

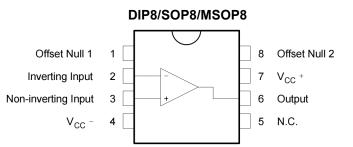
Very low offset single bipolar operational amplifier

Features

- Extremely low offset: 150µV/ max.
- Low input bias current: 1.8nA
- LOW Vio drift: 0.5µV/°C
- Ultra stable with time: 2µV/month max.
- Wide supply voltage range: ±3V to ± 22V
- Temperature range: 0°C to -70°C

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
OP07CN	DIP8	OP07C	TUBE	2000/box
OP07DN	DIP8	OP07D	TUBE	2000/box
OP07CM/TR	SOP8	OP07C	REEL	2500/reel
OP07DM/TR	SOP8	OP07D	REEL	2500/reel
OP07CMM/TR	MSOP8	OP07C	REEL	3000/reel
OP07DMM/TR	MSOP8	OP07D	REEL	3000/reel



Description

The OP07 is a very high precision op-amp with an offset voltage maximum of $150\mu V$.

Offering also low input current (1.8nA) and high gain (400V/mV), the OP07 is particularly suitable for instrumentation applications.

Pin Configuration

Schematic diagram

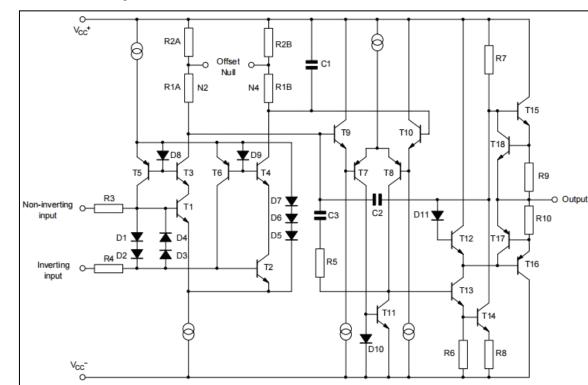
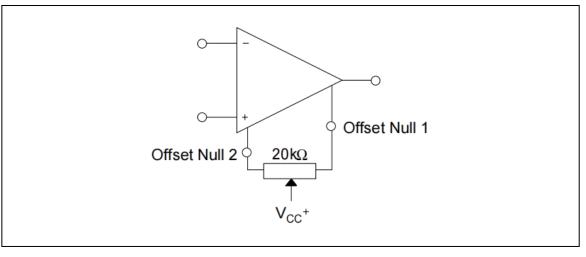



Figure 1. Schematic diagram

Figure 2. Input offset voltage nulling circuit

Absolute maximum ratings

Table 1. Absolute maximum ratings

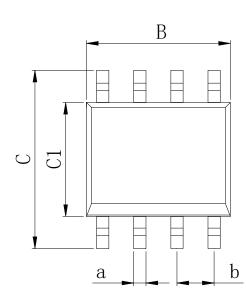
Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	± 22	V
Vid	Differential input voltage	± 30	V
Vi	Input voltage	± 22	V
T _{oper}	Operating temperature	0 to 70	°C
T _{stg}	Storage temperature	-65 to 150	°C
R _{thja}	Thermal resistance junction to ambient DIP8	85	°C/W
R _{thjc}	Thermal resistance junction to case DIP8	41	°C/W
	HBM: human body model	1.5	kV
ESD	MM: machine model	200	V
	CDM: charged device model	1.5	kV

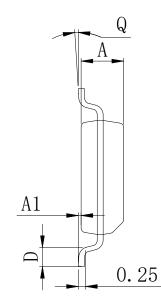
1. Short-circuits can cause excessive heating and destructive dissipation.

