

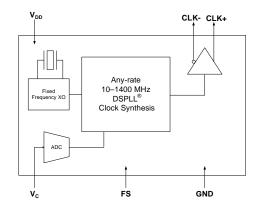
999900999789989Dual Frequency Voltage-Controlled Crystal Oscillator (VCXO) 10 MHz to 1.4 GHz

Features

- Available with any-rate output frequencies from 10–945 MHz and selected frequencies to 1.4 GHz
- Two selectable output frequencies
- 3rd generation DSPLL[®] with superior jitter performance
- 3x better frequency stability than SAW-based oscillators
- Internal fixed crystal frequency ensures high reliability and low aging
- Available CMOS, LVPECL, LVDS, and CML outputs
- 3.3, 2.5, and 1.8 V supply options
- Industry-standard 5 x 7 mm package and pinout
- Pb-free/RoHS-compliant

Applications

- SONET/SDH
- xDSL
- 10 GbE LAN/WAN


- Low-jitter clock generation
- Optical modules
- Clock and data recovery

Description

The Si552 dual-frequency VCXO utilizes Skyworks Solutions' advanced DSPLL® circuitry to provide a very low jitter clock for all output frequencies. The Si552 is available with any-rate output frequency from 10 to 945 MHz and selected frequencies to 1400 MHz. Unlike traditional VCXOs, where a different crystal is required for each output frequency, the Si552 uses one fixed crystal frequency to provide a wide range of output frequencies. This IC-based approach allows the crystal resonator to provide exceptional frequency stability and reliability. In addition, DSPLL clock synthesis provides superior supply noise rejection, simplifying the task of generating low-jitter clocks in noisy environments typically found in communication systems. The Si552 IC-based VCXO is factory-configurable for a wide variety of user specifications including frequency, supply voltage, output format, tuning slope, and temperature stability. Specific configurations are factory programmed at time of shipment, thereby eliminating the long lead times associated with custom oscillators.

Pin Assignments: See page 9. (Top View) Vc 1 6 Voo FS 2 5 CLKGND 3 4 CLK+

Functional Block Diagram

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Supply Voltage ¹	V_{DD}	3.3 V option	2.97	3.3	3.63	V
		2.5 V option	2.25	2.5	2.75	V
		1.8 V option	1.71	1.8	1.89	V
Supply Current	I _{DD}	Output enabled LVPECL CML LVDS CMOS Tristate mode	- - - -	120 108 99 90	130 117 108 98	mA mA
Frequency Select (FS) ²		V _{IH}	0.75 x V _{DD}	_	—	V
		V _{IL}	_	_	0.5	V
Operating Temperature Range	T _A		-40	_	85	°C

Notes:

- 1. Selectable parameter specified by part number. See Section 3. "Ordering Information" on page 10 for further details.
- 2. FS pin includes a 17 k Ω resistor to VDD.

Table 2. V_C Control Voltage Input

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Control Voltage Tuning Slope ^{1,2,3}	K_V	10 to 90% of V _{DD}	_	33	_	ppm/V
				45		
				90		
				135		
				180		
				356		
Control Voltage Linearity ⁴	L _{VC}	BSL	- 5	±1	+5	%
		Incremental	-10	±5	+10	%
Modulation Bandwidth	BW		9.3	10.0	10.7	kHz
V _C Input Impedance	Z _{VC}		500	_	_	kΩ
Nominal Control Voltage	V _{CNOM}	@ f _O	_	V _{DD} /2	_	V
Control Voltage Tuning Range	V _C		0		V_{DD}	V

- 1. Positive slope; selectable option by part number. See Section 3. "Ordering Information" on page 10.
- 2. For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.
- **3.** K_V variation is $\pm 10\%$ of typical values.
- **4.** BSL determined from deviation from best straight line fit with V_C ranging from 10 to 90% of V_{DD} . Incremental slope determined with V_C ranging from 10 to 90% of V_{DD} .

