

# Complementary Power Transistors

**DPAK For Surface Mount Applications** 

# MJD31 (NPN), MJD32 (PNP)

Designed for general purpose amplifier and low speed switching applications.

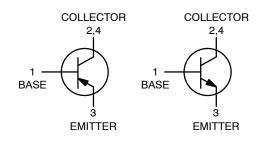
#### **Features**

- Lead Formed for Surface Mount Applications in Plastic Sleeves
- Straight Lead Version in Plastic Sleeves ("1" Suffix)
- Lead Formed Version in 16 mm Tape and Reel ("T4" Suffix)
- Electrically Similar to Popular TIP31 and TIP32 Series
- Epoxy Meets UL 94, V-0 @ 0.125 in
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

#### **MAXIMUM RATINGS**

| Rating                                                            | Symbol                            | Max            | Unit      |
|-------------------------------------------------------------------|-----------------------------------|----------------|-----------|
| Collector–Emitter Voltage<br>MJD31, MJD32<br>MJD31C, MJD32C       | V <sub>CEO</sub>                  | 40<br>100      | Vdc       |
| Collector-Base Voltage<br>MJD31, MJD32<br>MJD31C, MJD32C          | V <sub>CB</sub>                   | 40<br>100      | Vdc       |
| Emitter-Base Voltage                                              | V <sub>EB</sub>                   | 5.0            | Vdc       |
| Collector Current - Continuous                                    | Ic                                | 3.0            | Adc       |
| Collector Current - Peak                                          | I <sub>CM</sub>                   | 5.0            | Adc       |
| Base Current                                                      | I <sub>B</sub>                    | 1.0            | Adc       |
| Total Power Dissipation @ T <sub>C</sub> = 25°C Derate above 25°C | P <sub>D</sub>                    | 15<br>0.12     | W<br>W/°C |
| Total Power Dissipation @ T <sub>A</sub> = 25°C Derate above 25°C | P <sub>D</sub>                    | 1.56<br>0.012  | W<br>W/°C |
| Operating and Storage Junction Temperature Range                  | T <sub>J</sub> , T <sub>stg</sub> | -65 to<br>+150 | °C        |
| ESD - Human Body Model                                            | НВМ                               | 3B             | V         |
| ESD - Machine Model                                               | MM                                | МЗ             | V         |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


# THERMAL CHARACTERISTICS

| Characteristic                           | Symbol          | Max | Unit |
|------------------------------------------|-----------------|-----|------|
| Thermal Resistance, Junction-to-Case     | $R_{\theta JC}$ | 8.3 | °C/W |
| Thermal Resistance, Junction-to-Ambient* | $R_{\theta JA}$ | 80  | °C/W |
| Lead Temperature for Soldering Purposes  | TL              | 260 | °C   |

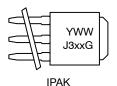
<sup>\*</sup>These ratings are applicable when surface mounted on the minimum pad sizes recommended.

# SILICON POWER TRANSISTORS 3 AMPERES 40 AND 100 VOLTS 15 WATTS

## **COMPLEMENTARY**








DPAK CASE 369C STYLE 1

IPAK CASE 369D STYLE 1

# **MARKING DIAGRAMS**





A = Site Code
Y = Year
WW = Work Week
xx = 1, 1C, 2, or 2C
G = Pb-Free Package

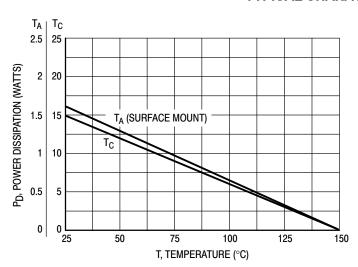
# **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

