

650 V, dual 10 A, power Schottky silicon carbide diode

Product status STPSC20065C

Product summary			
Symbol Value			
I _{F(AV)}	2 X 10 A		
V _{RRM}	650 V		
T _{j(max.)}	175 °C		
V _{F(typ.)}	1.30 V		

Features

- No or negligible reverse recovery
- · Switching behavior independent of temperature
- · Low Forward voltage drop
- Operating T_i from -40 °C to +175 °C
- ECOPACK2 compliant component
- · Power efficient product

Applications

- · Air conditioning equipment
- PFC
- OBC (On board battery chargers)
- · Server Power supplies
- Telecom power

Description

The STPSC20065C is an ultra-high performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.

Especially suited for use in PFC applications, this ST SiC diode will boost performance in hard switching conditions. Its high forward surge capability ensures good robustness during transient phases.

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C, per diode, unless otherwise specified)

Symbol		Value	Unit		
V_{RRM}	Repetitive peak reverse voltage			650	V
I _{F(RMS)}	Forward rms current			22	Α
	A	Per diode	T _c = 150 °C ⁽¹⁾ , DC current	10	A
IF(AV)	I _{F(AV)} Average forward current	Per device	T _c = 150 °C ⁽¹⁾ , DC current	20	
	I _{FSM} Surge non repetitive forward current		t _p = 10 ms sinusoidal, T _c = 25 °C	48	
I_{FSM}			t_p = 10 ms sinusoidal, T_c = 125 °C	39	Α
			t_p = 10 µs square, T_c = 25 °C	210	
I _{FRM}	Repetitive peak forward current		T_c = 150 °C , T_j = 175 °C, δ = 0.1	42	Α
T _{stg}	Storage temperature range			-65 to +175	°C
Tj	Operating junction temperate		-40 to +175	°C	

^{1.} Value based on $R_{th(j-c)}$ max.

Table 2. Thermal resistance parameters

Symbol	Paramete	er	Typ. value	Max. value	Unit
D., ., .	Junction to case	Per diode	1.0	1.5	°C/W
R _{th(j-c)}	Junction to case	Per device	0.5	0.75	C/VV

For more information, please refer to the following application notes related to the power losses :

AN5088: Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrical characteristics (per diode)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
1 (1)	T _j = 25 °C	V _R = 650 V	-	7	130		
'R'	I _R ⁽¹⁾ Reverse leakage current	T _j = 150 °C	VR - 050 V	-	53	900	μA
	V (2)	T _j = 25 °C	I _F = 10 A	-	1.30	1.45	V
V _F ⁽²⁾		T _j = 150 °C		-	1.45	1.65	
V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	L - 20 A	-		1.88	V	
		T _j = 150 °C	I _F = 20 A	-	2.00	2.33	

^{1.} $t_p = 5 \text{ ms}, \ \delta < 2\%$

To evaluate the conduction losses, use the following equation:

$$P = 0.97 \times I_{F(AV)} + 0.068 \times I_{F^{2}(RMS)}$$

For more information, please refer to the following application notes related to the power losses:

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

DS12994 - Rev 1 page 2/10

^{2.} $t_p = 500 \, \mu \text{s}, \, \delta < 2\%$

Table 4. Dynamic electrical characteristics (per diode)

Symbol	Parameter	Test conditions	Тур.	Unit
Q _{cj} ⁽¹⁾	Total capacitive charge	V _R = 400 V	34	nC
C _i Total capacitance	Total canacitance	V _R = 0 V, T _c = 25 °C, F = 1 MHz	670	pF
O _j	C _j Total capacitance	$V_R = 400 \text{ V}, T_c = 25 ^{\circ}\text{C}, F = 1 \text{ MHz}$	55	þΓ

1. Most accurate value for the capacitive charge: $Q_{cj}(V_R) = \int\limits_0^{V_R} C_j(V) dV$

DS12994 - Rev 1 page 3/10

1.1 Characteristics (curves)

Figure 1. Forward voltage drop versus forward current (typical values, per diode)

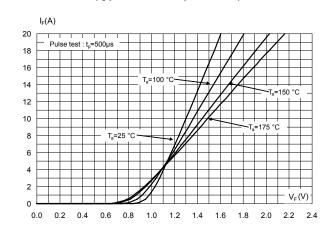


Figure 2. Reverse leakage current versus reverse voltage applied (typical values, per diode)

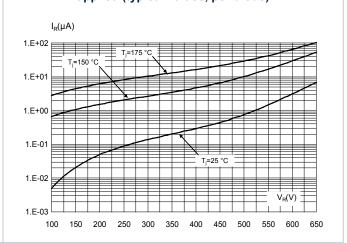


Figure 3. Peak forward current versus case temperature (per diode)

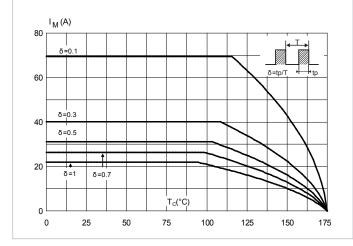
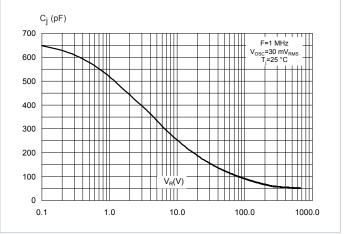



Figure 4. Junction capacitance versus reverse voltage applied (typical values, per diode)

DS12994 - Rev 1 page 4/10

1.E-05

1.E-04

Figure 5. Relative variation of thermal impedance junction to case versus pulse duration

Zth(j-c)/Rth(j-c)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Single pulse

0.1

0.0

1.E-03

1.E-02

1.E-01

1.E+00

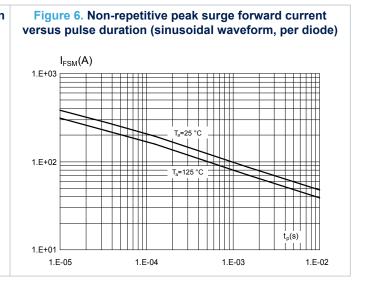
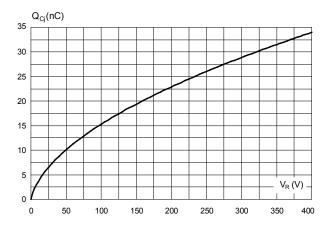
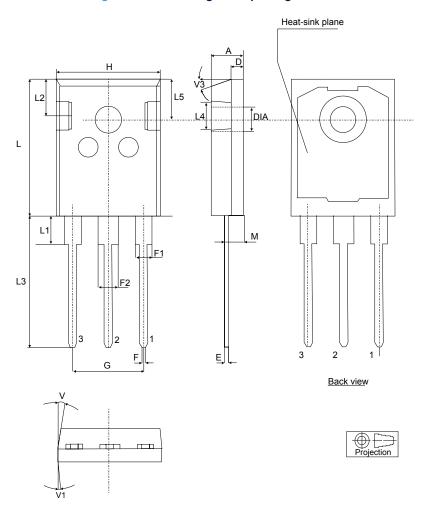



Figure 7. Total capacitive charges versus reverse voltage applied (typical values, per diode)

DS12994 - Rev 1 page 5/10


Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 TO-247 long leads package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.8 to 1.0 N·m

Figure 8. TO-247 long leads package outline

DS12994 - Rev 1 page 6/10

Table 5. TO-247 long leads package mechanical data

Dim.		mm.			Inches	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.90		5.15	0.192		0.202
D	1.85		2.10	0.072		0.082
Е	0.55		0.67	0.021		0.026
F	1.07		1.32	0.042		0.051
F1	1.90		2.38	0.074		0.093
F2	2.87		3.38	0.110		0.133
G	10.90 BSC			0.429 BSC		
Н	15.77		16.02	0.620		0.630
L	20.82		21.07	0.810		0.820
L1	4.16		4.47	0.163		0.175
L2	5.49		5.74	0.216		0.225
L3	20.05		20.30	0.789		0.799
L4	3.68		3.93	0.144		0.154
L5	6.04		6.29	0.237		0.247
M	2.25		2.55	0.088		0.100
V		10°			10°	
V1		3°			3°	
V3		20°			20°	
DIA	3.55		3.66	0.139		0.143

DS12994 - Rev 1 page 7/10

3 Ordering Information

Table 6. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPSC20065CWL	PSC20065CWL	TO-247LL	6.084 g	30	Tube

DS12994 - Rev 1 page 8/10

Revision history

Table 7. Document revision history

Date	Version	Changes
26-Apr-2019	1	First issue.

DS12994 - Rev 1 page 9/10

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS12994 - Rev 1 page 10/10