collector voltage	Veco	6	V
Collector current	Ic	20	mA
Collector dissipation	Pc	75 *1	mW
Total allowable loss	Ptot	100 *1	mW
Operating temperature	Topr	-25 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-40 to 100	${ }^{\circ} \mathrm{C}$
Reflow soldering temperature	Tsol	260 *2	${ }^{\circ} \mathrm{C}$

${ }^{* 1}$. Refer to the temperature rating chart if the ambient temperature exceeds $25^{\circ} \mathrm{C}$.
*2. Complete soldering within 5 seconds.
For reflow soldering, use the conditions given on page 5 .

Exterior Specifications

Connecting method	Weight (g)	Material
SMT	0.025	Case: Epoxy resin Sealing resin: Epoxy resin

Electrical and Optical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Sym bol	Value			Unit	Condition
		MIN.	TYP.	MAX.		
Emitter						
Forward current	V_{F}	---	1.2	1.4	V	$\mathrm{IF}=20 \mathrm{~mA}$
Reverse voltage	IR	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$
Peak emission wavelength	λ_{P}	---	950	---	nm	---
Detector						
Light current	IL	60	---	410	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V},$ Aluminum-deposited
Dark current	ID	---	1	100	nA	$\mathrm{V}_{C E}=20 \mathrm{~V}, 0 \mathrm{~lx}$
Leakage current	$\begin{gathered} \text { I } \\ \text { LEAK } \end{gathered}$	---	---	700	nA	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V},$ with no reflection
Collector-emitter saturated voltage	VCE (sat)	---	---	---	V	---
Peak spectral sensitivity wavelength	λ_{P}	---	930	---	nm	---
Rising time	tr	---	20	100	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{Vcc}=2 \mathrm{~V}, \mathrm{RL}=1 \mathrm{k} \Omega, \\ & \mathrm{IL}=100 \mu \mathrm{~A}, \mathrm{~d}=4 \mathrm{~mm} * \end{aligned}$
Falling time	tf	---	20	100	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{Vcc}=2 \mathrm{~V}, R \mathrm{RL}=1 \mathrm{k} \Omega, \\ & \mathrm{~L}=100 \mu \mathrm{~A}, \mathrm{~d}=4 \mathrm{~mm} \text { * } \end{aligned}$

[^0]
Engineering Data (Reference values)

Fig 1. Forward Current vs. Allowable Power Dissipation Temperature Rating

Fig 4. Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Fig 7. Response Time vs. Load Resistance Characteristics (Typical)

Fig 10. Relative Light Current vs. Card Moving Distance Characteristics (Typical)

Fig 2. Forward Current vs. Forward Voltage Characteristics (Typical)

Fig 5. Relative Light Current vs. Ambie Temperature Characteristics (Typical)

Fig 8. Relative Light Current vs. Distance Characteristics (Typical)

Fig 11. Response Time Measurement Circuit

Fig 3. Light Current vs. Forward Current Characteristics (Typical)

Fig 6. Dark Current vs. Ambient Temperature Characteristics (Typical)

Fig 9. Relative Light Current vs. Card Moving Distance Characteristics (Typical)

Fig 12. Light Current Measurement Setup Diagram

Safety Precautions

To ensure safe operation, be sure to read and follow the Instruction Manual provided with the Sensor.

Precautions for Safe Use

Do not use the product with a voltage or current that exceeds the rated range.
Applying a voltage or current that is higher than the rated range may result in explosion or fire.
Do not miswire such as the polarity of the power supply voltage.
Otherwise the product may be damaged or it may burn
This product does not resist water. Do not use the product in places where water or oil may be sprayed onto the product.

Precautions for Correct Use

Do not use the product in atmospheres or environments that exceed product ratings. This product is for surface mounting. Refer to "Soldering Information, Storage and Baking" for details.
Dispose of this product as industrial waste.

Dimensions and Internal Circuit
CAD Data marked products, 2D drawings and 3D CAD models are available. For CAD information, please visit our website, which is noted on the last page.

Photomicrosensor

Note: The shaded portion in the above figure may cause shorting. Do not wire in this portion.

Internal circuit

Unless otherwise specified, the dimensional tolerance is $\pm 0.3 \mathrm{~mm}$.

Tape and Reel

Reel (Unit: mm) *

Tape (Unit: mm)

Part Mounting

The devices are oriented in the rectangular holes in the carrier tape so that the edge with the receiver faces the round feeding holes.

Packing Specifications

- One reel is sealed in an aluminum-laminated bag.
- The model number, lot number, and quantity are given on the label.

Soldering Information

Reflow soldering: Temperature profile

The reflow soldering must be completed at one time and must comply with the following diagram.

Solder Quantity

The pin's wiring pattern between the package and the board must not be soldered. Doing so would result in damage to the product's reliability. Make sure to adjust the solder quantity to the product sidewall of the terminal.

Other Notes

- The use of an infrared lamp causes the temperature of the resin to rise partially too high.
- Do not immerse the resin part into the solder.
- Test the soldering method under actual conditions and make sure the soldering works fine, since the impact on the junction between the device and PCB varies depending on the cooling and soldering conditions.

Storage

Storage conditions

Store the product under the following conditions:
Temperature: 5 to $30^{\circ} \mathrm{C}$
Humidity: 70\% max.

Treatment after open

1. After opening the bag, store the products between 5 and $25^{\circ} \mathrm{C}$ at 60% humidity or lower and mount them within two days.
2. If storage for longer than two days after opening the bag is required, use a dry box or reseal the products in a moisture-proof bag with a commercially available desiccant. Store them between 5 and $30^{\circ} \mathrm{C}$ at 70% humidity or lower, and mount them within two weeks.

Cleaning Conditions

Cleaning in Solvent:
Solvent temperature: $45^{\circ} \mathrm{C}$ max.
Immersion time: 3 minutes max.
Ultrasonic Cleaning:
Do not use ultrasonic cleaning.
Recommended Solvents:
Ethyl alcohol, methyl alcohol, or isopropyl alcohol

Baking

If the above treatment could not be carried out, mounting is still possible after baking treatment.
However, baking treatment must be limited to only one time. Recommended conditions: $125^{\circ} \mathrm{C}, 16$ to 24 hours

Note: Do not bake the products while they are still in the bag. Temporarily mount them to the PCB or place them in metal trays.

OMRON Corporation

Electronic and Mechanical Components Company

Regional Contact

Americas
https://components.omron.com/
Asia-Pacific
https://ecb.omron.com.sg/
Korea
https://www.omron-ecb.co.kr/

Europe

http://components.omron.eu/
China
https://www.ecb.omron.com.cn/
Japan
https://www.omron.co.jp/ecb/

[^0]: * Refer to Fig 12. Light Current Measurement Setup Diagram on page 2.