3

Table 3. CLK± Output Frequency Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Nominal Frequency ^{1,2,3}	f _O	LVDS/CML/LVPECL	10	_	945	MHz
		CMOS	10	_	160	MHz
Temperature Stability ^{1,4}		$T_A = -40 \text{ to } +85 ^{\circ}\text{C}$	-20	_	+20	
			- 50	_	+50	ppm
			-100	_	+100	
Absolute Pull Range ^{1,4}	APR		±12	_	±375	ppm
Aging		Frequency drift over first year.	_	_	±3	ppm
		Frequency drift over 15 year life.	_	_	±10	ppm
Power up Time ⁵	tosc		_	_	10	ms
Settling Time After FS Change	t _{FRQ}		_	_	10	ms

Notes:

- 1. See Section 3. "Ordering Information" on page 10 for further details.
- 2. Specified at time of order by part number. Also available in frequencies from 970 to 1134 MHz and 1213 to 1417 MHz.
- 3. Nominal output frequency set by $V_{CNOM} = V_{DD}/2$.
- **4.** Selectable parameter specified by part number.
- **5.** Time from power up or tristate mode to f_O (to within ± 1 ppm of f_O).

Table 4. CLK± Output Levels and Symmetry

Parameter	Symbol	Tes	t Condition	Min	Тур	Max	Units
LVPECL Output	Vo	I	mid-level	V _{DD} – 1.42	_	V _{DD} – 1.25	V
Option ¹	V _{OD}	s	swing (diff)			1.9	V_{PP}
	V _{SE}	swing	(single-ended)	0.55	_	0.95	V_{PP}
LVDS Output Option ²	V _O	1	mid-level	1.125	1.20	1.275	V
	V _{OD}	S	wing (diff)	0.5	0.7	0.9	V _{PP}
CML Output Option ²	V.	2.5/3.3 V	option mid-level	_	V _{DD} – 1.30	_	V
	Vo	1.8 V c	ption mid-level	_	V _{DD} – 0.36	_	V
	V _{OD}	2.5/3.3 V	option swing (diff)	1.10	1.50	1.90	V_{PP}
	VOD	1.8 V or	otion swing (diff)	0.35	0.425	0.50	V_{PP}
CMOS Output Option ³	V _{OH}	Io	_H = 32 mA	0.8 x V _{DD}		V_{DD}	V
	V _{OL}	Io	_L = 32 mA	_		0.4	V
Rise/Fall time (20/80%)	t _{R,} t _F	LVPE	CL/LVDS/CML	_	_	350	ps
		CMOS with C _L = 15 pF		_	1	_	ns
Symmetry (duty cycle)	SYM	LVPECL: LVDS: CMOS:	V _{DD} – 1.3 V (diff) 1.25 V (diff) V _{DD} /2	45	_	55	%

- **1.** 50 Ω to V_{DD} 2.0 V.
- 2. $R_{term} = 100 \Omega$ (differential). 3. $C_L = 15 pF$

Table 5. CLK± Output Phase Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Phase Jitter (RMS) ^{1,2,3}	фј	Kv = 33 ppm/V				ps
for F _{OUT} ≥ 500 MHz		12 kHz to 20 MHz (OC-48)	_	0.26	_	
		50 kHz to 80 MHz (OC-192)	_	0.26	_	
		Kv = 45 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.27	_	
		50 kHz to 80 MHz (OC-192)	_	0.26	_	
		Kv = 90 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.32	_	
		50 kHz to 80 MHz (OC-192)	_	0.26	_	
		Kv = 135 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.40	_	
		50 kHz to 80 MHz (OC-192)	_	0.27	_	
		Kv = 180 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.49	_	
		50 kHz to 80 MHz (OC-192)	_	0.28	_	
		Kv = 356 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.87	_	
		50 kHz to 80 MHz (OC-192)	_	0.33	_	

