1 Product Description The MT896X family is a hall-effect switch IC with self diagnosis produced by BCD technology with both high performance and high reliability. The Hall IC internally includes an on-chip Hall voltage generator, a voltage regulator for operation with supply voltage of 2.7V to 24V, temperature compensation circuitry, small-signal amplifier, Hall IC with dynamic offset cancellation system, Schmitt trigger and open drain output, all in a single package. The MT896X family offers self-diagnosis function during the sensor power-on. This allows the user to check the functionality of the whole signal path in response to BOP and BRP, as well as the wire connections of the sensor IC. The MT896X family provides SOT-23 & SOT-23 (Thin Outline) for surface mount and TO-92 for throughhole to customers. All packages are RoHS compliant. #### 2 Features - AEC-Q100 Automotive Qualified - 2.7~24V Operating V_{DD} Range - -40°C~150°C Operating Temperature - Package Option: SOT-23 SOT-23 (Thin Outline) TO-92 - Magnetic Sensitivity Option: MT8962 (BOP=25Gs, BRP=-25Gs) - Self-diagnosis - -30V Reversed Power Supply Protection - Output Over Current Protection - RoHS Compliant: (EU)2015/863 - ASIL-B ready #### 3 Product Overview of MT896X | Part No. | Description | |----------|--| | MT896XAT | SOT-23, tape & reel (3000pcs/bag) | | MT896XET | SOT-23 (Thin Outline), tape & reel (3000pcs/bag) | | MT896XA | Flat TO-92, bulk packaging
(1000pcs/bag) | # 4 Applications - Automotive, Home appliances, - Industrial - Speed Detection - Magnetic Encoder - Brushless DC Motor Communication # **5 Pin Configuration and Functions** | | Vcc | Out | GND | |--------------------------|-------|----------------------|--------| | SOT-23 | 1 | 2 | 3 | | SOT-23
(Thin Outline) | 1 | 2 | 3 | | Flat TO-92 | 1 | 3 | 2 | | Description | Power | Output
Open-Drain | Ground | Figure.1 Pin Configuration & Functions # **Table of Contents** | 1 | Product Description | 1 | |----|--|----| | 2 | Features | 1 | | 3 | Product Overview of MT896X | 1 | | 4 | Applications | 1 | | 5 | Pin Configuration and Functions | 1 | | 6 | Switching Function | 3 | | | 6.1 Definition of Switching Function | 3 | | | 6.2 Function Description | 3 | | | 6.3 Feature Description | 3 | | 7 | Functional Block Diagram | 4 | | | 7.1 Diagnostics Coverage Block Diagram | 4 | | 8 | Electrical and Magnetic Characteristics | 4 | | | 8.1 Absolute Maximum Ratings | 4 | | | 8.2 Electrical Specifications | 5 | | | 8.3 Typical Output Waveform | 5 | | | 8.4 Magnetic Characteristics | 6 | | | 8.5 ESD Rating | 6 | | | 8.6 Characteristics Performance | 6 | | 9 | Typical Application Circuit | 7 | | 10 | Self-diagnosis | 7 | | 11 | Package Material Information | 9 | | | 11.1 SOT-23 Package Information | 9 | | | 11.2 SOT-23 (Thin Outline) Package Information | 10 | | | 11.3 Flat TO-92 Package Information | 11 | | 12 | Copy Rights and Disclaimer | 12 | | | | | # **Reversion History** - 1 Version 1.0 Original Version - 2 Version 1.1 Update Package Material Information # **6 Switching Function** ### **6.1 Definition of Switching Function** Figure.2 and Figure.3 show the device functionality and hysteresis ### **6.2 Function Description** Bop: Operating Point, Magnetic flux density applied on