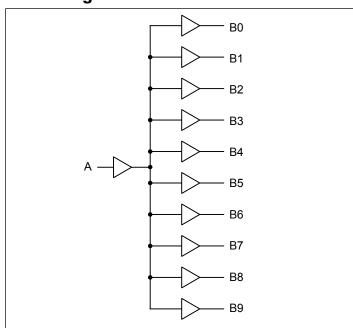


3.3V Fast CMOS Clock Driver

Features

- → 3.3V version of PI49FCT807
- → Ultra low skew: 0.35ns
- → Low Input Capacitance
- → Minimum duty cycle distortion
- → 1:10 fanout
- → High speed: 3.5ns propagation
- → TTL input and CMOS output compatible
 - VOH =3.3V (typical)
 - VOL =0.3V (typical)
- → Industrial Temperature: -40°C to +85°C
- \rightarrow 3.3V ±10% operation
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

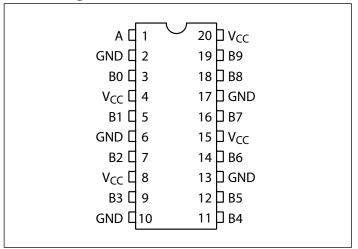

https://www.diodes.com/quality/product-definitions/

- → Packaging (Pb-free & Green):
 - 20-pin 150-mil wide QSOP (Q)
 - 20-pin 209-mil wide SSOP (H)

Description

PI49FCT3807 is a 3.3V 1-to-10 clock driver. This low skew clock driver features one input and ten outputs fanout. The large fanout from a single input line reduced loading on input clock. TTL level outputs reduce noise levels on the part. Typical applications are clock and signal distribution.

Block Diagram



- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Configuration

Pin Description

Pin #	Pin Name	Type	Description
1	A	I	Input Clock
3	B ₀	О	Output Clock
5	B_1	О	Output Clock
7	B ₂	О	Output Clock
9	B ₃	О	Output Clock
11	B ₄	О	Output Clock
12	B ₅	О	Output Clock
14	В6	О	Output Clock
16	B ₇	О	Output Clock
18	B ₈	О	Output Clock
19	В9	О	Output Clock
2, 6, 10, 13, 17	GND	Ground	Ground Supply
4, 8, 15, 20	V _{CC}	Power	Power Supply

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

<u> </u>
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied $-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage to Ground Potential (Inputs & $V_{CC}\mbox{ Only})0.5V$ to $+7.0V$
Supply Voltage to Ground Potential (Outputs & D/O Only) –0.5V to +7.0V
DC Input Voltage $-0.5V$ to $+7.0V$
DC Output Current
Power Dissipation
Latchup
ESD Protection (Input)
Junction Temperature

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (TA = -40°C to +85°c V_{CC} = 3.3V ± 0.3 V)

Symbol	Parameter	Test Condition ⁽¹⁾	Min.	Тур.	Max.	Units	
V _{OH}	Output High Voltage	V_{CC} = Min., V_{IN} = V_{IL} or V_{IH}	$I_{OH} = -0.1mA$ $I_{OH} = -8mA$	V _{CC} - 0.2 2.4	3.0		
V _{OL}	Output Low Voltage	V_{CC} = Min., V_{IN} = V_{IL} or V_{IH}	$I_{OH} = 0.1 \text{mA}$ $I_{OH} = 16 \text{mA}$ $I_{OH} = 24 \text{mA}$		- 0.2 0.3	0.2 0.4 0.5	V
V_{IH}	Input High Voltage	Guaranteed Logic HIGH Level (2.0		5.5		
$V_{\rm IL}$	Input Low Voltage	Guaranteed Logic LOW Level (I	Guaranteed Logic LOW Level (Input pins)			0.8	
I_{IH}	Input High Current	$V_{CC} = Max.$	$V_{CC} = Max.$ $V_{IN} = V_{CC}$			1	4
I_{IL}	Input Low Current	$V_{CC} = Max.$	$V_{IN} = GND$			-1	μΑ
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$			-0.7	-1.2	V
I _{OH}	Output HIGH Current ^(4,5)	$V_{OUT} = 1.5V$, $V_{IN} = V_{IL}$ or V_{IH} , $V_{CC} = 3.3V$		-35	-60	-110	
I _{OL}	Output LOW Current ^(4,5)	$V_{OUT} = 1.5V$, $V_{IN} = V_{IL}$ or V_{IH} ,	50	90	200	mA	
I _{OS}	Short Circuit Current ^(4,5)	V _{CC} = Max., V _{OUT} = GND	-60	-135	-240		
V_{H}	Input Hysteresis				150		mV

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient and maximum loading.
- 3. $V_{OH} = V_{CC} 0.6V$ at rated current.
- 4. This parameter is determined by device characterization but is not production tested.
- 5. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

Power Supply Characteristics

Parameters	Description	Test Conditions(1)		Min.	Typ ⁽²⁾	Max.	Units
I_{CC}	Quiescent Power Supply Current	V _{CC} = Max.	$V_{IN} = GND \text{ or } V_{CC}$	_	3	30	
ΔI_{CC}	Supply Current per Inputs @ TTL HIGH	V _{CC} = Max.	$V_{IN} = V_{CC} \ 0.6V^{(3)}$	_	2.0	300	μΑ
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	V _{CC} = Max., Outputs Open Per Output Toggling 50% Duty Cycle	$V_{IN} = V_{CC}$ $V_{IN} = GND$	_			mA/ MHz

Notes

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 3.3V$, +25°C ambient.
- 3. Per TTL driven input ($V_{IN} = V_{CC} 0.6V$); all other inputs at V_{CC} or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the I_C formula. These limits are guaranteed but not tested.

Capacitance ($T_A = 25$ °C, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур	Max.	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	4.5	6.0	"E
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	5.5	8.0	pF

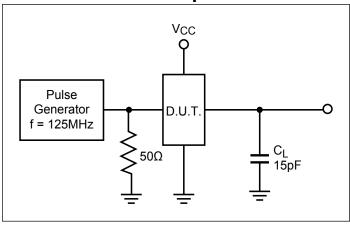
Notes:

Maximum Switching Characteristics (Over operating range)

	Description	-	3807 Com.		3087A Com.		3087B Com.		3807C Com.		Units
Symbol		Test Conditions									
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PLH} t _{PHL}	Propagation Delay A to B _N		1.5	4.5	1.5	4.0	1.5	3.8	1.5	3.5	
t _{SK(O)}	Skew between two outputs of same package ⁽³⁾	$C_{L} = 15 pF$ $R_{L} = 500 \Omega$		0.5		0.5		0.5		0.5	ns
t _{SK(P)}	Skew between opposite transitions of the same output $(t_{\mathrm{PHL}} - t_{\mathrm{PHL}})^{(3)}$	NL = 30022		0.5		0.5		0.35		0.35	
t_{DC}	Duty Cycle										
F _{IN}	Skew between outputs of dif- ferent packages at the same power supply, temp. and speed grade ⁽³⁾			1.0		1.0		0.75		0.75	

- 1. Other loading condition is described on page 4, "Test Circuits for All Outputs."
- 2. These parameters are guaranteed by design.
- 3. Minimum propagation delay of 1.5ns is guaranteed by design.

This parameter is determined by device characterization but is not production tested.

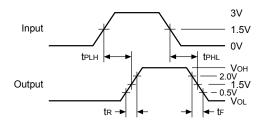


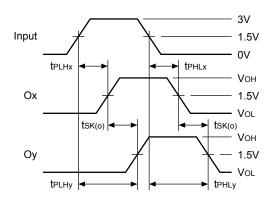
Phase Jitter Measurement Data

Frequency Band	Input	Output	Additive Jitter	Unit
12kHz-10MHz	342	483	341	fs _{RMS}
12kHz-20MHz	493	642	411	fs _{RMS}

Tests Circuits for All Outputs

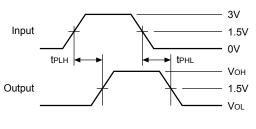
Switch Position


Test	Switch
Disable LOW Enable LOW	6V
Disable HIGH Enable HIGH	GND
All Other Inputs	Open

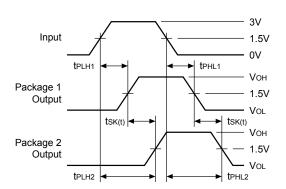


Switching Waveforms

Propagation Delay



Output Skew - tsk(o)


tsk(o) = | tplhy - tplhx | or | tphly - tphlx |

Pulse Skew - tsk(p)

tsk(p) = |tphl - tplh|

Package Skew - tsk(t)

tsk(t) = |tplh2 - tplh1| or |tphl2 - tphl1|

Part Marking

H Package

B: Speed Code

YY: Year

WW: Workweek

1st X: Assembly Code 2nd X: Fab Code

Q Package

YY: Year

WW: Workweek

1st X: Assembly Code

2nd X: Fab Code

PI49FCT 3807BQE YYWWXX

B: Speed Code

YY: Year

WW: Workweek

1st X: Assembly Code

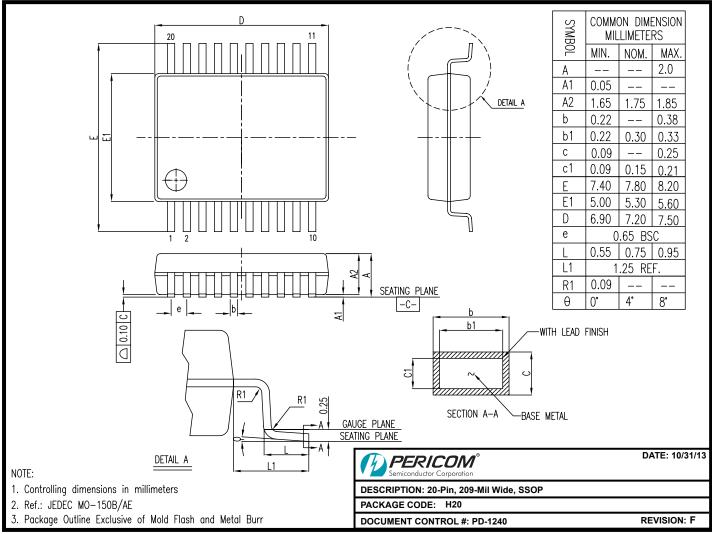
2nd X: Fab Code

PI49FCT 3807CQE YYWWXX

C: Speed Code

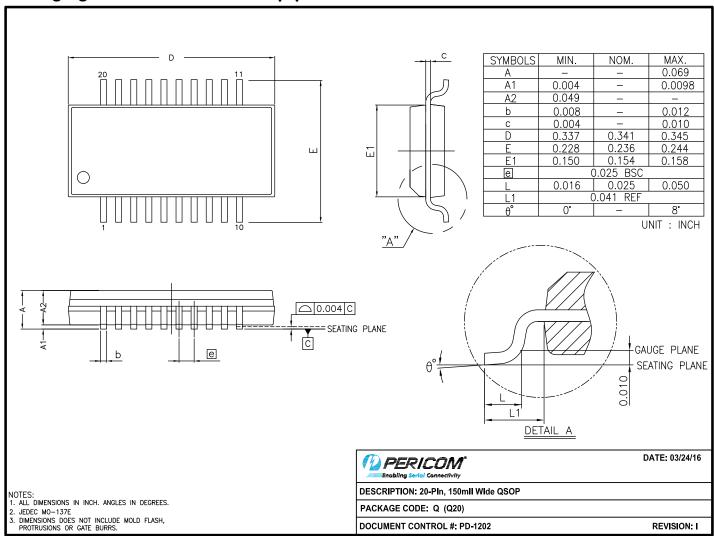
YY: Year

WW: Workweek


1st X: Assembly Code

2nd X: Fab Code

Packaging Mechanical: 20-SSOP (H)



13-0214

Packaging Mechanical: 20-QSOP (Q)

16-0057

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Speed Grade	Package Description
PI49FCT3807BQEX	Q	В	20-pin 150-mil QSOP
PI49FCT3807CQEX	Q	С	20-pin 150-mil QSOP
PI49FCT3807DHEX	Н	D	20-pin 209-mil SSOP
PI49FCT3807DQEX	Q	D	20-pin 150-mil QSOP
PI49FCT3807QEX	Q	Blank	20-pin 150-mil QSOP

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- $2. \ \ See \ https://www.diodes.com/quality/lead-free/\ for\ more\ information\ about\ Diodes\ Incorporated's\ definitions\ of\ Halogen-\ and\ Antimony-free,\ "Green"\ and\ Lead-free.$
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. E = Pb-free and Green
- 5. X suffix = Tape/Reel

IMPORTANT NOTICE

- 1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/ terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2020 Diodes Incorporated

www.diodes.com