# **ELECTRICAL CHARACTERISTICS** ( $T_C = 25^{\circ}C$ unless otherwise noted)

| Characteristic                                                                                                                                     | Symbol                | Min       | Max      | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|----------|------|
| OFF CHARACTERISTICS                                                                                                                                |                       |           |          |      |
| Collector-Emitter Sustaining Voltage (Note 1) (I <sub>C</sub> = 30 mAdc, I <sub>B</sub> = 0) MJD31, MJD32 MJD31C, MJD32C                           | V <sub>CEO(sus)</sub> | 40<br>100 | -<br>-   | Vdc  |
| Collector Cutoff Current (V <sub>CE</sub> = 40 Vdc, I <sub>B</sub> = 0) MJD31, MJD32 (V <sub>CE</sub> = 60 Vdc, I <sub>B</sub> = 0) MJD31C, MJD32C | I <sub>CEO</sub>      | -         | 50<br>50 | μAdc |
| Collector Cutoff Current<br>(V <sub>CE</sub> = Rated V <sub>CEO</sub> , V <sub>EB</sub> = 0)                                                       | ICES                  | -         | 20       | μAdc |
| Emitter Cutoff Current (V <sub>BE</sub> = 5 Vdc, I <sub>C</sub> = 0)                                                                               | I <sub>EBO</sub>      | -         | 1        | mAdc |
| ON CHARACTERISTICS (Note 1)                                                                                                                        |                       |           |          |      |
| DC Current Gain ( $I_C = 1$ Adc, $V_{CE} = 4$ Vdc) ( $I_C = 3$ Adc, $V_{CE} = 4$ Vdc)                                                              | h <sub>FE</sub>       | 25<br>10  | -<br>50  |      |
| Collector–Emitter Saturation Voltage (I <sub>C</sub> = 3 Adc, I <sub>B</sub> = 375 mAdc)                                                           | V <sub>CE(sat)</sub>  | -         | 1.2      | Vdc  |
| Base-Emitter On Voltage<br>(I <sub>C</sub> = 3 Adc, V <sub>CE</sub> = 4 Vdc)                                                                       | V <sub>BE(on)</sub>   | -         | 1.8      | Vdc  |
| DYNAMIC CHARACTERISTICS                                                                                                                            |                       |           |          |      |
| Current Gain – Bandwidth Product (Note 2) $(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 1 \text{ MHz})$                            | f <sub>T</sub>        | 3         | -        | MHz  |
| Small-Signal Current Gain (I <sub>C</sub> = 0.5 Adc, V <sub>CE</sub> = 10 Vdc, f = 1 kHz)                                                          | h <sub>fe</sub>       | 20        | -        |      |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


1. Pulse Test: Pulse Width  $\leq 300~\mu s$ , Duty Cycle  $\leq 2\%$ .

2.  $f_T = |h_{fe}| \bullet f_{test}$ .

## TYPICAL CHARACTERISTICS

+11 V

0 -



 $\rm R_B$  and  $\rm R_C$  VARIED TO OBTAIN DESIRED CURRENT LEVELS D<sub>1</sub> MUST BE FAST RECOVERY TYPE, e.g.: 1N5825 USED ABOVE I<sub>B</sub>  $\approx$  100 mA MSD6100 USED BELOW I<sub>B</sub>  $\approx$  100 mA REVERSE ALL POLARITIES FOR PNP.

 $R_B$ 

51

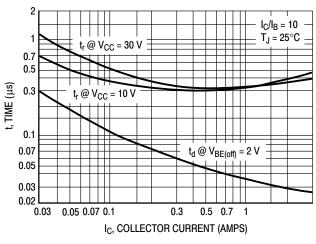
**★** D₁

-4 V

25 μs

 $t_{\text{r}},\,t_{\text{f}} \leq 10 \text{ ns}$ 

**DUTY CYCLE = 1%** 


V<sub>CC</sub> +30 V

 $\mathsf{R}_\mathsf{C}$ 

**SCOPE** 

Figure 1. Power Derating

Figure 2. Switching Time Test Circuit



 $I_{B1} = I_{B2}$ 2  $I_{\rm C}/I_{\rm B} = 10$  $t_{s}^{\prime}$  $t_s' = t_s - 1/8 t_f$  $t_f @ V_{CC} = 30 V$  $T_J = 25^{\circ}C$ 0.7 0.5 t, TIME (µs) 0.3  $t_f @ V_{CC} = 10 V$ 0.2 0.1 0.07 0.05 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 IC, COLLECTOR CURRENT (AMPS)