- 2. Rth are typical values.
- 3. Human body model: 100pF discharged through a $1.5k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 4. Machine model: a 200pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). Done for all couples of pin combinations with other pins floating.
- 5. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

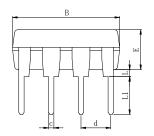
Electrical characteristics

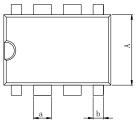
Current al	Denemeter		OP070	2		11		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage 0°C ≤ T _{amb} ≤+70°C		60 85				150 250	μV
	Long term input offset - voltage stability ⁽¹⁾		0.4					uV/Mo
DVio	Input offset voltage drift		0.5				2.5	uV/°C
l _{io}	Input offset current ($V_{iC} = 0V$)0°C $\leq T_{amb} \leq +70$ °C		0.8	6 7		0.8	6 7	nA
Dlio	Input offset current drift		15	50		15	50	pA/°C
Dlib	Input bias current drift		15	50		15	50	pA/°C
Ro	Open loop output resistance		60			60		•
R _{id}	Differential input resistance		33			33		MW
R _{ic}	Common mode input resistance		120			120		GW
V _{icm}	Input common mode voltage range0°C \leq T _{amb} \leq +70°C	±13 ±13	±13.5		±13 ±13	±13.5		V
CMR	Common-mode rejection ratio ($V_{ic} = V_{icm} - min$) 0°C≤ $T_{amb} \le +70$ °C	100 97	120		94 94	110 106		dB
SVR	Supply voltage rejection ratio (V _{CC} = ± 3 to $\pm 18V$) $0^{\circ}C \le T_{amb} \le +70^{\circ}C$	90 86	104		90 86	104		dB
A _{vd}	Large signal voltage gain $V_{CC} = \pm 15$, $R_L = 2k$, $V_O = \pm 10V$ $0^{\circ}C \le T_{amb} \le \pm 105^{\circ}C$ $V_{CC} = \pm 3$, $R_L = 500$, $V_O = \pm 0.5V$	120 100 100	40 400		120 100 100	400 400		V/mV
V _{opp}	Output voltage swing $R_L = 10k$ $R_L = 2k$ $R_L = 1k$ $0^{\circ}C \le T_{amb} \le +105^{\circ}C$ $R_L = 2k$	±12 ±11.5 ±11	±13 ±12.8 ±12		±12 ±11.5 ±11	±13 ±12.8 ±12		V
SR	Slew rate (_L R= 2k , CL= 100pF)		0.17			0.17		V/us
GBP	Gain bandwidth product (RL = $2k\Omega$, C _L = 100pF, f = 100kHz)		0.5			0.5		MHz
Icc	Supply current - no load $0^{\circ}C \le T_{amb} \le +70^{\circ}C$ $V_{CC} = \pm 3V$		2.7 0.67	5 6 1.3		2.7 0.67	5 6 1.3	mA
e _n	Equivalent input noise voltage f = 10Hz f = 10Hz f = 1kHz		11 10.5 10	20 13.5 11.5		11 10.5 10	20 13.5 11.5	$\frac{nV}{\sqrt{Hz}}$
in	Equivalent input noise current f = 10Hz f = 100Hz f = 1kHz		0.3 0.2 0.1	0.9 03 0.2		0.3 0.2 0.1	0.9 03 0.2	$\frac{pA}{\sqrt{Hz}}$


1. Long term input offset voltage stability refers to the average trend line of Vio vs time over extended periods after the first 30 days of operation.



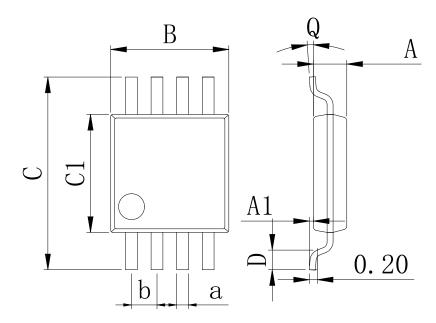
Physical Dimensions


SOP8



Dimensions In Millimeters(SOP8)										
Symbol:	А	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 030	

DIP8


Dimensions In Millimeters(DIP8)											
Symbol:	A	В	D	D1	E	L	L1	а	b	с	d
Min:	6.10	9.00	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	0.54.000
Max:	6.68	9.50	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC

OP07C/OP07D

Physical Dimensions

MSOP8

Dimensions In Millimeters(MSOP8)										
Symbol:	А	A1	В	С	C1	D	Q	а	b	
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65 BSC	
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.00 650	

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.