## R1294L Series

## 3 ch DCIDC for TFT LCD

No. EA-368-210514

## OUTLINE

The R1294L is the optimized DC/DC converter IC for TFT LCD displays. R1294L contains one PWM stepup DC/DC converter controller and two diode charge-pump controllers. The charge-pumps can control a boost output and a negative output and have the output voltage regulation function with external resistors. The poweron sequence can be made with setting the delay time with external capacitors for each charge-pump channel.

## FEATURES

- Input Voltage Range (Maximum Rating) R1294L101A: 2.0 V to 5.5 V (6.5 V)
R1294L102A: 2.5 V to $5.5 \mathrm{~V}(6.5 \mathrm{~V})$ R1294L103A: 3.3 V to $5.5 \mathrm{~V}(6.5 \mathrm{~V})$
- Temperature Coefficient of VFB $\left(\Delta \mathrm{V}_{\mathrm{FB}} / \Delta \mathrm{T}\right)$ Typ. $\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 95^{\circ} \mathrm{C}\right)$
- Temperature Coefficient of VREF ( $\left.\Delta \mathrm{V}_{\mathrm{REF}} / \Delta \mathrm{T}\right) \cdots \cdots \cdot$ Typ. $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Temperature Coefficient of $\operatorname{CPPFB}\left(\Delta \mathrm{V}_{\mathrm{PFB}} / \Delta \mathrm{T}\right) \cdots \cdots$ Typ. $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 95^{\circ} \mathrm{C}, \mathrm{CPVCC}=9 \mathrm{~V}\right)$ [Step-up DC/DC Controller]
- Built-in 2 A Nch-switch (Ron = $150 \mathrm{~m} \Omega$ Typ.)
- Overcurrent Protection
- Adjustable Vout up to 20 V with external resistors
- Adjustable Phase compensation with external components
- Maxduty adjustable with external resistors for DTC pin
- Soft-start time adjustable with external capacitor for SS pin
- Oscillator Frequency: Adjustable frequency with resistors (210 kHz to 1400 kHz )
[Charge-pump]
- Adjustable output voltage with external resistors
- Sequence function: Charge-pump turns on after the main step-up converter voltage outputs. The positive charge-pump and the negative charge-pump turn-on sequence control is adjustable by setting delay time for each channel
- Oscillator Frequency: 1/4 of the main step-up DC/DC converter oscillator frequency [Controller]
- Under Voltage Lock-Out (UVLO: selectable detector threshold from 1.8 V/2.2 V/2.8 V)
- Reference Voltage (VREF: Typ.1.2 V)
- Short Protection with timer latch function (adjustable delay time with external capacitor)
- Shutdown all the outputs if at least one of three outputs is shorted to the GND.
- Stand-by function by CE pin
- Package

Thin 24-pin package QFN0404-24B

## APPLICATIONS

- Power source for hand-held equipment
- Power source for LCD and CCD


## SELECTION GUIDE

The UVLO threshold voltage is user-selectable.

| Product Name | Package | Quantity per Reel | Pb Free | Halogen Free |
| :---: | :---: | :---: | :---: | :---: |
| R1294L10xA-E2 | QFN0404-24B | $1,000 \mathrm{pcs}$ | Yes | Yes |

x : Specify the UVLO threshold voltage

1: 1.8 V
2: 2.2 V
3: 2.8 V

## BLOCK DIAGRAM



R1294L Block Diagram

## PIN DESCRIPTIONS

<TOP VIEW>


R1294L(QFN0404-24B) Pin Configuration

| Pin No. | Symbol | Description |
| :---: | :---: | :--- |
| 1 | PGND | Power GND Pin |
| 2 | PGND | Power GND Pin |
| 3 | AGND | Analog GND Pin |
| 4 | VIN | Power Input Pin |
| 5 | VREF | Reference Voltage Output Pin |
| 6 | CE | Chip Enable Pin |
| 7 | VFB | Step-up DC/DC Feedback Pin |
| 8 | SS | Step-up DC/DC Soft-start Pin |
| 9 | TST | TEST Pin |
| 10 | DTC | Step-up DC/DC Maxduty Setting Pin |
| 11 | DELAY | Short Protection Delay Setting Pin |
| 12 | AMPOUT | Amplifier Output Pin For Phase Compensation |
| 13 | RT | Oscillator Frequency Setting Pin |
| 14 | CPNDLY | Negative Charge-pump Delay Setting Pin |
| 15 | CPNFB | Negative Charge-pump Feedback Pin |
| 16 | CPPDLY | Positive Charge-pump Delay Setting Pin |
| 17 | CPPFB | Positive Charge-pump Feedback Pin |
| 18 | CPGND | Charge-pump GND Pin |
| 19 | CPN | Negative Charge-pump Driver Output Pin |
| 20 | CPVCC | Power Pin for Charge-pump |
| 21 | CPP | Positive Charge-pump Driver Output Pin |
| 22 | CPPSW | Output Control Pin for Positive Charge-pump |
| 23 | LX | Step-up DC/DC Driver Output Pin |
| 24 | LX | Step-up DC/DC Driver Output Pin |

[^0]
## ABSOLUTE MAXMUM RATINGS



## ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

[^1]
## RECOMMENDED OPERATING CONDITIONS

| Symbol | Item |  | Rating | Unit |
| :---: | :--- | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{IN}}$ | Input voltage | R 1294 L 101 A | 2.0 to 5.5 | V |
|  |  | R 1294 L 102 A | 2.5 to 5.5 | V |
|  |  | R 1294 L 103 A | 3.3 to 5.5 | V |
| CPVCC | CPVCC operating voltage | 6 to 20 | V |  |
| Ta | Operating temperature | -40 to 95 | ${ }^{\circ} \mathrm{C}$ |  |

## RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

## ELECTRICAL CHARACTERISTICS

Vin is set as shown below for every version, unless otherwise noted.
R1294L101A: $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$
R1294L102A: $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$
R1294L103A: Vin $=3.5 \mathrm{~V}$
The specifications surrounded by $\qquad$ are guaranteed by design engineering at $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 95^{\circ} \mathrm{C}$.