Figure 3. Turn-On Time

Figure 4. Turn-Off Time

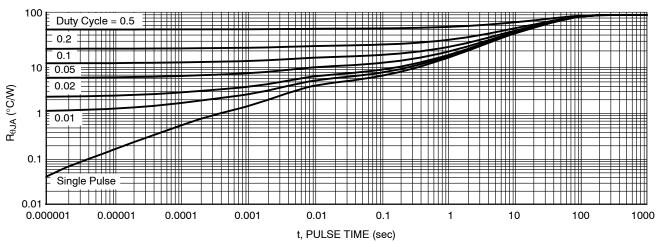
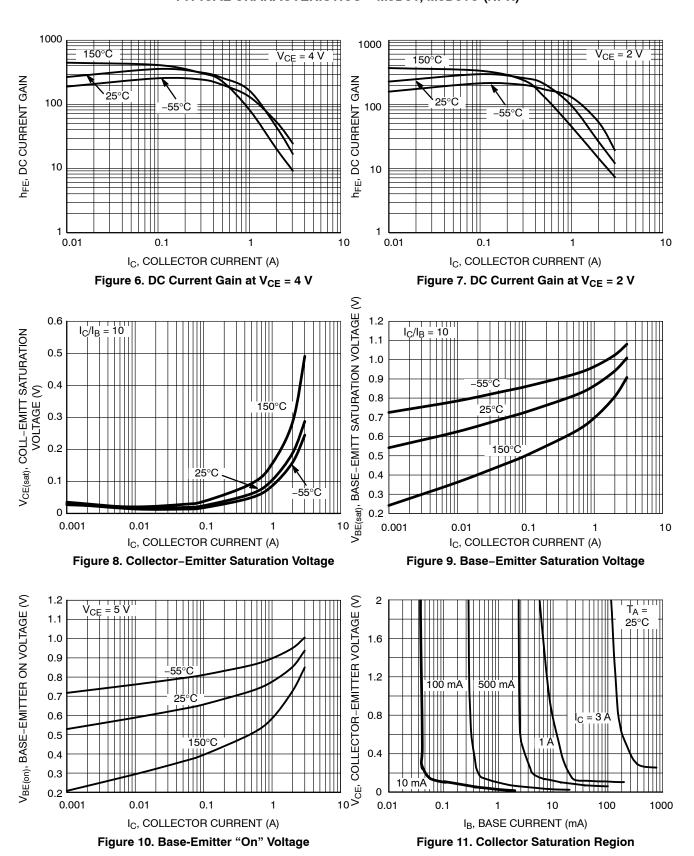




