4 Data Lane 2:1 MIPI Switch

Features

10-Channel 2:1 Switch

Signal Types: MIPI, D-PHY & C-PHY

Supply Voltage Range(Vcc): 1.65V to 5.0V

Input Signals: 0V to 1.3V

Ron: 7Ω Typical

ΔR_{ON}: 0.1Ω Typical

I_{CC}: 25µA Typical

-3dB Bandwidth: 2.1 GHz Typical

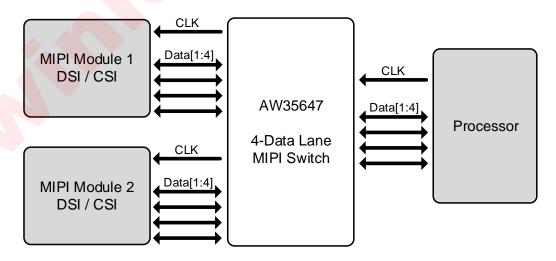
Low Crosstalk: -30 dB Typical

Low Off Isolation: −23 dB Typical

Con: 3 pF Typical

General Description

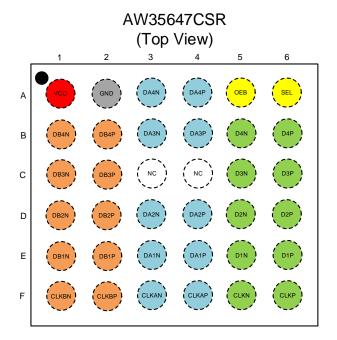
The AW35647 is a four-data-lane MIPI D-PHY switch. The AW35647 can also be configured as three-data-lane MIPI C-PHY switch.

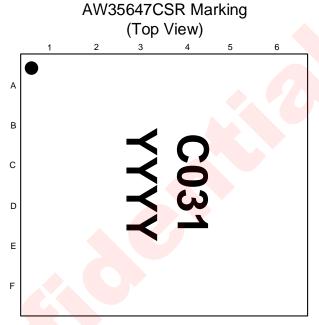

This 10 channel single-pole double-throw switch is optimized for high speed MIPI applications. The AW35647 is designed to facilitate multiple MIPI compliant devices to connect to a CSI or DSI module.

The AW35647 is available in a WLCSP 2.43mmX2.43mmX0.488mm-36B package.

Applications

- Smartphones
- Tablets
- Laptops
- Displays


Typical Application Circuit



Typical Application Circuit of AW35647

All the trademarks mentioned in the document are the property of their owners.

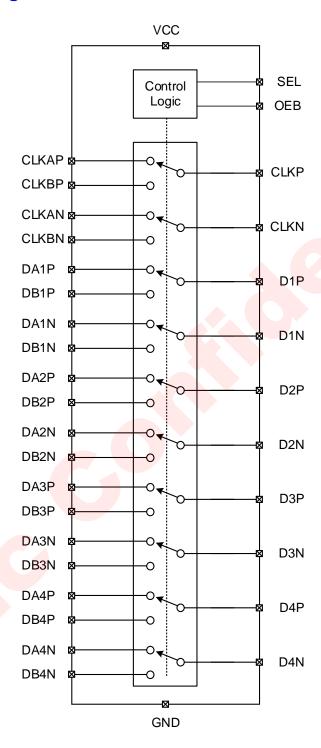
Pin Configuration And Top Mark

C031 - AW35647CSR
YYYY - Production Tracing Code

Pin Configuration and Top Mark

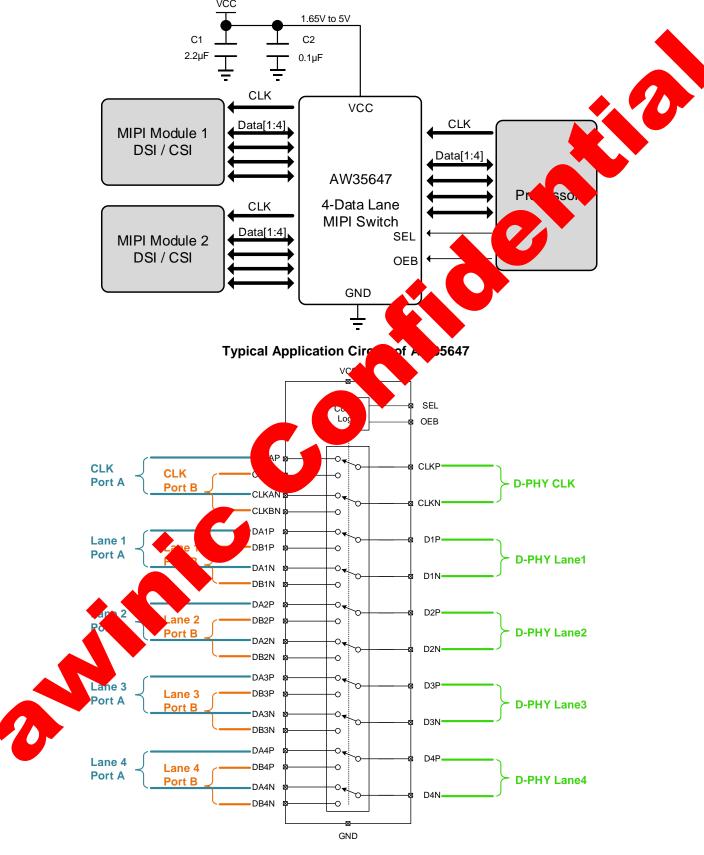
Pin Definition

PIN	NAME	DESCRIPTION
A1	VCC	Power supply input
A2	GND	Ground
A3	DA4N	A side data port 4, differential -
A4	DA4P	A side data port 4, differential +
A5	OEB	Output enable, active low
A6	SEL	Channel select
B1	DB4N	B side data port 4, differential -
B2	DB4P	B side data port 4, differential +
B3	DA3N	A side data port 3, differential -
B4	DA3P	A side data port 3, differential +
B5	D4N	Common data port 4, differential -
B6	D4P	Common data port 4, differential +

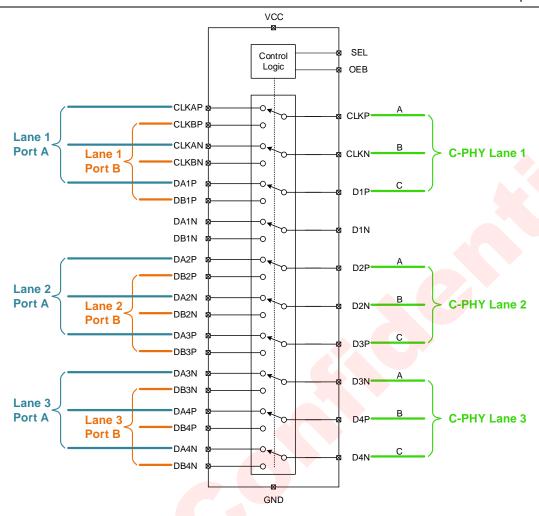

Pin Definition (Continued)

PIN	NAME	DESCRIPTION
C1	DB3N	B side data port 3, differential -
C2	DB3P	B side data port 3, differential +
C3	NC	No connect
C4	NC	No connect
C5	D3N	Common data port 3, differential -
C6	D3P	Common data port 3, differential +
D1	DB2N	B side data port 2, differential -
D2	DB2P	B side data port 2, differential +
D3	DA2N	A side data port 2, differential -
D4	DA2P	A side data port 2, differential +
D5	D2N	Common data port 2, differential -
D6	D2P	Common data port 2, differential +
E1	DB1N	B side data port 1, differential -
E2	DB1P	B side data port 1, differential +
E3	DA1N	A side data port 1, differential -
E4	DA1P	A side data port 1, differential +
E5	D1N	Common data port 1, differential -
E6	D1P	Common data port 1, differential +
F1	CLKBN	B side clock port, differential -
F2	CLKBP	B side clock port, differential +
F3	CLKAN	A side clock port, differential -
F4	CLKAP	A side clock port, differential +
F5	CLKN	Common clock port, differential -
F6	CLKP	Common clock port, differential +

Pin Functions


OEB	SEL	Function	
Н	Х	Clock and Data ports High Impedance	
L	L	CLKP/N=CLKAP/N, DnP/N=DAnP/N	
L	Н	CLKP/N=CLKBP/N, DnP/N=DBnP/N	

Functional Block Diagram



Functional Block Diagram

Typical Application Circuits

Recommended D-PHY Configuration of AW35647

Recommended C-PHY Configuration of AW35647

The control inputs OEB,SEL must be held HIGH or LOW, and cannot be left floating

Ordering Information

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW35647CSR	-40°C∼85°C	WLCSP 2.43mmX2.43mm X0.488mm-36B	C031	MSL1	ROHS+HF	3000 units/ Tape and Reel

Absolute Maximum Ratings(NOTE1)

PARAMETER	PARAMETERS					
Supply voltage ran	ge Vcc	-0.3V to 6V				
Input/Output DC switch vol	tage V _{I/O} (NOTE2)	-0.3V to 6V				
Input voltage range	SEL, OEB	-0.3V to 6V				
Junction-to-ambient therma	I resistance θ _{JA}	61°C/W				
Maximum operating junction to	emperature T _{JMAX}	150°C				
Operating free-air tempe	rature range	-40°C to 85°C				
Storage temperature	Storage temperature T _{STG}					
Lead temperature (soldering	Lead temperature (soldering 10 seconds)					
	ESD					
Human Body Model (All pins, per AN	Human Body Model (All pins, per ANSI/ESDA/JEDEC JS-001)					
Charged Device Model (All pins,	Charged Device Model (All pins, per JESD22-C101)					
Machine Model (All pins, per	±200V					
	•					
Test condition: JED	DEC78	±200mA				

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: V_{I/O} refers to analog data/clock switch ports

Electrical Characteristics

 $T_A = -40$ °C to 85°C unless otherwise noted. Typical values are guaranteed for $V_{CC} = 3.3$ V $T_A = 25$ °C.

F	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
Vcc	Supply voltage		1.65	3.3	5.0	V
Icc	Active supply current	OEB=0V, SEL=0V or Vcc		25	45	μΑ
I _{CC_PD}	Standby supply current	OEB=V _{CC} , SEL=0V or V _{CC}			1	μA
I _{CC_PD_1.5}	Standby supply current	Vcc=5V OEB=1.5V, SEL=0V or Vcc		1		μА
DC Characte	eristics		1			
Ron_hs	On-state resistance for	V _{I/O} =0.2V, I _{ON} =8mA Vcc=1.65V		7	11	Ω
KON_HS	high speed MIPI mode	V _{I/O} =0.2V, I _{ON} =8mA V _{CC} =1.8V to 5.0V		7	11	Ω
Ron lp	On-state resistance for	V _{I/O} =1.2V, I _{ON} =8mA V _{CC} =1.65V		8	12	Ω
TKON_LP	low power MIPI mode	V _{I/O} =1.2V, I _{ON} =8mA V _{CC} =1.8V to 5.0V		7.5	12	Ω
ΔRon_Hs	On-state resistance match between channels for high speed MIPI mode	V _{I/O} =0.2V, I _{ON} =8mA		0.1		Ω
ΔR_{ON_LP}	On-state resistance match between channels for low power MIPI mode	V _{I/O} =1.2V, I _{ON} =8mA		0.1		Ω
Ron_flat_hs	ON-state resistance flatness for high speed MIPI mode	V _{I/O} =0V to 0.3V, I _{ON} =8mA		0.9		Ω
Ron_flat_lp	ON-state resistance flatness for low power MIPI mode	V _{I/O} =0V to 1.3V, I _{ON} =8mA		0.9		Ω
loff	Switch off leakage current	Vcc=1.65V to 5.0V OEB, SEL=0V or 5.0V Dn,CLKn,DAn,CLKAn,DBn, CLKBn=0V to 1.3V	-0.5		0.5	μΑ
Ion	Switch on leakage current	Vcc=1.65V to 5.0V OEB=0V, SEL=0V or 5.0V Dn,CLKn,DAn,CLKAn,DBn, CLKBn=0V to 1.3V	-0.5		0.5	μА

Electrical Characteristics (Continued)

 $T_A = -40$ °C to 85°C unless otherwise noted. Typical values are guaranteed for $V_{CC} = 3.3$ V $T_A = 25$ °C.

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
Digital Cha	aracteristics					
VIH	Input logic high (SEL, OEB)	V _{CC} =1.65V to 5.0V	1.3			V
VIL	Input logic low (SEL, OEB)	Vcc=1.65V to 5.0V			0.5	V
ILEAK_IN	Input leakage (SEL, OEB)	SEL,OEB=0V to 5.0V	-0.5		0.5	μΑ
Cin	Digital Input capacitance (SEL, OEB)	f=1MHz		5		pF
Dynamic (Characteristics				•	
Con	ON capacitance ^(NOTE3)	OEB=0V, Dn,CLKn,DAn,DBn,CLKAn, CLKBn=0V or 0.2V		3		pF
Coff	OFF capacitance ^(NOTE3)	f = 750 MHz, switch ON OEB=Vcc, Dn,CLKn,DAn,DBn,CLKAn, CLKBn=0V or 0.2V f = 750MHz, switch OFF		2		pF
Oiso	Differential off isolation ^(NOTE3)	R_L = 50 Ω , C_L = 0pF $V_{I/O}$ =200mV+200mV _{PP} (differential) f = 750MHz, switch OFF		-23		dB
Xtalk	Differential Channel to channel crosstalk(NOTE3)	$R_L = 50\Omega$, $C_L = 0pF$ $V_{I/O}=200mV+200mV_{PP}$ (differential) f = 750MHz, switch ON		-30		dB
BW	-3dB bandwidth ^(NOTE3)	$R_L = 50\Omega$, $C_L = 0pF$ $V_{I/O}=200mV+200mV_{PP}$ (differential), switch ON	1.6	2.1		GHz

NOTE3: Guaranteed by characterization

Electrical Characteristics (Continued)

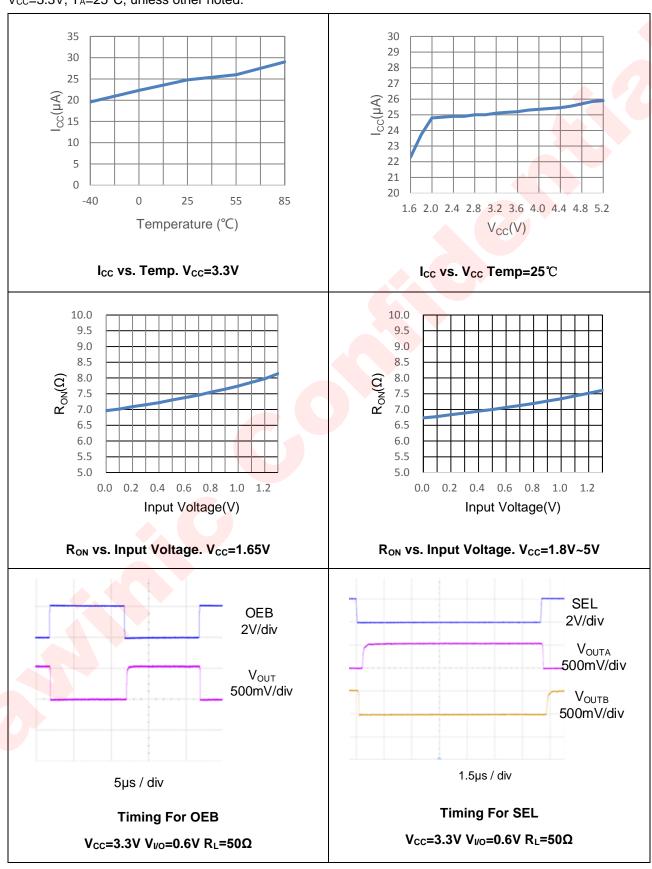
 $T_A = -40$ °C to 85°C unless otherwise noted. Typical values are guaranteed for $V_{CC} = 3.3$ V $T_A = 25$ °C.

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
Dynamic C	haracteristics					
t _{INIT}	Initialization time (Vcc to output)	Dn,CLKn=0.6V DAn,DBn,CLKAn,CLKBn: $R_L = 50\Omega$, $C_L = 0$ pF		1.5	200	μs
ten	Device turn on time (OEB to output)	Dn,CLKn=0.6V DAn,DBn,CLKAn,CLKBn: $R_L = 50\Omega$, $C_L = 0$ pF		0.5	200	μs
t _{DIS}	Device turn off time (OEB to output)	Dn,CLKn=0.6V DAn,DBn,CLKAn,CLKBn: $R_L = 50\Omega$, $C_L = 0$ pF		150	250	ns
ton	Switch turn on time (SEL to output)	Dn,CLKn=0.6V DAn,DBn,CLKAn,CLKBn: $R_L = 50\Omega$, $C_L = 0$ pF		800	1600	ns
toff	Switch turn off time (SEL to output)	Dn,CLKn=0.6V DAn,DBn,CLKAn,CLKBn: $R_L = 50\Omega$, $C_L = 0pF$		150	800	ns
t _{ввм}	Break before make time	Dn,CLKn: $R_L = 50\Omega$, $C_L = 0pF$ DAn,DBn,CLKAn,CLKBn =0.6V		400		ns
t _{PD}	Propagation delay ^(NOTE4)	Dn,CLKn=0.6V DAn,DBn,CLKAn,CLKBn: $R_L = 50\Omega$, $C_L = 0$ pF		100		ps
tskew(INTRA)	Intrapair skew ^(NOTE4)	Dn,CLKn=0.3V DAn,DBn,CLKAn,CLKBn: $R_L = 50\Omega$, $C_L = 0pF$		6		ps
tskew(inter)	Interpair skew ^(NOTE4)	Dn,CLKn=0.3V DAn,DBn,CLKAn,CLKBn: $R_L = 50\Omega$, $C_L = 0pF$		6		ps

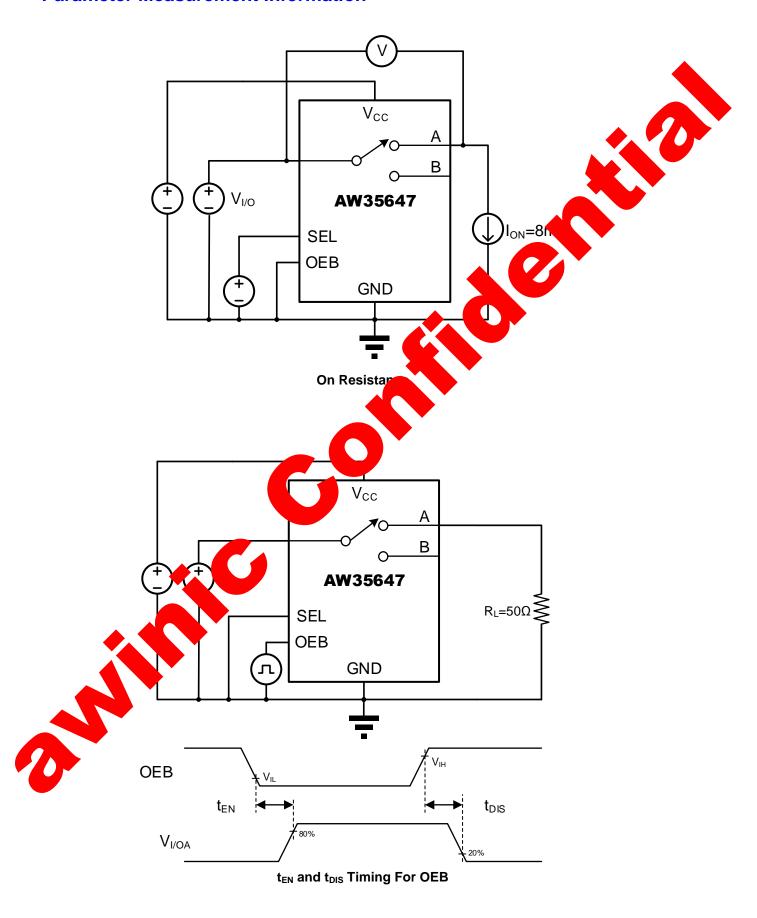
NOTE4: Guaranteed by characterization

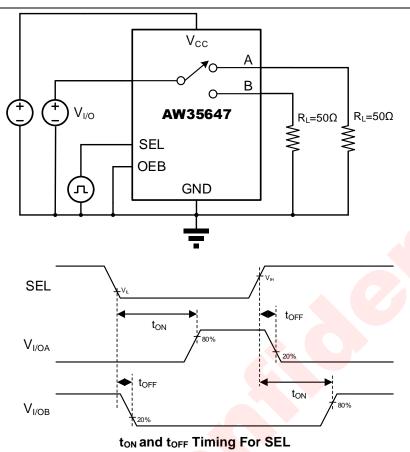
Detailed Functional Description

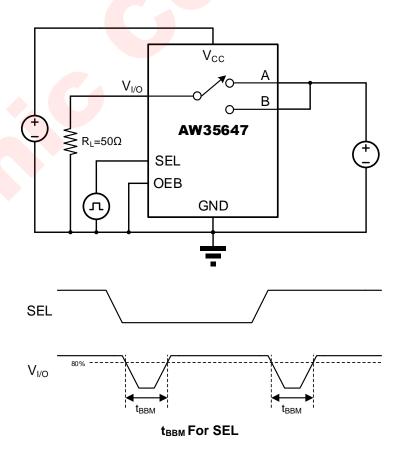
The AW35647 is a four-data-lane MIPI D-PHY switch. This device is an optimized 10-channel (5 differential) single-pole, double-throw switch for use in high speed applications. The AW35647 can also be configured as three-data-lane MIPI C-PHY switch. The AW35647 is designed to facilitate multiple MIPI compliant devices to connect to a single CSI/DSI, C-PHY/D-PHY module.


High Impedance Mode

When OEB is logic high, the AW35647 is in high impedance mode, all the clock and data ports are in Hi-Z state.


OEB	SEL	Function
Н	Х	Clock and Data ports High Impedance
L	L	CLKP/N=CLKAP/N, DnP/N=DAnP/N
L	Н	CLKP/N=CLKBP/N, DnP/N=DBnP/N


Typical characteristics

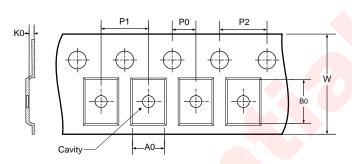

Vcc=3.3V, TA=25°C, unless other noted.

Parameter Measurement Information

AW35647

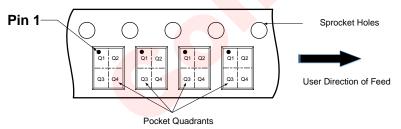
Sept. 2019 V1.1

PCB Layout Consideration


To obtain the optimal performance of AW35647, PCB layout should be considered carefully. Here are some guidelines:

- 1. Place supply bypass capacitors as close to V_{CC} and GND pin as possible and avoid placing the bypass capacitors near the high-speed traces.
- 2. The characteristic impedance of the traces must match that of the receiver and transmitter to maintain signal integrity.
- 3. Route the high-speed signals using a minimum amount of vias and corners which reduces signal reflections and impedance changes. When it becomes necessary to make the traces turn 90°, use an arc instead of making a single 90° turn.
- 4. Do not route high-speed traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices or ICs that use or duplicate clock signals.
- 5. Avoid stubs on the high-speed signal lines because they cause signal reflections.
- 6. Route all high-speed signal traces over continuous GND planes, with no interruptions.
- 7. High speed signal traces must be length matched as much as possible to minimize skew between data and clock lines. Width and spacing between differential traces must be equal line width and line spacing

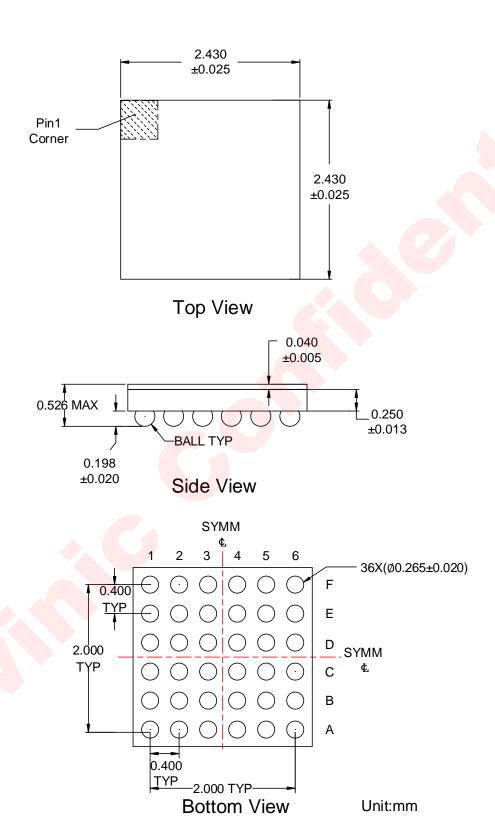
Tape And Reel Information


REEL DIMENSIONS D1

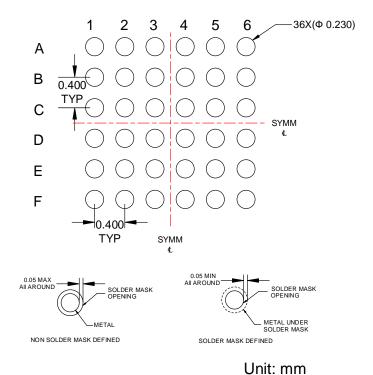
TAPE DIMENSIONS

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole D1: Reel Diameter
- D0: Reel Width

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



DIMENSIONS AND PIN1 ORIENTATION


D1	D0	A0	B0	K0	P0	P1	P2	W	Pin1 Quadrant
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Fiiii Quadrani
179.00	9.00	2.54	2.54	0.76	2.00	4.00	4.00	8.00	Q1

All dimensions are nominal

Package Description

Land Pattern Data

Offic. IIIIII

AW35647

Sept. 2019 V1.1

Revision History

Version	Date	Change Record
V1.0	Mar 2019	Datasheet V1.0 released
V1.1	Sept 2019	Updated Description. (P19)

AW35647

Sept. 2019 V1.1

Disclaimer

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.