| R1294L Electrical Characters |  |  |  |  |  | $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Item | Conditions |  | Min. | Typ. | Max. | Unit |
| In | VIN Supply Current | $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{RT}=24 \mathrm{k} \Omega$ |  |  | 3.5 |  | mA |
| Vuvlor | UVLO Detect Voltage Vin Falling | R1294L101A |  | 1.7 | 1.8 | 1.9 | V |
|  |  | R1294L102A |  | 2.05 | 2.2 | 2.35 | V |
|  |  | R1294L103A |  | 2.6 | 2.8 | 3.0 | V |
| Vuvlor | UVLO Release Voltage Vin Rising | R1294L101A |  |  | $\begin{aligned} & \text { VUVLO1 } \\ & +0.09 \end{aligned}$ | 2.0 | V |
|  |  | R1294L102A |  |  | $\begin{aligned} & \text { VUVLO1 } \\ & +0.15 \end{aligned}$ | 2.5 | V |
|  |  | R1294L103A |  |  | $\begin{aligned} & \hline \text { VuvLO1 } \\ & +0.22 \end{aligned}$ | 3.2 | V |
| $V_{\text {FB }}$ | $V_{\text {FB }}$ Voltage |  |  | 0.985 | 1.0 | 1.015 | V |
| $\Delta \mathrm{V}_{\mathrm{FB}} / \Delta \mathrm{T}$ | $V_{\text {FB }}$ Voltage Temperature Coefficient | $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 95^{\circ} \mathrm{C}$ |  |  | $\pm 150$ |  | ppm $/{ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\mathrm{FBL}}$ | $V_{\text {FB }}$ Fault Voltage |  |  |  | $\mathrm{V}_{\text {FB } \times 0.85}$ |  | V |
| Ifb | $V_{\text {Fb }}$ Input Current | $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$ or 5.5 V |  | -0.1 |  | 0.1 | $\mu \mathrm{A}$ |
| Vdtco | Duty = 0\% DTC Voltage | $\mathrm{RT}=24 \mathrm{k} \Omega$ |  | 0.27 | 0.37 | 0.47 | V |
| Votcro | Duty = 20\% DTC <br> Voltage | $\mathrm{RT}=24 \mathrm{k} \Omega$ |  |  | 0.49 |  | V |
| VDTC80 | Duty = 80\% DTC <br> Voltage | $\mathrm{RT}=24 \mathrm{k} \Omega$ |  |  | 0.91 |  | V |
| Maxduty | Maximum Duty Limit | $\mathrm{RT}=24 \mathrm{k} \Omega, \mathrm{V}_{\text {DTC }}=\mathrm{V}_{\text {IN }}$ |  | 86 | 91 | 96 | \% |
| lamph | AMP "H" Output Current | $\mathrm{V}_{\mathrm{FB}}=0.9 \mathrm{~V}$ | $\begin{aligned} & \text { R1294L101A/10 } \\ & 2 A \end{aligned}$ | 1.6 | 3.2 | 5.8 | mA |
|  |  |  | R1294L103A | 4.7 |  | 14.5 | mA |
| lampl | AMP "L" Output Current | $\mathrm{V}_{\mathrm{FB}}=1.1 \mathrm{~V}$ |  | 40 | 80 | 120 | $\mu \mathrm{A}$ |
| Ron | Switch ON Resistance |  |  |  | 150 |  | $\mathrm{m} \Omega$ |
| Ilxoff | Leakage Current | $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$, | $\mathrm{V} \mathrm{Lx}=20 \mathrm{~V}$ |  |  | 5 | $\mu \mathrm{A}$ |
| lumdc | Switch Limit Current |  |  | 2.0 |  |  | A |

$\mathrm{V}_{\text {IN }}$ is set as shown below for every version, unless otherwise noted.

$$
\begin{aligned}
& \text { R1294L101A: } V_{\mathbb{I N}}=2.5 \mathrm{~V} \\
& \text { R1294L102A: } \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V} \\
& \text { R1294L103A: } \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}
\end{aligned}
$$

The specifications surrounded by $\square$ are guaranteed by design engineering at $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 95^{\circ} \mathrm{C}$ R1294L Electrical Characters (Continued)
( $\mathrm{Ta}=25^{\circ} \mathrm{C}$ )

| Symbol | Item | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{\text {REQ }}$ | Oscillator Frequency | $\mathrm{RT}=110 \mathrm{k} \Omega$ | 175 | 210 | 245 | kHz |
|  |  | $\mathrm{RT}=24 \mathrm{k} \Omega$ | 736 | 800 | 864 | kHz |
|  |  | $\mathrm{RT}=12 \mathrm{k} \Omega$ | 1300 | 1400 | 1500 | kHz |
| $V_{\text {ReF }}$ | VREF Voltage |  | 1.182 | 1.2 | 1.218 | V |
| $\Delta \mathrm{V}_{\text {Ref }} / \Delta \mathrm{T}$ | $\mathrm{V}_{\text {Ref }}$ Voltage Temperature Coefficient |  |  | 150 |  | ppm $/{ }^{\circ} \mathrm{C}$ |
| lout | V ${ }_{\text {Ref }}$ Current |  | 2.0 |  |  | mA |
| $\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{V}_{\text {IN }}$ | Vref Line Regulation | R1294L101A $\mathrm{V}_{\text {IN }}=2.0$ to 5.5 V |  | 5 | 10 | mV |
|  |  | R1294L102A $\mathrm{V}_{\text {IN }}=2.5$ to 5.5 V |  |  |  |  |
|  |  | R1294L103A $\mathrm{V}_{\text {IN }}=3.3$ to 5.5 V |  |  |  |  |
| $\Delta \mathrm{V}_{\text {REF/ } / \text { IIout }}$ | $V_{\text {ref }}$ Load Regulation | lout $=0.1 \mathrm{~mA}$ to 2.0 mA |  | 6 | 20 | mV |
| ILIm | Short Current Limit |  |  | 15 |  | mA |
| Icpvcc | CPVCC Supply Current | CPVCC $=9 \mathrm{~V}, \mathrm{RT}=24 \mathrm{k} \Omega$ |  | 500 |  | $\mu \mathrm{A}$ |
| Iss | Soft-Start Current | $C P V C C=9 \mathrm{~V}$ | 2.5 | 5.0 | 7.5 | $\mu \mathrm{A}$ |
| tpss | CPP Soft-Start Time | $C P V C C=9 \mathrm{~V}$ |  | 4.0 |  | ms |
| tnss | CPN Soft-Start Time | CPVCC $=9 \mathrm{~V}$ |  | 4.0 |  | ms |
| Ipdiy | CPPDLY Charge Current | $C P V C C=9 \mathrm{~V}$ | 2.5 | 5.0 | 7.5 | $\mu \mathrm{A}$ |
| $I_{\text {ndLy }}$ | CPNDLY Charge Current | $C P V C C=9 \mathrm{~V}$ | 2.5 | 5.0 | 7.5 | $\mu \mathrm{A}$ |
| Vpdiy | CPPDLY Detector Threshold | CPVCC $=9 \mathrm{~V}$ | 0.95 | 1.00 | 1.05 | V |
| $\mathrm{V}_{\text {NDLY }}$ | CPNDLY Detector <br> Threshold | CPVCC $=9 \mathrm{~V}$ | 0.95 | 1.00 | 1.05 | V |
| VPFB | CPPFB Voltage | CPVCC $=9 \mathrm{~V}$ | 1.475 | 1.500 | 1.525 | V |
| $\Delta \mathrm{V}_{\text {PFB }} / \Delta \mathrm{T}$ | CPPFB Voltage <br> Temperature Coefficient | $\begin{aligned} & \mathrm{CPVCC}=9 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 95^{\circ} \mathrm{C} \end{aligned}$ |  | 150 |  | ppm $/{ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\text {NFB }}$ | CPNFB Voltage | CPVCC $=9 \mathrm{~V}$ | -0.03 | 0.00 | 0.03 | V |
| $V_{\text {PFBL }}$ | CPPFB Fault Voltage | $C P V C C=9 \mathrm{~V}$ |  | $V_{\text {PFB }} \times 0.85$ |  | V |