Figure 5. Thermal Response

# TYPICAL CHARACTERISTICS - MJD31, MJD31C (NPN)



# TYPICAL CHARACTERISTICS - MJD31, MJD31C (NPN)

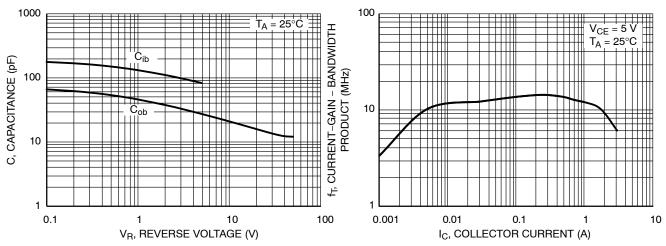



Figure 12. Capacitance

Figure 13. Current-Gain-Bandwidth Product

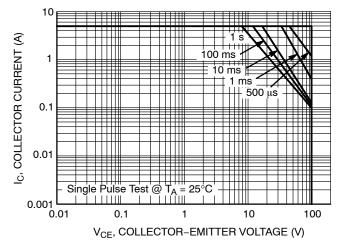
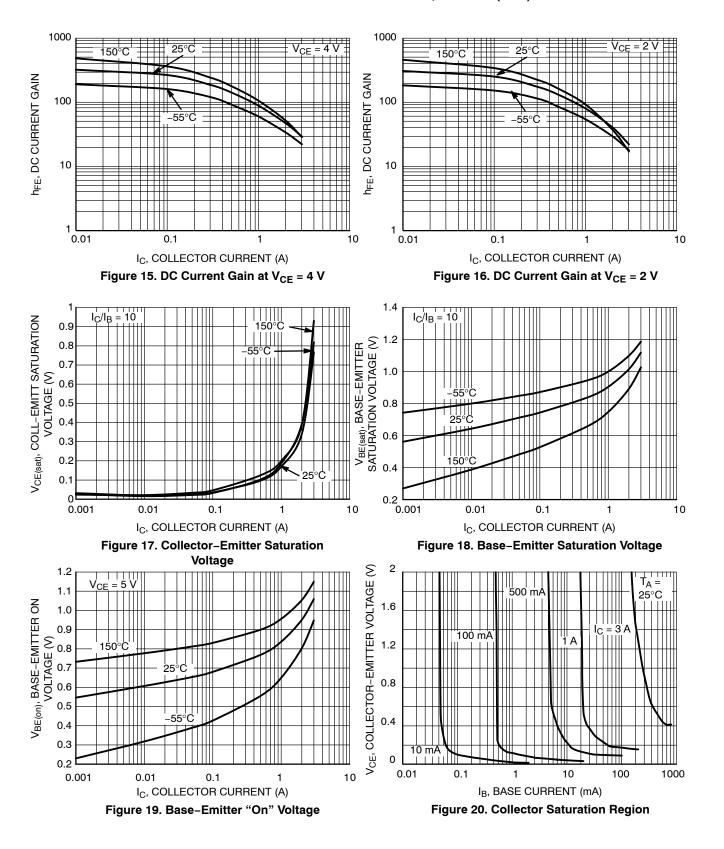




Figure 14. Safe Operating Area

# TYPICAL CHARACTERISTICS - MJD32, MJD32C (PNP)



# **TYPICAL CHARACTERISTICS**

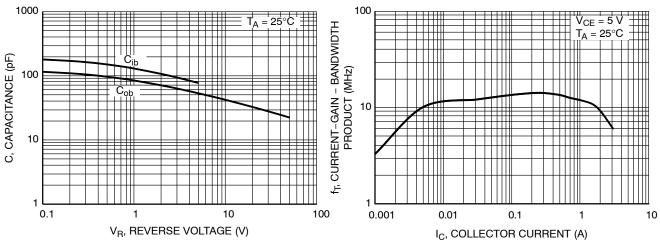



Figure 21. Capacitance

Figure 22. Current-Gain-Bandwidth Product

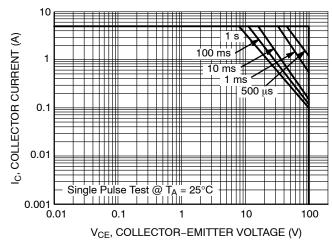
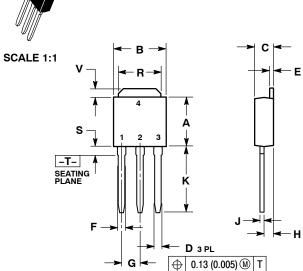