- 1. Refer to AN255, AN256, and AN266 for further information.
- 2. For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.
- 3. See "AN255: Replacing 622 MHz VCSO devices with the Si550 VCXO" for comparison highlighting power supply rejection (PSR) advantage of Si55x versus SAW-based solutions.
- 4. Max jitter for LVPECL output with V_C =1.65V, V_{DD} =3.3V, 155.52 MHz. 5. Max offset frequencies: 80 MHz for $F_{OUT} \ge 250$ MHz, 20 MHz for 50 MHz $\le F_{OUT} < 250$ MHz, 2 MHz for 10 MHz \leq F_{OUT} <50 MHz.

5

Table 5. CLK± Output Phase Jitter (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Phase Jitter (RMS) ^{1,2,3,4,5}	фј	Kv = 33 ppm/V				ps
for F _{OUT} of 125 to 500 MHz		12 kHz to 20 MHz (OC-48)	_	0.37	_	
		50 kHz to 80 MHz (OC-192)	_	0.33	_	
		Kv = 45 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.37	0.4	
		50 kHz to 80 MHz (OC-192)	_	0.33	_	
		Kv = 90 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.43	_	
		50 kHz to 80 MHz (OC-192)	_	0.34	_	
		Kv = 135 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.50	_	
		50 kHz to 80 MHz (OC-192)	_	0.34	_	
		Kv = 180 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.59	_	
		50 kHz to 80 MHz (OC-192)	_	0.35	_	
		Kv = 356 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	1.00	_	
		50 kHz to 80 MHz (OC-192)	_	0.39	_	

- 1. Refer to AN255, AN256, and AN266 for further information.
- 2. For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.
- **3.** See "AN255: Replacing 622 MHz VCSO devices with the Si550 VCXO" for comparison highlighting power supply rejection (PSR) advantage of Si55x versus SAW-based solutions.
- **4.** Max jitter for LVPECL output with V_C =1.65V, V_{DD} =3.3V, 155.52 MHz.
- 5. Max offset frequencies: 80 MHz for $F_{OUT} \ge 250$ MHz, 20 MHz for 50 MHz $\le F_{OUT} < 250$ MHz, 2 MHz for 10 MHz $\le F_{OUT} < 50$ MHz.

Table 5. CLK± Output Phase Jitter (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Phase Jitter (RMS) ^{1,2,5}	фЈ	Kv = 33 ppm/V				ps
for F _{OUT} 10 to 160 MHz		12 kHz to 20 MHz (OC-48)	_	0.63	_	
CMOS Output Only		50 kHz to 20 MHz	_	0.62	_	
		Kv = 45 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.63	_	
		50 kHz to 20 MHz	_	0.62	_	
		Kv = 90 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.67	_	
		50 kHz to 20 MHz	_	0.66	_	
		Kv = 135 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.74	_	
		50 kHz to 20 MHz	_	0.72	_	
		Kv = 180 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	0.83	_	
		50 kHz to 20 MHz	_	8.0	_	
		Kv = 356 ppm/V				ps
		12 kHz to 20 MHz (OC-48)	_	1.26	_	
		50 kHz to 20 MHz		1.2		

Notes:

- 1. Refer to AN255, AN256, and AN266 for further information.
- 2. For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.
- 3. See "AN255: Replacing 622 MHz VCSO devices with the Si550 VCXO" for comparison highlighting power supply rejection (PSR) advantage of Si55x versus SAW-based solutions.
- **4.** Max jitter for LVPECL output with V_C =1.65V, V_{DD} =3.3V, 155.52 MHz.
- **5.** Max offset frequencies: 80 MHz for $F_{OUT} \ge 250$ MHz, 20 MHz for 50 MHz $\le F_{OUT} < 250$ MHz, 2 MHz for 10 MHz $\le F_{OUT} < 50$ MHz.

Table 6. CLK± Output Period Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	
Period Jitter*	J_{PER}	RMS	_	2	_	ps	
		Peak-to-Peak	_	14	_	ps	
*Note: Any output mode, including (*Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to AN279 for further information.						

Table 7. CLK± Output Phase Noise (Typical)

Offset Frequency	74.25 MHz	491.52 MHz	622.08 MHz	Units
	90 ppm/V	45 ppm/V	135 ppm/V	
	LVPECL	LVPECL	LVPECL	
100 Hz	-87	– 75	-65	
1 kHz	–114	-100	-90	
10 kHz	–132	–116	-109	
100 kHz	-142	-124	– 121	dBc/Hz
1 MHz	-148	-135	-134	
10 MHz	–150	-146	-146	
100 MHz	n/a	-147	-147	

Table 8. Environmental Compliance

The Si552 meets the following qualification test requirements.

Parameter	Conditions/Test Method
Mechanical Shock	MIL-STD-883F, Method 2002.3 B
Mechanical Vibration	MIL-STD-883F, Method 2007.3 A
Solderability	MIL-STD-883F, Method 203.8
Gross & Fine Leak	MIL-STD-883F, Method 1014.7
Resistance to Solvents	MIL-STD-883F, Method 2016
Moisture Sensitivity Level	J-STD-020, MSL 1
Contact Pads	J-STD-020, MSL 1

Table 9. Thermal Characteristics

(Typical values TA = 25 $^{\circ}$ C, V_{DD} = 3.3 V)

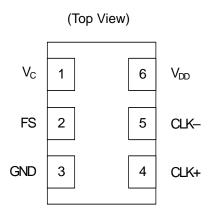
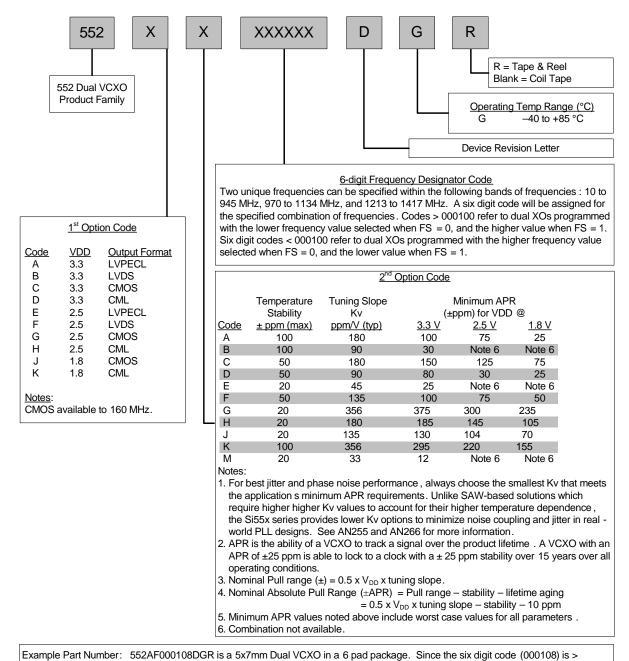

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance Junction to Ambient	$\theta_{\sf JA}$	Still Air	_	84.6	_	°C/W
Thermal Resistance Junction to Case	θ JC	Still Air	_	38.8	_	°C/W
Ambient Temperature	T _A		-40	_	85	°C
Junction Temperature	TJ		_	_	125	°C

Table 10. Absolute Maximum Ratings¹

Parameter	Symbol	Rating	Units
Maximum Operating Temperature	T _{AMAX}	85	°C
Supply Voltage, 1.8 V Option	V_{DD}	-0.5 to +1.9	V
Supply Voltage, 2.5/3.3 V Option	V_{DD}	-0.5 to +3.8	V
Input Voltage (any input pin)	V _I	-0.5 to V _{DD} + 0.3	V
Storage Temperature	T _S	-55 to +125	°C
ESD Sensitivity (HBM, per JESD22-A114)	ESD	2500	V
Soldering Temperature (Pb-free profile) ²	T _{PEAK}	260	°C
Soldering Temperature Time @ T _{PEAK} (Pb-free profile) ²	t _P	20–40	seconds

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.
- 2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available at https://www.skyworksinc.com/Product_Certificate.aspx for further information, including soldering profiles.

2. Pin Descriptions


Table 11. Si552 Pin Descriptions

Pin	Name	Туре	Function
1	V _C	Analog Input	Control Voltage
2	FS*	Input	Frequency Select: 0 = first frequency selected 1 = second frequency selected
3	GND	Ground	Electrical and Case Ground
4	CLK+	Output	Oscillator Output
5	CLK- (N/A for CMOS)	Output	Complementary Output (N/C for CMOS)
6	V _{DD}	Power	Power Supply Voltage

*Note: FS includes a 17 k Ω pullup resistor to V_{DD}. See Section 3. "Ordering Information" on page 10 for details on frequency select and OE polarity ordering options.

3. Ordering Information

The Si552 supports a variety of options including frequency, temperature stability, tuning slope, output format, and V_{DD} . Specific device configurations are programmed into the Si552 at time of shipment. Configurations are specified using the Part Number Configuration chart shown below. Skyworks Solutions provides a web browser-based part number configuration utility to simplify this process. Refer to https://www.skyworksinc.com/en/Products/Timing to access this tool and for further ordering instructions. The Si552 VCXO series is supplied in an industry-standard, RoHS-compliant, lead-free, 6-pad, 5 x 7 mm package. Tape and reel packaging is an ordering option.

000100, f0 is 644.53125 MHz (lower frequency) and f1 is 693.48299 (higher frequency), with a 3.3V supply and LVPECL output. Temperature stability is specified as \pm 50 ppm and the tuning slope is 135 ppm/V. The part is specified for a -40 to +85 C° ambient temperature range operation and is shipped in tape and reel format .

Figure 1. Part Number Convention

4. Package Outline and Suggested Pad Layout

Figure 2 illustrates the package details for the Si552. Table 12 lists the values for the dimensions shown in the illustration.

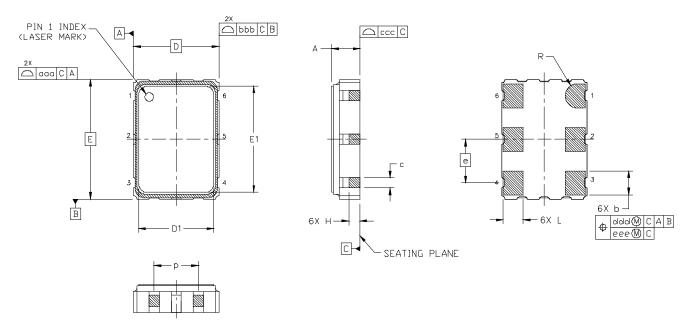


Figure 2. Si552 Outline Diagram

Table 12. Package Diagram Dimensions (mm)

Dimension	Min	Nom	Max
А	1.50	1.65	1.80
b	1.30	1.40	1.50
С	0.50	0.60	0.70
D		5.00 BSC	
D1	4.30	4.40	4.50
е		2.54 BSC.	I.
Е	7.00 BSC.		
E1	6.10	6.20	6.30
Н	0.55	0.65	0.75
L	1.17	1.27	1.37
р	1.80	_	2.60
R	0.70 REF		
aaa		0.15	
bbb		0.15	
ccc	0.10		
ddd	0.10		
eee	0.50		

5. 6-Pin PCB Land Pattern

Figure 3 illustrates the 6-pin PCB land pattern for the Si552. Table 13 lists the values for the dimensions shown in the illustration.

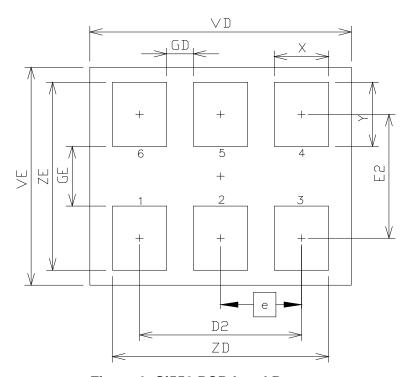
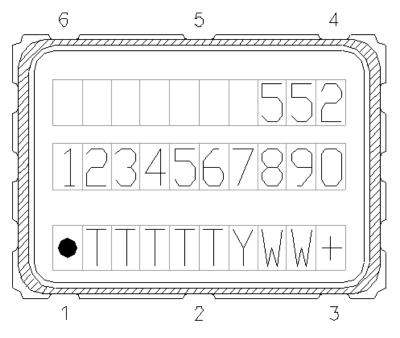


Figure 3. Si552 PCB Land Pattern

Table 13. PCB Land Pattern Dimensions (mm)


Min	Max
5.08	REF
2.54	BSC
4.15	REF
0.84	_
2.00	_
8.20	REF
7.30	REF
1.70	TYP
2.15	REF
_	6.78
_	6.30
	5.08 2.54 4.15 0.84 2.00 8.20 7.30 1.70

- 1. Dimensioning and tolerancing per the ANSI Y14.5M-1994 specification.
- 2. Land pattern design based on IPC-7351 guidelines.
- 3. All dimensions shown are at maximum material condition (MMC).
- 4. Controlling dimension is in millimeters (mm).

13

6. Top Marking

6.1. Si552 Top Marking

6.2. Top Marking Explanation

Line	Position	Description	
1	1–10	Part Family Number, 552 (First 3 characters in part number)	
2	1–10	Si552: Option1+Option2+Freq(7)+Temp Si552 w/ 8-digit resolution: Option1+Option2+ConfigNum(6)+Temp	
3 Trace Code			
	Position 1	Pin 1 orientation mark (dot)	
	Position 2	Product Revision (D)	
	Position 3–6	Tiny Trace Code (4 alphanumeric characters per assembly release instructions)	
	Position 7	Year (least significant year digit), to be assigned by assembly site (ex: 2007 = 7)	
	Position 8–9	Calendar Work Week number (1–53), to be assigned by assembly site	
	Position 10	"+" to indicate Pb-Free and RoHS-compliant	

DOCUMENT CHANGE LIST

Revision 0.6 to Revision 1.0

- Updated Table 4 on page 3.
 - Updated 2.5 V/3.3 V and 1.8 V CML output level specifications.
- Updated Table 5 on page 4.
 - Removed the words "Differential Modes: LVPECL/LVDS/CML" in the footnote referring to AN256.
 - Added footnotes clarifying max offset frequency test conditions.
 - Added CMOS phase jitter specs.
- Updated Table 10 on page 8.
 - Separated 1.8 V, 2.5 V/3.3 V supply voltage specifications.
- Updated and clarified Table 8 on page 7
 - Added "Moisture Sensitivity Level" and "Contact Pads" rows.
- Updated 6. "Top Marking" on page 13 to reflect specific marking information (previously, figure was generic).
- Updated 4. "Package Outline and Suggested Pad Layout" on page 11.
 - Added cyrstal impedance pin in Figure 2 on page 11 and Table 12 on page 11.
- Reordered spec tables and back matter to conform to data sheet quality conventions.

Revision 1.0 to Revision 1.1

Added Table 9, "Thermal Characteristics," on page 7.

Revision 1.1 to Revision 1.2

June, 2018

 Changed "Trays" to "Coil Tape" in section 3. "Ordering Information".

skyworksinc.com/CBPro

skyworksinc.com/quality

Support & Resources skyworksinc.com/support

Copyright © 2022 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5®, SkyOne®, SkyBlue™, Skyworks Green™, Clockbuilder®, DSPLL®, ISOmodem®, ProSLIC®, and SiPHY® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.