$\mathrm{V}_{\text {IN }}$ is set as shown below for every version, unless otherwise noted.
R1294L101A: $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$
R1294L102A: $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$
R1294L103A: $\mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V}$
The specifications surrounded by $\qquad$ are guaranteed by design engineering at $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 95^{\circ} \mathrm{C}$

R1294L Electrical Characters (Continued)
( $\mathrm{Ta}=25^{\circ} \mathrm{C}$ )

| Symbol | Item | Conditions |  | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {Nfebl }}$ | CPNFB Fault Voltage | CPVCC $=9 \mathrm{~V}$ |  |  | 0.15 |  | V |
| R CPPH | CPP "H" ON Resistance | CPVCC $=9 \mathrm{~V}$ |  |  | 5 |  | $\Omega$ |
| R cPpL | CPP "L" ON Resistance | $C P V C C=9 \mathrm{~V}$ |  |  | 10 |  | $\Omega$ |
| Rcpnh | CPN "H" ON Resistance | $C P V C C=9 \mathrm{~V}$ |  |  | 5 |  | $\Omega$ |
| RCPNL | CPN "L" ON Resistance | $C P V C C=9 \mathrm{~V}$ |  |  | 10 |  | $\Omega$ |
| $\mathrm{f}_{\text {Reacp }}$ | Charge-pump Frequency | $C P V C C=9 \mathrm{~V}$ |  |  | $\mathrm{f}_{\mathrm{RE} \mathrm{O} / 4}$ |  | kHz |
| Idelay 1 | DELAY Charge Current | $C P V C C=9 \mathrm{~V}$ |  | 2.5 | 5.0 | 7.5 | $\mu \mathrm{A}$ |
| Idelay2 | DELAY Discharge Current | CPVCC $=9 \mathrm{~V}$ |  |  | 200 |  | $\mu \mathrm{A}$ |
| Vdelay | DELAY Detector Threshold | CPVCC $=9 \mathrm{~V}$ |  | 0.95 | 1.0 | 1.05 | V |
| VPSW | CPPSW "L" Output Voltage | $C P V C C=9 \mathrm{~V}, \mathrm{I}=1 \mathrm{~mA}$ |  |  | 0.2 |  | V |
| Istandby 1 | Standby Current |  |  |  | 0.1 | 5 | $\mu \mathrm{A}$ |
| Istandby2 | CPVCC Standby Current |  |  |  | 0.1 | 5 | $\mu \mathrm{A}$ |
| $V_{\text {cel }}$ | CE "L" Input Voltage | R1294L101A | $\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ |  |  | 0.3 | V |
|  |  | R1294L102A | $\mathrm{V}_{1 \mathrm{~N}}=2.5 \mathrm{~V}$ |  |  |  |  |
|  |  | R1294L103A | $\mathrm{V}_{1 \mathrm{I}}=3.3 \mathrm{~V}$ |  |  |  |  |
| $\mathrm{V}_{\text {Сен }}$ | CE "H" Input Voltage | $\mathrm{V}_{1 \mathrm{I}}=5.5 \mathrm{~V}$ |  | 1.5 |  |  | V |

## THEORY OF OPERATION

## Overcurrent Protection

R1294L monitors the Nch-swich current of the step-up DCDC converter and limits the current. If Nch-switch current reaches the current limit, the R1294L immediately turns off Nch-switch. Nch-switch turns on every internal cycle, and the R1294L monitors Nch-switch current and turns off Nch-switch if Nch-switch current reaches the current limit again. By repeating this operation, the R1294L protects itself from the overcurrent.

## Under Voltage Lock Out (UVLO)

If Vin pin voltage becomes equal to or lower than UVLO detector threshold, the R1294L immediately disables all the switching outputs (Lx, CPP, and CPN) as well as discharges the external capacitors on DTC pin and SS pin down to 0 V immediately, and the system will be reset.

## Operation and Output Current of Step-up DCIDC Converter

## < Typical Circuit >


< Current through L >

Discontinuous Mode


Continuous Mode


In PWM step-up DC/DC converter, there are two modes; the discontinuous mode and the continuous mode. These two modes depend upon the continuous characteristic of the inductor current.

While PWM step-up DC/DC converter is turned on, the voltage into the inductance $L$ will be $\mathrm{V}_{\mathrm{in}}$, and the additional current (i1) can be calculated by the next formula.

$$
\Delta i 1=V_{\mathrm{IN}} \times \text { ton } / L
$$

In the circuit of the step-up DC/DC converter, during the off time of the switiching, the power is supplied. In this case, the decrease of input current (i2) can be calculated by the next formula:

$$
\Delta \mathrm{i} 2=\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {IN }}\right) \times \mathrm{Tf} / \mathrm{L}
$$

In the PWM switching method, the current of inductor becomes continuous when it is $\mathrm{Tf}=$ toff. The operating of DC/DC converter becomes continuous mode. In the continuous mode, the variance of the ratio of current is equal $(\Delta i 1=\Delta i 2)$, therefore the DUTY in the continuous mode is calculated by the next formula.

$$
\text { duty }(\%)=\text { ton } /(\text { ton }+ \text { toff })=\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right) / \mathrm{V}_{\text {OUT }}
$$

If the input power and the output power are equal, the mode becomes continuous when the lout value is larger than the next formula.

$$
\text { Vin }^{2} \times \text { ton } /(2 \times \mathrm{L} \times \text { Vout })
$$

The average of the inductor current when $\mathrm{Tf}=$ toff is calculated by the next formula.

$$
\mathrm{i} 1(\text { Ave. })=\mathrm{V}_{\mathrm{IN}} \times \operatorname{ton} /(2 \times \mathrm{L})
$$

The peak current (ILxmax) of the inductor in the continuous mode can be calculated by the next formula:

```
ILxmax = lout }\times\mp@subsup{\textrm{V}}{\mathrm{ Out }}{/}/\mp@subsup{\textrm{VIN}}{\mathrm{ IN }}{}+\mp@subsup{\textrm{VIN}}{\mathrm{ IN }}{}\times\mathrm{ ton / ( }2\times\textrm{L}
ILxmax = lout }\times\mp@subsup{\textrm{V}}{\mathrm{ OUT }}{/
```

As stated above, the value of the peak current becomes larger than the lout value, therefore note that the ILxmax to determine the I/O condition and the components around the I/O.

The actual maximum output current is 50 to $80 \%$ of the above-mentioned. Especially, in case that the IL is large, or $\mathrm{V}_{\mathbb{I}}$ is low, the loss of $\mathrm{V}_{\mathbb{I}}$ will be the amount of the ON resistance of the switch. As for the Vout, it is necessary to consider the $\mathrm{V}_{\mathrm{F}}$ of the diode (approximately 0.3 V ).

Note: The above-mentioned explanation is based on the calculations of the ideal case. The external components or the loss of Lx switching are not included.

## TIMING CHART

## Overall Sequence



## Overall Sequence Timing Chart

The timing chart above describes from the power on to the $\mathrm{V}_{\text {out1, }}$, $\mathrm{Vout}^{2}$, and $\mathrm{V}_{\text {out3 }}$ turn on and until they are stable.

By releasing from the standby mode, Vout1 begins the soft-start, and the output voltage rises gradually. After preset soft-start time passes, and the Vout1 reaches the preset output voltage, the charge to capacitors set to CPPDLY pin and CPNDLY pin will start. CPPDLY pin and CPNDLY pin voltage reach respectively to the CPPDLY detector threshold (VPdLY) and CPNDLY detector threshold ( $\mathrm{V}_{\text {NDLY }}$ ), then the soft-start of the chargepump will begin. The delay time for soft-start of charge pump ( $t_{p d L Y}, t_{\text {NDLY }}$ ) can be set respectively.

When each delay time has passed, the soft-start of the charge-pump begins. Vout2 and Voutz gradually turn on, and when the soft-start time ends, Vout2 and Vоuts reach the preset output voltage.

## Vout1 Soft-start Operation



Vout1 Soft-start Timing Chart

The timing chart above describes from the CE signal turns on until the soft-start of Vout1 ends.

## (STEP1)

SS voltage gradually increases with the internal IC's constant current and the external capacitor. During the soft-start time, the amplifier's reference input to the OP AMP becomes an equal voltage as SS, and it gradually increases. Since Vout reaches to the input voltage just after the power on, the VFB voltage rises at the specific voltage determined by the resistance ratio of the input voltage and the feedback part. However, the switching does not begin since AMPOUT is "L".

## (STEP2)

When the SS becomes the specified voltage determined with the resistance ratio of the input voltage and the feedback part, the switching begins. In this case, the amplifier reference rises as well as SS, therefore Vout rises to balance the amplifier reference and VFB. The DUTY in this case is determined by the three inputs PWM comparator, among the AMPOUT and DTC, the lowest voltage is selected.

## (STEP3)

When the SS becomes 1 V , the soft-start ends. After that, the amplifier reference becomes the constant voltage ( $=1 \mathrm{~V}$ ), and the operation changes to the normal switching. At this time, the voltage of the AMPOUT becomes constant. The AMPOUT value is determined by the I/O voltage and the output current.

During the soft-start period, the soft-start time needs to be set shorter than the timer latch delay time due to the charging of DELAY pin. When the preset soft-start time finishes, the charging of DELAY pin stops and discharges to the GND.


SS Pin

## APPLICATION INFORMATION

## TYPICAL APPLICATION



R1294L10xA Typical Application 1


R1294L10xA Typical Application 2

Recommended External Components

| Symbol | Description |
| :--- | :--- |
| LR4018T100M (for 210 kHz) / NR4018T4R7M (for 700 kHz) /  <br>  NR4018T2R2M (for 1.4 MHz), Taiyo Yuden <br> CLF7045T-100M-D (for 210 kHz) / CLF6045NIT-2R2N-D (for 1.4 MHz), TDK  <br> D1 CRS10I30A, TOSHIBA <br> CRS10, TOSHIBA <br> D2-D7 1SS374, TOSHIBA <br> Tr1 2SA1586, TOSHIBA |  |

## Precautions for Selecting External Components

## How to Set the Step-up Converter Output Voltage

$V_{\text {out1 }}$ of the step-up converter controls the voltage of $V_{F B}$ pin, which should be $V_{F B}=1.0 \mathrm{~V}$. It is possible to set Vout1 voltage according to the following formula of R1 and R2 (refer to the Typical Application). Vout1 voltage should be equal to or lower than $20 \mathrm{~V} . \mathrm{R} 1+\mathrm{R} 2$ should be equal to or lower than $500 \mathrm{k} \Omega$.

$$
V_{\text {out } 1}=V_{F B} \times(R 1+R 2) / R 2
$$

## How to Set the Step-up Charge-pump Output Voltage

Vout2 of the positive charge pump controls the voltage of $C_{\text {PPFB }}$ pin, which should be $\mathrm{V}_{\text {PFB }}=1.5 \mathrm{~V}$. It is possible to set Vout2 voltage according to the following formula of R3 and R4 (refer to the Typical Application). $R 3+R 4$ should be equal to or less than $500 \mathrm{k} \Omega$.

$$
V_{\text {OUT2 }}=V_{\text {PFB }} \times(R 3+R 4) / R 4
$$

In the case of Typical Application 1, the maximum output voltage can be described as the following formula.

$$
V_{\text {out2 }}(\text { Max. })=\text { CPVCC } \times 2-V_{F} \times 2 \cdots \cdots \cdots \cdots \cdots \cdots\left(V_{F}\right. \text { is the forward voltage for the diodes D2-D3) }
$$

Set C15, D6 and D7 of diodes, and C16 $(1 \mu \mathrm{~F})$ (refer to the Typical Application 2) if the output voltage needs more than the range above. In this case, the maximum output voltage can be described as the following formula.

$$
V_{\text {out2 }}(\text { Max. })=\text { CPVCC } \times 3-V_{F} \times 4 \cdots \cdots \cdots \cdots \cdots\left(V_{F}\right. \text { is the forward voltage for diodes D2-D3, D6-D7) }
$$

The maximum load current of the boost charge pump is determined by Cfly (C13, C15), the oscillator frequency of charge pump (freacp), and CPP "L" On Resistance (RCPPL) as described in the following formula.

$$
\text { lout2 }(\text { Max. })=\text { Cfly } \times\left(1-\exp \left(-1 /\left(2 \times \text { Cfly } \times R_{C P P L} \times f_{\text {REQCP }}\right)\right)\right) \times\left(C P V C C \times 2-\text { Vout2 }-V_{F} \times 2\right) \times f_{\text {REQCP }}
$$

## How to Set the Inverting Charge-pump Output Voltage

$V_{\text {оит3 }}$ of the inverting charge-pump controls the voltage of $C_{\text {PNFB }}$ pin, which should be $\mathrm{V}_{\text {NFB }}=0 \mathrm{~V}$. It is possible to set $V_{\text {оut3 }}$ voltage by the following formula by $R 5$ and $R 6$ that are between $V_{\text {REF }}$ pin and $V_{\text {оut3 }}$ (refer to the Typical Application). R5 + R6 should be equal to or less than $500 \mathrm{k} \Omega$

$$
\text { Vout3 }=V_{\text {NFB }}-\left(V_{\text {REF }}-V_{\text {NFB }}\right) \times R 5 / R 6
$$

The minimum output voltage can be set by the following formula.

$$
V_{\text {оит3 }}(\text { Min. })=-\left(\text { CPVCC }-V_{F} \times 2\right) \cdots \cdots \cdots \cdots \cdots \cdots\left(V_{F}\right. \text { is the forward voltage of the diode D4 and D5) }
$$

The maximum load current of inverting charge pump is determined by Cfly (C14), the oscillator frequency of charge pump ( $f_{\text {REQCP }}$ ), and CPN "L" ON Resistance (RCPNL) as described in the following formula.

$$
\text { lоut3 }(\text { Max. })=\text { Cfly } \times\left(1-\exp \left(-1 /\left(2 \times \text { Cfly } \times R_{C P N L} \times f_{R E Q C P}\right)\right)\right) \times\left(C P V C C+V_{\text {OUT3 }}-V_{F} \times 2\right) \times f_{\text {REQCP }}
$$

## How to set the Step-up DC/DC Converter's Phase Compensation (Refer to Typical Application)

In the DC/DC converter, with the load current and the external components ( L and C ) the phase may be delayed by 180 degrees. Due to this, the phase margin of system is lost and stability would be worse. Thus, it is necessary to proceed the phase, and keep a certain phase margin

The phase compensation and the system gain can be set with using the resistor, R7 and capacitors, C 7 and C8. The position and the setting values shown in the Typical Application are one of the examples.

Select R7 and C7, so that the cut-off frequency of this Zero point may become approximately the cutoff frequency of pole made by the external components (L and C). The following formula shows the pole made by the external components ( $L$ and $C$ ) and the "Zero" point.

$$
\begin{aligned}
& \text { Fpole } \sim 1 /\{2 \times \pi \times \sqrt{ }(L \times C 1)\} \\
& \text { Fzero } \sim 1 /(2 \times \pi \times R 7 \times C 7)
\end{aligned}
$$

For example, when $L=4.7 \mu \mathrm{H}$ and Cout $(\mathrm{C} 1)=20 \mu \mathrm{~F}$, the cut-off frequency of the pole is approximately 16 kHz . Then set the cut-off frequency of the Zero point around 16 kHz to 1.6 kHz .

The gain can be set with the ratio of the resistance of R7 and combined resistance of R1 and R2 ( RT: RT = R1 $\times$ R2/ ( $\mathrm{R} 1+\mathrm{R} 2$ )). If R7 is larger than the combined resistance (RT), the gain becomes high. If the gain is too high, the characteristics of response will be improved but the operating stability will be worse. Set R7 with an appropriate value.

Due to the R1 setting in the gain setting, another Zero point is set by R1 and C8.Set this cut-off frequency of Zero point at around the cut-off frequency by pole made by the external components (L and C). This Zero point is shown in the formula below.

$$
\text { Fzero } \sim 1 /(2 \times \pi \times R 1 \times C 8)
$$

## Noise Reduction of the Feedback Voltage (Refer to Typical Application)

When the system noise is large, the output noise may be on to the feedback loop, and the operation may become unstable. In this case, set the value of the resistance R1 to R6 low and make the noise into the feedback reduction. It is possible to reduce the noise to the $V_{\text {FB }}$ pin by connecting the resistance in the range from $1 \mathrm{k} \Omega$ to $5 \mathrm{k} \Omega$ around as R 8 .

## Input Voltage

The range of $\mathrm{V}_{\mathrm{IN}}$ voltage must be between 2.0 V and 5.5 V . For CPVCC pin, it is possible to use input Vout1 or input another voltage of 6 V to 20 V to CPVCC as a power supply. In that case, set a capacitor of $1.0 \mu \mathrm{~F}$ or more as C5 between GND and CPVCC pin.

## How to Set the Oscillator Frequency

Set a resistor (R12) between GND and RT pin. The oscillator frequency of the step-up converter (frea) can be set according to the next formula. This value depends upon the resistance value.

$$
f_{\text {REQ }}=2.7 \times 10^{10} /\left[0.8542 \times R 12 \times\left\{0.66+\sqrt{ }\left(0.66^{2}+12643 / R 12\right)\right\}\right]
$$

Set the frequency between 210 kHz and 1400 kHz . The oscillator frequency of the charge-pump is one fourth of the oscillator frequency of the main step-up DC/DC converter.


How to Set the Soft-start of Step-up Converter (Refer to the Timing Chart)
The soft-start of the step-up converter operates when $\mathrm{V}_{\text {IN }}$ is equal to or more than the UVLO release voltage, or when CE signal is "H". External capacitor of SS pin (C9) is charged with the soft-start charge current (Iss). Then the voltage of SS pin is input to the error amplifier as the reference voltage. When the voltage of SS pin reaches to the reference voltage (Typ. 1.0 V ) in the normal state, the reference voltage of the error amplifier stabilized at 1.0 V , and it changes to the normal state. The soft-start of step-up converter time (tss) is set by the external capacitor (C9) for the SS pin in the next formula.

$$
\mathrm{t}_{\mathrm{SS}}=\mathrm{C} 9 \times \mathrm{V}_{\mathrm{FB}} / \mathrm{I}_{\mathrm{SS}}
$$

## How to Set the Start-up Sequence (Refer to the Timing Chart)

When the output voltage of step-up converter is up to $85 \%$ of a set value, and the soft-start is finished, the external capacitors (C10 and C11) of the CPPDLY pin and the CPNDLY pin are charged by the CPPDLY charge current (lpdly) and the CPNDLY charge current (lndly). When the voltage of the CPPDLY pin and the CPNDLY pin charged up to the CPPDLY detector threshold ( $V_{P D L Y}$ ) and the CPNDLY detector threshold ( $\mathrm{V}_{\text {NDLY }}$ ), then the soft-start of the positive charge-pump and the negative charge-pump is operated respectively. After the stepup converter is operated, the delay time (tpdLy and $t_{n D L Y}$ ) until the soft-start of charge-pump is set by the external capacitors (C10 and C11) of the CPPDLY pin and the CPNDLY pin. The delay time is set by the following formula.

The delay time until the soft-start of positive charge-pump operates: $\mathrm{tpdLy}=\mathrm{C} 10 \times \mathrm{V}_{\text {pdLy }} / \mathrm{I}_{\text {pDLY }}$
The delay time until the soft-start of negative charge-pump operates: $t_{\text {ndLy }}=\mathrm{C} 11 \times \mathrm{V}_{\mathrm{NDLY}} / I_{\mathrm{NDLY}}$
Thus, after the main step-up DC/DC converter starts operating, the positive charge-pump and the negative charge-pump can be operated by the arbitrary order.

## Soft-start of the Charge-pump (Refer to Typical Application and Timing Chart)

When the soft-start of boost charge-pump operates, the output of CPPSW changes from "H" to "L". Setting the PNP-Tr1 ( $\operatorname{Tr} 1$ ) keeps Vout2 $=0 \mathrm{~V}$ until the positive charge-pump is started. If it is not required to keep Vout2 $=0 \mathrm{~V}$, then PNP-Tr1 is unnecessary. In this case, Vout2 outputs approximately the same voltage as Vout1. Arrange the resistor (R11) between the CPPSW pin and the base of PNP-Tr1 (Tr1). The maximum current of Tr1 can be set by the R11 value. This value can be calculated in the next formula.

Imax $=\mathrm{hFE} \times\left(\mathrm{V}_{\text {out1 }}-\mathrm{V}_{\mathrm{BE}}\right) / \mathrm{R} 11 \cdots \cdots$ [hFE is DC current gain of Tr 1 and $\mathrm{V}_{\mathrm{BE}}$ is base emitter voltage of Tr 1.$\left.\right]$

Select the appropriate value for R11 since the efficiency gets worse if the value is too small (refer to the Short Current Protection section. PNP-Tr1 has some effect on the operation of the short-current protection).

When the positive charge-pump starts, the reference voltage of the error amplifier starts from 0 V , turns on to the reference voltage ( $=1.5 \mathrm{~V}$ ) and becomes stable. Thus, the output voltage of Vout2 can turn on by set output voltage within the time period of soft-start time.

In the initial state before starting the positive charge-pump, CPP pin generates High- level output voltage from the voltage supplied of CPVCC pin. Minim voltage of Vout2 may occur when the "High" output voltage of CPP pin turns on by a rising of CPVCC voltage. The rising voltage level is susceptible to the rising width of CVPCC voltage (CPVCC-VIN under the normal condition), the capacitor C13 for CPP pin, and the capacitor C 2 for Vout2. Since estimated calculation is (CPVCC-VIN) $x C 13 /(\mathrm{C} 2+\mathrm{C} 13)$, maximum voltage is about 0.79 V for $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$, $\mathrm{CPVCC}=12 \mathrm{~V}, \mathrm{C} 13=0.1 \mu \mathrm{~F}$, and $\mathrm{C} 2=1 \mu \mathrm{~F}$.

Before the soft-start of the negative charge-pump starts, the reference voltage of the error amplifier rises to $V_{\text {ReF }}$ voltage ( $=1.2 \mathrm{~V}$ ) and falls down to 0 V in the soft start time fixed internally by the soft-start operation. Thus, the output voltage of Vоитз can turn on by set output volatge within the time period of soft-start time.

## How to set the Short Current Protection and Timer Latch Delay Time

If any output among the step-up converter output, the positive charge-pump output or the negative chargepump output falls, the R1294L detects the short circuit. If this short circuit condition stays for a certain time, the latch-type protection circuit shuts down all the switching outputs (Lx, CPP, CPN) and outputs "H" through the CPPSW pin. Even if the switching stopped, the current path from CPVCC to Vout2 is remained. If PNP-Tr is set on the CPPSW pin, the current path to Voutz is cut off after shutdown.

The detect voltages of $\mathrm{V}_{\mathrm{FB}}$, CPPFB and CPNFB are:
$85 \%$ of predetermined $V_{\text {FB }}$ voltage for $V_{\text {FB }}$
85\% of predetermined CPPFB voltage for CPPFB

+ 0.15 V for CPNFB
The latch timer delay is set by an external capacitor (C12) of the DELAY pin. This delay time can be calculated by the next formula.

$$
t_{D L Y}=C 12 \times V_{D L Y} / I_{D L Y}
$$

To release the latch state, set Vin voltage below UVLO detector threshold and restart, or Set the CE pin "L" once and change the CE pin to "H" level.

## How to set the Maxduty Limit

The value of maxduty can be set by the input voltage to DTC pin. Set the voltage in which the Vref output divided with the resistors R9 and R10. If the voltage of DTC pin increases more than the limit value, the lower value between the set value and the internally fixed value is selected and in valid.

## TEST Pin

In terms of TEST pin, connect the GND level or remain it open.

## Other Notes

- Use a $1.0 \mu \mathrm{~F}$ or higher capacitor (C4) in between GND and Vin pin. Connect the capacitor as close as possible to the IC. If the noise level is large, use the $4.7 \mu \mathrm{~F}$ or higher capacitor is recommended.
- Use a $1.0 \mu \mathrm{~F}$ or higher capacitor (C1, C2, and C3) in between GND and each Vout (Vout1, Vout2, and Vочтз). The recommended capacitance is $\mathrm{C} 1=4.7 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}, \mathrm{C} 2=\mathrm{C} 3=1 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$ (refer to the Typical Application).
- Use a $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ or higher capacitance (C6) in between $\mathrm{V}_{\mathrm{REF}}$ and GND.
- To connect the GND of the capacitors (C9, C10, C11, and C12) for setting the delay time as short as possible to the GND of the IC.
- Selection of the diodes and inductors and capcitors should be considered. When Nch-switch turns on, the high voltage of spike by an inductor might be generated. Thus, using more than twice of the set output voltage for the voltage tolerance of the capacitor connecting to Vout is recommended. The diode and inductors should not exceed the rated value of the voltage, the current and the power .
- Select the diode with low forward voltage such as a Schottky barrier diode. The small reverse current and the fast switching speed type is desirable. Especially, the characteristics of diode (D1) influence the efficiency and the stability of the system.
- As the junction temperature rises, the switch limit current will decrease.

Make sure that the desired output current can be obtained even at high temperatures.
Also note that the output may overshoot significantly if the load suddenly changes from overcurrent protection.

## TYPICAL CHARACTERISTICS

Typical Characteristics are intended to be used as reference data, they are not guaranteed.

## 1) $\mathrm{V}_{\text {out1 }}$ (DCDC)

1-1) Output Voltage vs. Output Current
$f_{\text {REQ }}=210 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=8.0 \mathrm{~V}$

$\mathrm{f}_{\text {REQ }}=1400 \mathrm{kHz}, \mathrm{V}_{\mathrm{OUT}}=8.0 \mathrm{~V}$

$\mathrm{f}_{\text {REQ }}=700 \mathrm{kHz}, \mathrm{V}_{\mathrm{OUT}}=12.0 \mathrm{~V}$


$f_{\text {REQ }}=210 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=12.0 \mathrm{~V}$

$f_{\text {REQ }}=1400 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=12.0 \mathrm{~V}$

$f_{\text {REQ }}=210 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=18.0 \mathrm{~V}$

$\mathrm{f}_{\text {REQ }}=1400 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=18.0 \mathrm{~V}$


## 1-2) Efficiency vs. Output Current

$$
\mathrm{f}_{\mathrm{REQ}}=210 \mathrm{kHz}, \mathrm{~V}_{\mathrm{OUT}}=8.0 \mathrm{~V}
$$


$f_{\text {REQ }}=700 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=18.0 \mathrm{~V}$

$\mathrm{f}_{\text {REQ }}=1400 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=8.0 \mathrm{~V}$

$\mathrm{f}_{\mathrm{REQ}}=700 \mathrm{kHz}, \mathrm{V}_{\mathrm{OUT}}=12.0 \mathrm{~V}$

$f_{\text {REQ }}=210 \mathrm{kHz}, \mathrm{V}_{\mathrm{OUT}}=18.0 \mathrm{~V}$

$\mathrm{f}_{\mathrm{REQ}}=210 \mathrm{kHz}, \mathrm{V}_{\mathrm{OUT}}=12.0 \mathrm{~V}$

$\mathrm{f}_{\text {REQ }}=1400 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=12.0 \mathrm{~V}$

$f_{\text {REQ }}=700 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=18.0 \mathrm{~V}$


2) $\mathbf{V}_{\text {out2 }}$ (Step-Up Charge-pump part) 2-1) Output Voltage vs. Output Current
$\mathrm{f}_{\text {REQ }}=700 \mathrm{kHz}, \mathrm{CPVCC}=8.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12.0 \mathrm{~V}$

$\mathrm{f}_{\mathrm{REQ}}=700 \mathrm{kHz}, \mathrm{CPVCC}=8.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=16.0 \mathrm{~V}$

$\mathrm{f}_{\mathrm{REQ}}=1400 \mathrm{kHz}, \mathrm{CPVCC}=8.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=12.0 \mathrm{~V}$

$f_{\text {REQ }}=1400 \mathrm{kHz}, \mathrm{CPVCC}=8.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=16.0 \mathrm{~V}$


$\mathrm{f}_{\mathrm{REQ}}=700 \mathrm{kHz}, \mathrm{CPVCC}=12.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=24.0 \mathrm{~V}$

3) $\mathbf{V}_{\text {оит3 }}$ (Invert Charge-pump part)

3-1) Output Voltage vs. Output Current

$f_{\text {REQ }}=1400 \mathrm{kHz}, \mathrm{CPVCC}=8.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-6.0 \mathrm{~V}$

$f_{\text {REQ }}=700 \mathrm{kHz}, \mathrm{CPVCC}=12.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-6.0 \mathrm{~V}$

4) VFB Voltage vs. Input Voltage

$\mathrm{f}_{\mathrm{REQ}}=700 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{IN}}(\mathrm{V})$
$f_{\text {REQ }}=1400 \mathrm{kHz}, \mathrm{CPVCC}=12.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-6.0 \mathrm{~V}$

5) Osillator Frequency vs. Input Voltage
$\mathrm{f}_{\mathrm{REQ}}=210 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

$\mathrm{f}_{\mathrm{REQ}}=1400 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

6) Supply Current vs. Input Voltage

8) VIN Supply Current vs. Temperature


7) Maxduty vs. Input Voltage

9) CP Supply Current vs. Temperature

10) UVLO Detect Voltage vs. Temperature

R1294L101A


R1294L103A


R1294L102A


R1294L102A

11) UVLO Release Voltage vs. Temperature

R1294L101A


R1294L103A

12) VFB Voltage vs. Temperature

14) AMP"H"Output Current vs. Temperature

16) Switch ON Resistance vs. Temperature

13) Maxduty vs. Temperature

15) AMP"L"Output Current vs. Temperature

17) Switch Leakage Current vs. Temperature


Nisshinbo Micro Devices Inc.
18) Switch Limit Current vs. Temperature


20) VREF Voltage vs. Temperature

19) Oscillator Frequency vs. Temperature


21) Terminal SS charge current vs. Temperature


Nisshinbo Micro Devices Inc.

## 22) CPP Soft-Start vs. Temperature


24) CPPDLY Charge Current vs. Temperature

23) CPN Soft-Start vs. Temperature

25) CPNDLY Charge Current vs. Temperature

26) CPPDLY Detector Threshold vs. Temperature

27) CPNDLY Detector Threshold vs. Temperature


## 28) CPPFB Voltage vs. Temperature


30) CPP"H"ON Resistance vs. Temperature

32) CPN"H"ON Resistance vs. Temperature

29) CPNFB Voltage vs. Temperature

31)CPP"L"ON Resistance vs. Temperature

33) CPN"L"ON Resistance vs. Temperature


Nisshinbo Micro Devices Inc.
34) Charge-pump Frequency vs. Temperature

35) DELAY Charge Current vs. Temperature


36) DELAY Discharge Current vs. Temperature

37) DELAY Detector Threshold vs. Temperature
38) CPPSW "L" Output Voltage vs. Temperature



Nisshinbo Micro Devices Inc.
39) Standby Current vs. Temperature

40) CE "L" Input Current vs. Temperature

$C P V C C=20 \mathrm{~V}$


42) Load Transient Response

## R1294L102A

$$
\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}-100 \mathrm{~mA}, \mathrm{f}_{\text {REQ }}=210 \mathrm{kHz}
$$



| L | 10 uH |
| :---: | :---: |
| C 1 | 20 uF |
| R 1 | $70 \mathrm{k} \Omega$ |
| R 2 | $10 \mathrm{k} \Omega$ |
| C 7 | 4700 pF |
| R 7 | $10 \mathrm{k} \Omega$ |
| C 8 | 220 pF |
| R 8 | $1 \mathrm{k} \Omega$ |



| $L$ | 10 uH |
| :---: | :---: |
| C 1 | 20 uF |
| R 1 | $110 \mathrm{k} \Omega$ |
| R 2 | $10 \mathrm{k} \Omega$ |
| C 7 | 4700 pF |
| R 7 | $10 \mathrm{k} \Omega$ |
| C 8 | 220 pF |
| R 8 | $1 \mathrm{k} \Omega$ |

$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=16 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}-100 \mathrm{~mA}, \mathrm{f}_{\text {REQ }}=210 \mathrm{kHz}$


| L | 10 uH |
| :---: | :---: |
| C 1 | 20 uF |
| R 1 | $150 \mathrm{k} \Omega$ |
| R 2 | $10 \mathrm{k} \Omega$ |
| C 7 | 4700 pF |
| R 7 | $10 \mathrm{k} \Omega$ |
| C 8 | 220 pF |
| R 8 | $1 \mathrm{k} \Omega$ |

## R1294L102A

$$
\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}-100 \mathrm{~mA}, \mathrm{f}_{\text {REQ }}=800 \mathrm{kHz}
$$



| L | 4.7 uH |
| :---: | :---: |
| C 1 | 20 uF |
| R 1 | $70 \mathrm{k} \Omega$ |
| R 2 | $10 \mathrm{k} \Omega$ |
| C 7 | 4700 pF |
| R 7 | $10 \mathrm{k} \Omega$ |
| C 8 | 100 pF |
| R 8 | $1 \mathrm{k} \Omega$ |

$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}-100 \mathrm{~mA}, \mathrm{f}_{\text {REQ }}=800 \mathrm{kHz}$


| L | 4.7 uH |
| :---: | :---: |
| C 1 | 10 uF |
| R 1 | $110 \mathrm{k} \Omega$ |
| R 2 | $10 \mathrm{k} \Omega$ |
| C 7 | 4700 pF |
| R 7 | $10 \mathrm{k} \Omega$ |
| C 8 | 100 pF |
| R 8 | $1 \mathrm{k} \Omega$ |



| L | 4.7 uH |
| :---: | :---: |
| C 1 | 10 uF |
| R 1 | $150 \mathrm{k} \Omega$ |
| R 2 | $10 \mathrm{k} \Omega$ |
| C 7 | 4700 pF |
| R 7 | $10 \mathrm{k} \Omega$ |
| C 8 | 100 pF |
| R 8 | $1 \mathrm{k} \Omega$ |

## R1294L102A

$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}-100 \mathrm{~mA}, \mathrm{f}_{\text {REQ }}=1400 \mathrm{kHz}$


| L | 2.2 uH |
| :---: | :---: |
| C 1 | 20 uF |
| R 1 | $70 \mathrm{k} \Omega$ |
| R 2 | $10 \mathrm{k} \Omega$ |
| C 7 | 2200 pF |
| R 7 | $10 \mathrm{k} \Omega$ |
| C 8 | 47 pF |
| R 8 | $1 \mathrm{k} \Omega$ |

$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}-100 \mathrm{~mA}, \mathrm{f}_{\text {REQ }}=1400 \mathrm{kHz}$


| L | 2.2 uH |
| :---: | :---: |
| C 1 | 10 uF |
| R 1 | $110 \mathrm{k} \Omega$ |
| R 2 | $10 \mathrm{k} \Omega$ |
| C 7 | 2200 pF |
| R 7 | $10 \mathrm{k} \Omega$ |
| C 8 | 47 pF |
| R 8 | $1 \mathrm{k} \Omega$ |

$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}-100 \mathrm{~mA}, \mathrm{f}_{\text {REQ }}=1400 \mathrm{kHz}$


| L | 2.2 uH |
| :---: | :---: |
| C 1 | 10 uF |
| R 1 | $150 \mathrm{k} \Omega$ |
| R 2 | $10 \mathrm{k} \Omega$ |
| C 7 | 2200 pF |
| R 7 | $10 \mathrm{k} \Omega$ |
| C 8 | 47 pF |
| R 8 | $1 \mathrm{k} \Omega$ |

43) CE Switch Response

R1294L102A


R1294L102A


R1294L102A


Nisshinbo Micro Devices Inc.

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

| Item | Measurement Conditions |
| :--- | :--- |
| Environment | Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$ ) |
| Board Material | Glass Cloth Epoxy Plastic (Four-Layer Board) |
| Board Dimensions | $76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ |
| Copper Ratio | Outer Layer (First Layer): Less than 95\% of 50 mm Square <br> Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square <br> Outer Layer (Fourth Layer): Approx. 100\% of 50 mm Square |
| Through-holes | $\phi 0.3 \mathrm{~mm} \times 45$ pcs |

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

| Item | Measurement Result |
| :--- | :---: |
| Power Dissipation | 3400 mW |
| Thermal Resistance $(\theta \mathrm{ja})$ | $\theta \mathrm{ja}=29^{\circ} \mathrm{C} / \mathrm{W}$ |
| Thermal Characterization Parameter $(\psi \mathrm{jj})$ | $\psi j \mathrm{j}=10^{\circ} \mathrm{C} / \mathrm{W}$ |

Өja: Junction-to-Ambient Thermal Resistance
$\psi j$ t: Junction-to-Top Thermal Characterization Parameter


Power Dissipation vs. Ambient Temperature


Measurement Board Pattern


* The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). The tab is recommended to connect to the ground plane on the board. Otherwise it may be left floating.

QFN0404-24B Package Dimensions

Nisshinbo Micro Devices Inc.

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

## NiSSHiNBO

## Nisshinbo Micro Devices Inc.

## Official website <br> https://www.nisshinbo-microdevices.co.jp/en/

Purchase information
https://www.nisshinbo-microdevices.co.jp/en/buy/


[^0]:    * The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

[^1]:    ${ }^{(1)}$ Refer to POWER DISSIPATION in the APPENDIX for detailed information.