Figure 23. Safe Operating Area

# **ORDERING INFORMATION**

| Device        | Package Type      | Package | Shipping <sup>†</sup> |
|---------------|-------------------|---------|-----------------------|
| MJD31CG       | DPAK<br>(Pb-Free) | 369C    | 75 Units / Rail       |
| NJVMJD31CG*   | DPAK<br>(Pb-Free) | 369C    | 75 Units / Rail       |
| MJD31C1G      | IPAK<br>(Pb-Free) | 369D    | 75 Units / Rail       |
| MJD31CRLG     | DPAK<br>(Pb-Free) | 369C    | 1,800 / Tape & Reel   |
| NJVMJD31CRLG* | DPAK<br>(Pb-Free) | 369C    | 1,800 / Tape & Reel   |
| MJD31CT4G     | DPAK<br>(Pb-Free) | 369C    | 2,500 / Tape & Reel   |
| NJVMJD31CT4G* | DPAK<br>(Pb-Free) | 369C    | 2,500 / Tape & Reel   |
| MJD31T4G      | DPAK<br>(Pb-Free) | 369C    | 2,500 / Tape & Reel   |
| NJVMJD31T4G*  | DPAK<br>(Pb-Free) | 369C    | 2,500 / Tape & Reel   |
| MJD32CG       | DPAK<br>(Pb-Free) | 369C    | 75 Units / Rail       |
| NJVMJD32CG*   | DPAK<br>(Pb-Free) | 369C    | 75 Units / Rail       |
| MJD32CRLG     | DPAK<br>(Pb-Free) | 369C    | 1,800 / Tape & Reel   |
| MJD32CT4G     | DPAK<br>(Pb-Free) | 369C    | 2,500 / Tape & Reel   |
| NJVMJD32CT4G* | DPAK<br>(Pb-Free) | 369C    | 2,500 / Tape & Reel   |
| MJD32RLG      | DPAK<br>(Pb-Free) | 369C    | 1,800 / Tape & Reel   |
| MJD32T4G      | DPAK<br>(Pb-Free) | 369C    | 2,500 / Tape & Reel   |
| NJVMJD32T4G*  | DPAK<br>(Pb-Free) | 369C    | 2,500 / Tape & Reel   |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


<sup>\*</sup>NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

# **MECHANICAL CASE OUTLINE**





**DATE 15 DEC 2010** 



STYLE 2:

PIN 1. GATE

3

STYLE 6: PIN 1. MT1 2. MT2 3. GATE

2. DRAIN

4. DRAIN

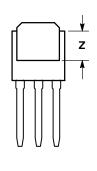
MT2

SOURCE

STYLE 1: PIN 1. BASE

3

STYLE 5: PIN 1. GATE


2. ANODE 3. CATHODE

ANODE

2. COLLECTOR

**EMITTER** 

COLLECTOR



#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.

|     | INCHES |       | MILLIN | IETERS |
|-----|--------|-------|--------|--------|
| DIM | MIN    | MAX   | MIN    | MAX    |
| Α   | 0.235  | 0.245 | 5.97   | 6.35   |
| В   | 0.250  | 0.265 | 6.35   | 6.73   |
| С   | 0.086  | 0.094 | 2.19   | 2.38   |
| D   | 0.027  | 0.035 | 0.69   | 0.88   |
| E   | 0.018  | 0.023 | 0.46   | 0.58   |
| F   | 0.037  | 0.045 | 0.94   | 1.14   |
| G   | 0.090  | BSC   | 2.29   | BSC    |
| Н   | 0.034  | 0.040 | 0.87   | 1.01   |
| J   | 0.018  | 0.023 | 0.46   | 0.58   |
| K   | 0.350  | 0.380 | 8.89   | 9.65   |
| R   | 0.180  | 0.215 | 4.45   | 5.45   |
| S   | 0.025  | 0.040 | 0.63   | 1.01   |
| ٧   | 0.035  | 0.050 | 0.89   | 1.27   |
| Z   | 0.155  |       | 3.93   |        |