the branded side of the package which turns the output driver ON (Vout=Low) BRP: Releasing Point, Magnetic flux density applied on the branded side of the package which turns the output driver OFF (Vout=High) BHYST: Hysteresis Window, |BOP - BRP| Devices that have a lower magnetic threshold (Vout=High) detect magnets at a farther distance. Higher thresholds (Vout=Low) generally require a closer distance or larger magnet. #### **6.3 Feature Description** The MT896X device is sensitive to the magnetic field component that is perpendicular to the top of the package # 7 Functional Block Diagram Figure.5 Fund Functional Block Diagram # 7.1 Diagnostics Coverage Block Diagram | No | Feature | Definition | |----|-------------------|--| | 1 | Regulator | Regulator voltage for normal operation | | 2 | AMP | Signal Amplifier | | 3 | COMP | Comparator | | 4 | Reference | Reference | | 5 | Open Drain Output | Output | # **8 Electrical and Magnetic Characteristics** # 8.1 Absolute Maximum Ratings Absolute maximum ratings are limited values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability. | Symbol | Parameters | Min | Max | Units | |--------|-------------------------------|------|-------|------------| | VDD | Supply Voltage | - | 30 | V | | VRDD | Reverse Battery Voltage | -30 | - | V | | Vout | Output Voltage | -0.7 | 30 | V | | Іоит | Continuous Output Current | - | 40 | mA | | TA | Operating Ambient Temperature | -40 | 150 | °C | | Ts | Storage Temperature | -50 | 150 | $^{\circ}$ | | TJ | Junction Temperature | - | 165 | °C | | В | Magnetic Flux Density | No | Limit | Gs | # **8.2 Electrical Specifications** At T_A=-40~150 °C, V_{DD}=2.7V~24V (unless otherwise specified) | Symbol | Parameters | Test Condition | Min | Тур | Max | Unit | |----------------------------|---|-----------------------------|-----|-----|-----|------| | VDD | Supply Voltage | Operating | 2.7 | - | 24 | V | | IDD | Supply Current | Fs=100KHz | - | 4.5 | 7.5 | mA | | ГОСР | Short Circuit Protection Current | B>Bop,
Vout=Vdd | - | 30 | - | mA | | Vdson | Output Saturation Voltage | IOUT=10mA,
B>BOP | - | - | 0.4 | V | | loff | Output Leakage Current | Vout=24V,
 B < BRP | - | - | 10 | uA | | Tr & Tr | Output Rise & Fall Time | RL=1KOhm,
CL=20pF | - | - | 1.0 | us | | T PO ⁽¹⁾ | Power on Time | dVDD/dt>5V/uS
B>BOP(MAX) | - | 20 | 30 | us | | Fs | Sampling Frequency | | - | 100 | - | KHz | | Rтн | Thermal Resistance of SOT-23 & Outline) | SOT-23 (Thin | - | 301 | - | °C/W | | | Thermal Resistance of Flat TO-92 | | - | 230 | - | °C/W | #### Notes # **8.3 Typical Output Waveform** ⁽¹⁾ TPO here is defined when self-diagnosis is disabled. If self-diagnosis is enabled, please refer to the $t_{\text{edge}3}$ in Part 9 (Self-diagnosis) # 8.4 Magnetic Characteristics At V_{DD}=2.7V~24V (unless otherwise specified) | Part No. | Symbol | Min | Тур | Max | Unit | |------------------|-----------------|-----|-----|-----|------| | | BOP, TA =25°C | 10 | 25 | 40 | Gs | | MT8962
Series | BRP, TA =25°C | -40 | -25 | -10 | Gs | | 561.65 | Внуѕт, Та =25°С | 20 | 50 | 80 | Gs | # 8.5 ESD Ratings | Symbo | ol en | Reference | Values | Unit | |-------|---|--------------------|----------|-------| | Vrcp | Human-body model (HBM) | AEC-Q100-002 | Class 3A | Grade | | VESD | Charged-device model (CDM) | AEC-Q100-011 Rev-D | Class C3 | Grade | ### **8.6 Characteristics Performance** Figure.9 Magnetic Characteristics (Bop & BRP) vs. Temperature @ VDD =5V #### 9 Typical Application Circuit Note: Recommended value for RL is 5KOhms to 20KOhms Figure.10 Typical Application Circuit (MT8962AT as example) # 10 Self-diagnosis The MT896X family offers self-diagnosis function during the sensor power-on. This allows the user to check the functionality of the whole signal path in response to BOP and BRP, as well as the wire connections of the sensor IC. In order to activate the self-diagnosis function, user are advised to connect their system as shown in Figure.11, in which a host is required to control the VDD and Out port of the sensor. Then user should follow the following two steps: Firstly the host has to power off the sensor and the host I/O pull the sensor output low. Then the host powers on the sensor, and the host I/O has to release the Out afterwards. Referring to the self-diagnosis timing diagram in Figure.12, there is a minimum time interval between t_{sup} (the moment when VSUP has reached 90% of its final value) and t_{rls} (the moment when host I/O releases). If any one of the 2 criteria above is violated, the sensor might skip the self-diagnosis phase and enter the normal operation mode. Figure.11 Sensor-Host connection diagram for self-diagnosis function # 10 Self-diagnosis (Continued) If the self-diagnosis function is activated, firstly the VOUT will be pulled high by RL since host I/O has released. Then the sensor will generate a first dummy signal that drives the output low, which simulates an BOP. The falling edge (t_{edge1}) of VOUT will be captured by the host. Afterwards the sensor generates a second dummy signal of the opposite polarity that drives the output high (by RL), which simulates an BRP. The rising edge (t_{edge2}) of VOUT is also captured by the host. Now the self-diagnosis phase has ended and then the sensor will enter its normal operation mode, sending the first real data to VOUT at t_{edge3} . The two captured edges (t_{edge1} and t_{edge2}) should fall in a certain time window, specified in the table "Spec for self-diagnosis". This could be a criterion for host to determine whether or not the self-diagnosis has succeeded. # Spec for self-diagnosis | Symbol | Parameters | Min | Тур | Max | Unit | |---------------------|--|-------------------------|------------------------|------------------------|-------| | t _{rls} | Host I/O release time | $t_{sup} + 20^{(1)(2)}$ | - | - | us | | t _{edge1} | First falling edge of V _{OUT} during self-diagnosis | t _{rls} +5 | t _{rls} +10 | t _{rls} +15 | us | | t _{edge2} | First rising edge of V _{OUT} during self-diagnosis | t _{edge1} +5 | t _{edge1} +10 | t _{edge1} +15 | us | | t _{edge3} | First data available during normal operation | t _{rls} +15 | t_{rls} +30 | T _{rls} +45 | us | | B _{detmax} | Maximum external field allowed during self-diagnosis | - | 5000 | - | Gauss | #### **Notes** - (1) t_{sup} is the time when sensor V_{DD} has reached 90% of its final value. $V_{DD} = V_{SUP}$. - (2) Power-on of V_{DD} has to be faster than 5V/us. # 11 Package Material Information (For Reference Only – Not for Tooling Use) # 11.1 SOT-23 Package Information Figure.13 SOT-23 Chip Marking Spec Figure.14 SOT-23 Package Drawing | Symbol | Dimensions i | n Millimeters | Dimension | s in Inches | |--------|--------------|---------------|-----------|-------------| | | Min | Max | Min | Max | | А | 1.050 | 1.300 | 0.041 | 0.051 | | A1 | 0.000 | 0.150 | 0.000 | 0.006 | | A2 | 1.000 | 1.200 | 0.039 | 0.047 | | b | 0.300 | 0.500 | 0.012 | 0.020 | | С | 0.080 | 0.220 | 0.003 | 0.009 | | D | 2.800 | 3.020 | 0.110 | 0.119 | | E | 1.500 | 1.700 | 0.059 | 0.067 | | E1 | 2.600 | 3.000 | 0.102 | 0.118 | | e | 0.950 |) TYP | 0.037 | TYP | | e1 | 1.800 | 2.000 | 0.071 | 0.079 | | L | 0.300 | 0.600 | 0.012 | 0.024 | | θ | 0 ° | 8 ° | 0 ° | 8 ° | | Х | 2.185 | 5 TYP | 0.086 | TYP | | У | 0.756 | 5 TYP | 0.030 | TYP | | Z | 0.857 | 7 TYP | 0.034 | TYP | | | | | | | # 11.2 SOT-23 (Thin Outline) Package Information Figure.15 SOT-23 (Thin Outline) Chip Marking Spec Figure.16 SOT-23 (Thin Outline) Package Drawing | Symbol | Dimensions in Millimeters | | Dimension | s in Inches | |--------|---------------------------|--------|-----------|-------------| | | Min | Max | Min | Max | | Α | 0.900 | 1.150 | 0.035 | 0.045 | | A1 | 0.000 | 0.100 | 0.000 | 0.004 | | A2 | 0.900 | 1.100 | 0.035 | 0.043 | | b | 0.300 | 0.500 | 0.012 | 0.020 | | С | 0.132 | 0.202 | 0.005 | 0.008 | | D | 2.800 | 3.000 | 0.110 | 0.118 | | E | 1.200 | 1.400 | 0.047 | 0.055 | | E1 | 2.250 | 2.550 | 0.089 | 0.100 | | е | 0.95 | 0 TYP | 0.037 | TYP | | e1 | 1.800 | 2.000 | 0.071 | 0.079 | | L | 0.55 | 0 REF | 0.022 | REF | | L1 | 0.300 | 0.500 | 0.012 | 0.020 | | θ | 0 ° | 8 ° | 0 ° | 8 ° | | Х | 2.17 | '5 TYP | 0.086 | TYP | | у | 0.59 | 06 TYP | 0.023 | TYP | | Z | 0.19 | 3 TYP | 0.008 | TYP | # 11.3 Flat TO-92 Package Information Figure.17 Flat TO-92 Chip Marking Spec Figure.18 Flat TO-92 Package Drawing | Symbol | Dimensions i | in Millimeters | Dimension | s in Inches | |--------|--------------|----------------|-----------|-------------| | | Min | Max | Min | Max | | Α | 1.420 | 1.620 | 0.056 | 0.064 | | A1 | 0.660 | 0.910 | 0.026 | 0.036 | | b | 0.330 | 0.560 | 0.013 | 0.022 | | b1 | 0.400 | 0.510 | 0.016 | 0.020 | | С | 0.330 | 0.510 | 0.013 | 0.020 | | D | 3.900 | 4.200 | 0.154 | 0.165 | | D1 | 2.280 | 2.680 | 0.090 | 0.106 | | E | 2.900 | 3.280 | 0.114 | 0.128 | | е | 1.27 | 0 TYP | 0.050 |) TYP | | e1 | 2.440 | 2.640 | 0.096 | 0.104 | | L | 13.500 | 16.200 | 0.531 | 0.638 | | θ | 45 ' | ° TYP | 45 ° | TYP | | Х | 2.00 | 0 TYP | 0.079 |) TYP | | у | 0.78 | 0 TYP | 0.031 | I TYP | | Z | 0.43 | 5 TYP | 0.017 | 7 TYP | # 12 Copy Rights and Disclaimer - 1. This document may not be reproduced or duplicated, in any form, in whole or in part without prior written consent of MagnTek . Copyrights © 2022, MagnTek Incorporated. - 2. MagnTek reserves the right to make changes to the information published in this document at anytime without notice. - 3. MagnTek' s products are limited for use in normal commercial applications. MagnTek' s products are not to be used in any device or system, including but not limited to medical life support equipment and system. For the latest version of this document, please visit our website: www.magntek.com.cn