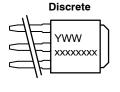
# **MARKING DIAGRAMS**

STYLE 3: PIN 1. ANODE

2. CATHODE

4. CATHODE

3 ANODE


STYLE 7: PIN 1. GATE 2. COLLECTOR

3. EMITTER

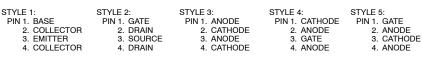
COLLECTOR

STYLE 4: PIN 1. CATHODE ANODE
 GATE

4. ANODE





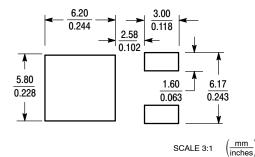

xxxxxxxxx = Device Code Α = Assembly Location IL = Wafer Lot Υ = Year WW = Work Week

| DOCUMENT NUMBER: |              | 98AON10528D                 | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|--------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                  | DESCRIPTION: | IPAK (DPAK INSERTION MOUNT) |                                                                                                                                                                                     | PAGE 1 OF 1 |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



# **DPAK (SINGLE GAUGE)** CASE 369C **ISSUE F** SCALE 1:1 Α <del><</del>−b3-В L3 Z ۩ **DETAIL A** Ш NOTE 7 C → **BOTTOM VIEW** h2 e SIDE VIEW ⊕ 0.005 (0.13) M C **TOP VIEW** Z H L2 GAUGE C SEATING PLANE




STYLE 6: STYLE 7: STYLE 8: STYLE 9: STYLE 10: PIN 1. MT1 2. MT2 PIN 1. GATE 2. COLLECTOR PIN 1. N/C 2. CATHODE PIN 1. ANODE 2. CATHODE PIN 1. CATHODE 2. ANODE 3. GATE 4. MT2 3. EMITTER 4. COLLECTOR 3. ANODE 4. CATHODE 3. RESISTOR ADJUST 4. CATHODE 3. CATHODE 4. ANODE

#### **SOLDERING FOOTPRINT\***

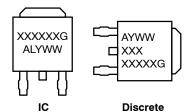
Α1

**DETAIL A** ROTATED 90° CW



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

**DATE 21 JUL 2015** 


#### NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
   CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
  4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
  5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

  6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

|     | INCHES    |       | MILLIN   | IETERS |
|-----|-----------|-------|----------|--------|
| DIM | MIN       | MAX   | MIN      | MAX    |
| Α   | 0.086     | 0.094 | 2.18     | 2.38   |
| A1  | 0.000     | 0.005 | 0.00     | 0.13   |
| b   | 0.025     | 0.035 | 0.63     | 0.89   |
| b2  | 0.028     | 0.045 | 0.72     | 1.14   |
| b3  | 0.180     | 0.215 | 4.57     | 5.46   |
| С   | 0.018     | 0.024 | 0.46     | 0.61   |
| c2  | 0.018     | 0.024 | 0.46     | 0.61   |
| D   | 0.235     | 0.245 | 5.97     | 6.22   |
| Е   | 0.250     | 0.265 | 6.35     | 6.73   |
| е   | 0.090     | BSC   | 2.29 BSC |        |
| Н   | 0.370     | 0.410 | 9.40     | 10.41  |
| L   | 0.055     | 0.070 | 1.40     | 1.78   |
| L1  | 0.114 REF |       | 2.90 REF |        |
| L2  | 0.020     | BSC   | 0.51     | BSC    |
| L3  | 0.035     | 0.050 | 0.89     | 1.27   |
| L4  |           | 0.040 |          | 1.01   |
| Z   | 0.155     |       | 3.93     |        |

# **GENERIC MARKING DIAGRAM\***



XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON10527D         | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | DPAK (SINGLE GAUGE) |                                                                                                                                                                                | PAGE 1 OF 1 |

**BOTTOM VIEW** 

ALTERNATE CONSTRUCTIONS

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative