onsemi

Low Voltage, Rail-to-Rail Operational Amplifiers

MC33201, MC33202, MC33204, NCV33201, NCV33202, NCV33204

The MC33201/2/4 family of operational amplifiers provide rail-to-rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail-to-rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages (\pm 0.9 V) yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications.

Features

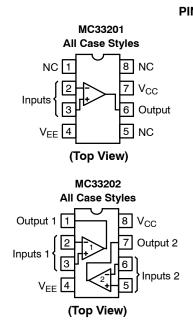
- Low Voltage, Single Supply Operation (+1.8 V and Ground to +12 V and Ground)
- Input Voltage Range Includes both Supply Rails
- Output Voltage Swings within 50 mV of both Rails
- No Phase Reversal on the Output for Over-driven Input Signals
- High Output Current (I_{SC} = 80 mA, Typ)
- Low Supply Current ($I_D = 0.9 \text{ mA}$, Typ)
- 600 Ω Output Drive Capability
- Extended Operating Temperature Ranges (-40° to +105°C and -55° to +125°C)
- Typical Gain Bandwidth Product = 2.2 MHz
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

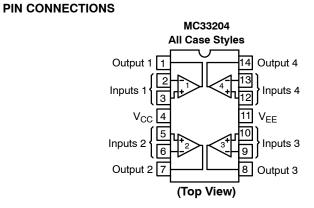
CASE 751

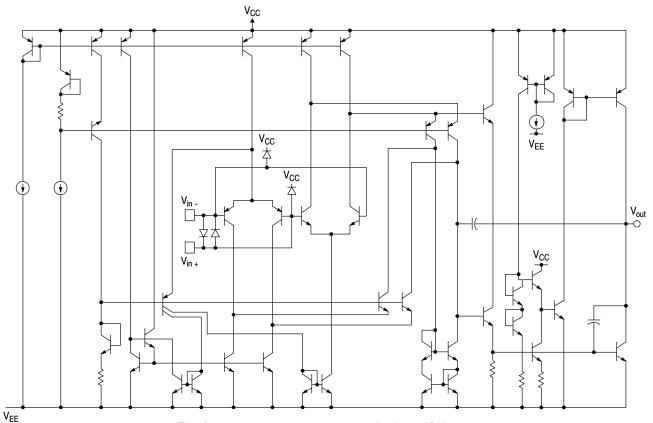
Micro8 DM SUFFIX

CASE 846A

TSSOP-14 DTB SUFFIX CASE 948G


ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.


DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 10 of this data sheet.

MI.

This device contains 70 active transistors (each amplifier).

Figure 1. Circuit Schematic (Each Amplifier)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (V _{CC} to V _{EE})	VS	+13	V
Input Differential Voltage Range	V _{IDR}	Note 1	V
Common Mode Input Voltage Range (Note 2)	V _{CM}	V _{CC} + 0.5 V to V _{EE} – 0.5 V	V
Output Short Circuit Duration	t _s	Note 3	sec
Maximum Junction Temperature	TJ	+150	°C
Storage Temperature	T _{stg}	– 65 to +150	°C
Maximum Power Dissipation	PD	Note 3	mW

DC ELECTRICAL CHARACTERISTICS (T_A = 25° C)

Characteristic	V _{CC} = 2.0 V	V _{CC} = 3.3 V	V _{CC} = 5.0 V	Unit
Input Offset Voltage				mV
V _{IO (max)} MC33201, NCV33201V MC33202, NCV33202, V MC33204, NCV33204, V	± 8.0 ±10 ±12	± 8.0 ±10 ±12	± 6.0 ± 8.0 ±10	
Output Voltage Swing V_{OH} (R _L = 10 kΩ) V_{OL} (R _L = 10 kΩ)	1.9 0.10	3.15 0.15	4.85 0.15	V _{min} V _{max}
Power Supply Current per Amplifier (I _D)	1.125	1.125	1.125	mA

Specifications at V_{CC} = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. V_{EE} = GND.

DC ELECTRICAL CHARACTERISTICS (V_{CC} = + 5.0 V, V_{EE} = Ground, T_A = 25°C, unless otherwise noted.)

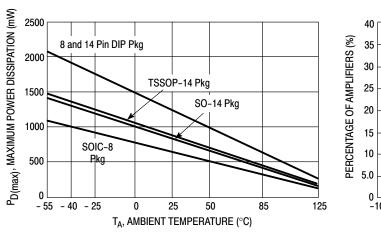
Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (V _{CM} 0 V to 0.5 V, V _{CM} 1.0 V to 5.0 V)	3	v _{io}				mV
MC33201/NCV33201V: $T_A = +25^{\circ}C$			-	-	6.0	
MC33201: $T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			-	-	9.0	
MC33201V/NCV33201V: T _A = - 55° to +125°C			-	-	13	
MC33202/NCV33202, V: $T_A = +25^{\circ}C$			-	-	8.0	
MC33202/NCV33202: $T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			-	-	11	
MC33202V/NCV33202V: $T_A = -55^{\circ} \text{ to } +125^{\circ}\text{C}$ (Note 4)			-	-	14	
MC33204/NCV33204V: $T_A = + 25^{\circ}C$			-	-	10	
MC33204: $T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			-	-	13	
MC33204V/NCV33204V: $T_A = -55^{\circ} \text{ to } +125^{\circ}\text{C}$ (Note 4)			-	-	17	
Input Offset Voltage Temperature Coefficient ($R_S = 50 \Omega$)	4	$\Delta V_{IO} / \Delta T$				μV/°C
$T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			-	2.0	-	
$T_{A} = -55^{\circ} \text{ to } +125^{\circ}\text{C}$			-	2.0	-	
Input Bias Current (V_{CM} = 0 V to 0.5 V, V_{CM} = 1.0 V to 5.0 V)	5, 6	I _{IB}				nA
$T_{A} = + 25^{\circ}C$			-	80	200	
$T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			-	100	250	
$T_A = -55^{\circ} \text{ to } +125^{\circ}\text{C}$			-	-	500	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The differential input voltage of each amplifier is limited by two internal parallel back-to-back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins.

2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV.

3. Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded. (See Figure 2)


4. All NCV devices are qualified for Automotive use.

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Input Offset Current (V _{CM} = 0 V to 0.5 V, V _{CM} = 1.0 V to 5.0 V) $T_A = + 25^{\circ}C$ $T_A = -40^{\circ}$ to +105°C $T_A = -55^{\circ}$ to +125°C	_	I _{IO}		5.0 10 -	50 100 200	nA
Common Mode Input Voltage Range	-	V _{ICR}	V _{EE}	-	V _{CC}	V
Large Signal Voltage Gain (V_{CC} = + 5.0 V, V_{EE} = - 5.0 V) R_L = 10 k\Omega R_L = 600 Ω	7	A _{VOL}	50 25	300 250		kV/V
Output Voltage Swing (V _{ID} = \pm 0.2 V) R _L = 10 kΩ R _L = 10 kΩ R _L = 600 Ω R _L = 600 Ω	8, 9, 10	V _{OH} V _{OL} V _{OH} V _{OL}	4.85 - 4.75 -	4.95 0.05 4.85 0.15	_ 0.15 _ 0.25	V
Common Mode Rejection (V _{in} = 0 V to 5.0 V)	11	CMR	60	90	-	dB
Power Supply Rejection Ratio V _{CC} /V _{EE} = 5.0 V/GND to 3.0 V/GND	12	PSRR	500	25	_	μV/V
Output Short Circuit Current (Source and Sink)	13, 14	I _{SC}	50	80	-	mA
Power Supply Current per Amplifier (V _O = 0 V) $T_A = -40^{\circ}$ to +105°C $T_A = -55^{\circ}$ to +125°C	15	I _D		0.9 0.9	1.125 1.125	mA

DC ELECTRICAL CHARACTERISTICS (cont.) ($V_{CC} = +5.0 \text{ V}, V_{EE} = \text{Ground}, T_A = 25^{\circ}\text{C}, \text{ unless otherwise noted.}$)

AC ELECTRICAL CHARACTERISTICS (V_{CC} = + 5.0 V, V_{EE} = Ground, T_A = 25°C, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Slew Rate (V_S = \pm 2.5 V, V_O = $-$ 2.0 V to + 2.0 V, R_L = 2.0 kΩ, A_V = +1.0)	16, 26	SR	0.5	1.0	-	V/µs
Gain Bandwidth Product (f = 100 kHz)	17	GBW	-	2.2	-	MHz
Gain Margin (R_L = 600 Ω , C_L = 0 pF)	20, 21, 22	A _M	-	12	-	dB
Phase Margin ($R_L = 600 \Omega$, $C_L = 0 pF$)	20, 21, 22	Ø _M	-	65	-	Deg
Channel Separation (f = 1.0 Hz to 20 kHz, A_V = 100)	23	CS	-	90	-	dB
Power Bandwidth (V_O = 4.0 V_{pp}, R_L = 600 Ω , THD \leq 1 %)		BWP	-	28	_	kHz
Total Harmonic Distortion (R _L = 600 $\Omega,$ V _O = 1.0 V _{pp} , A _V = 1.0) f = 1.0 kHz f = 10 kHz	24	THD		0.002 0.008		%
Open Loop Output Impedance $(V_O = 0 V, f = 2.0 MHz, A_V = 10)$		z _o	_	100	_	Ω
Differential Input Resistance (V _{CM} = 0 V)		R _{in}	-	200	-	kΩ
Differential Input Capacitance (V _{CM} = 0 V)		C _{in}	-	8.0	-	pF
Equivalent Input Noise Voltage ($R_S = 100 \Omega$) f = 10 Hz f = 1.0 kHz	25	e _n		25 20	- -	nV/ √Hz
Equivalent Input Noise Current f = 10 Hz f = 1.0 kHz	25	i _n		0.8 0.2		pA/ √Hz

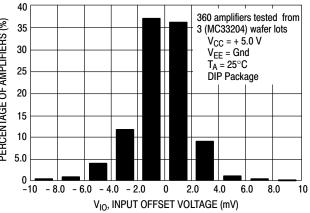


Figure 3. Input Offset Voltage Distribution

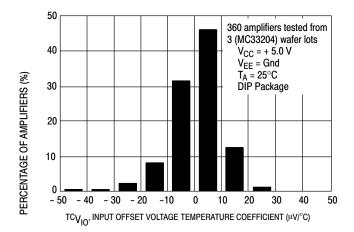


Figure 4. Input Offset Voltage Temperature Coefficient Distribution

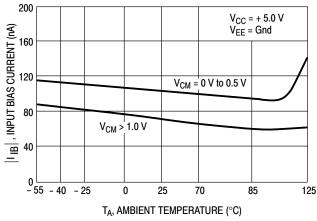
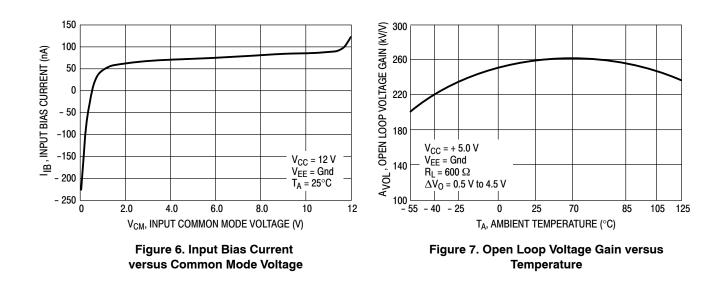
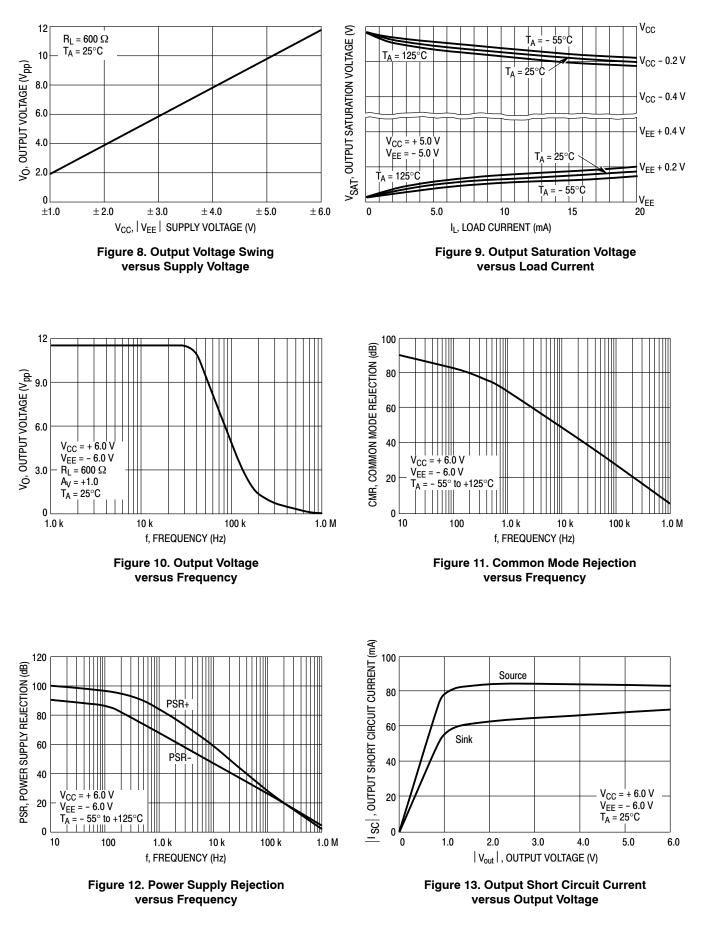
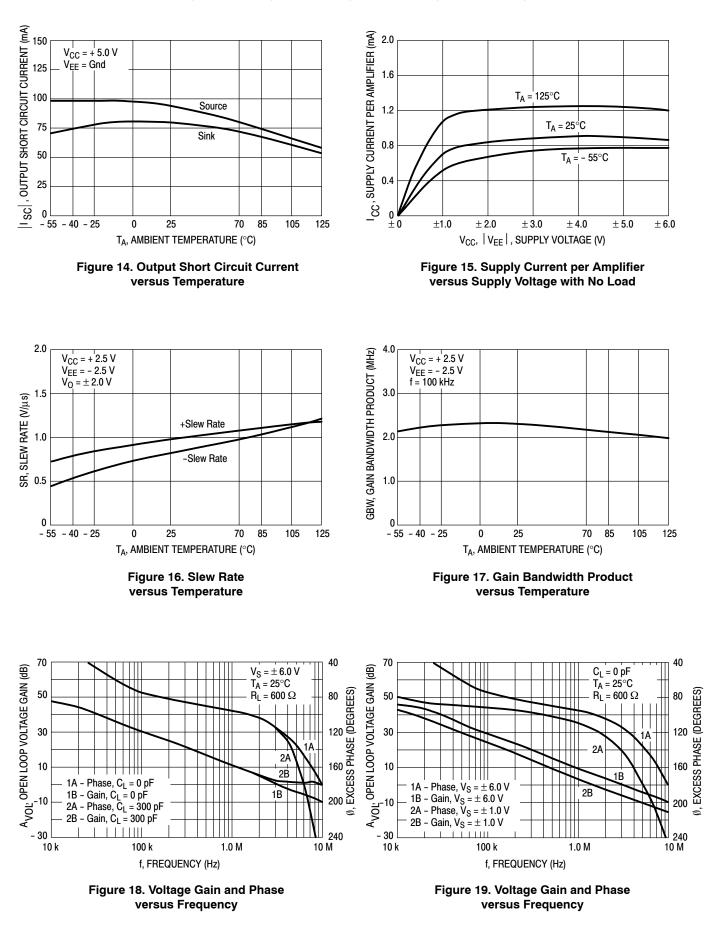
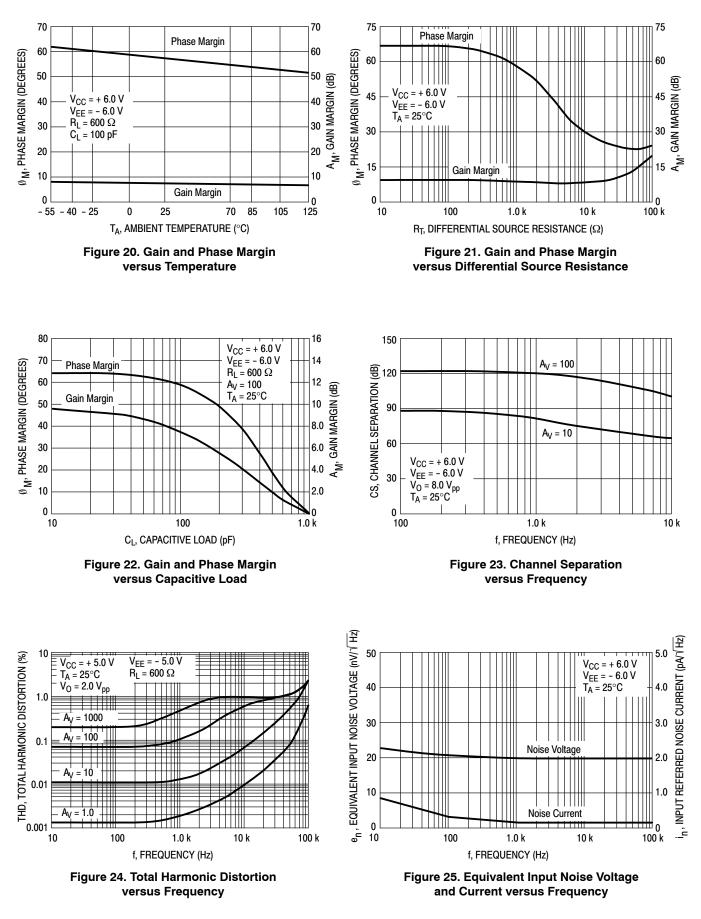






Figure 5. Input Bias Current versus Temperature

DETAILED OPERATING DESCRIPTION

General Information

The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail-to-rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and ground.

Since the common mode input voltage range extends from V_{CC} to V_{EE} , it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings.

Circuit Information

Rail-to-rail performance is achieved at the input of the amplifiers by using parallel NPN-PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than V_{EE} , the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross-coupling techniques have been used to keep this change to a minimum.

In addition to its rail-to-rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600 Ω loads. Because of this high output current capability, care should be taken not to exceed the 150°C maximum junction temperature.

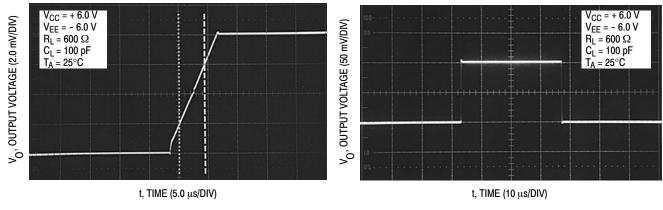


Figure 26. Noninverting Amplifier Slew Rate

Figure 27. Small Signal Transient Response

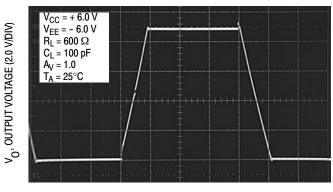
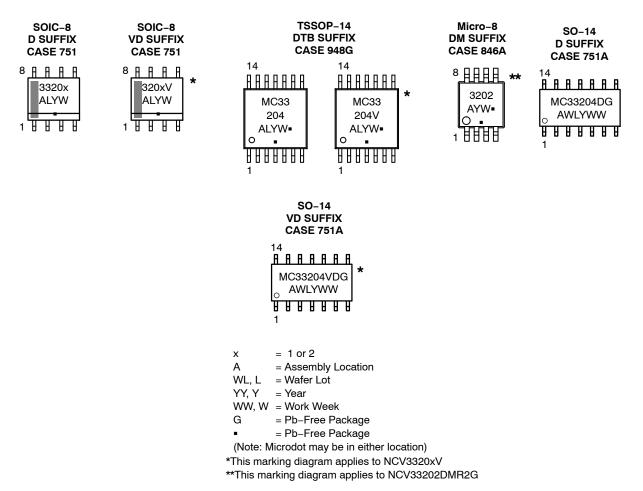


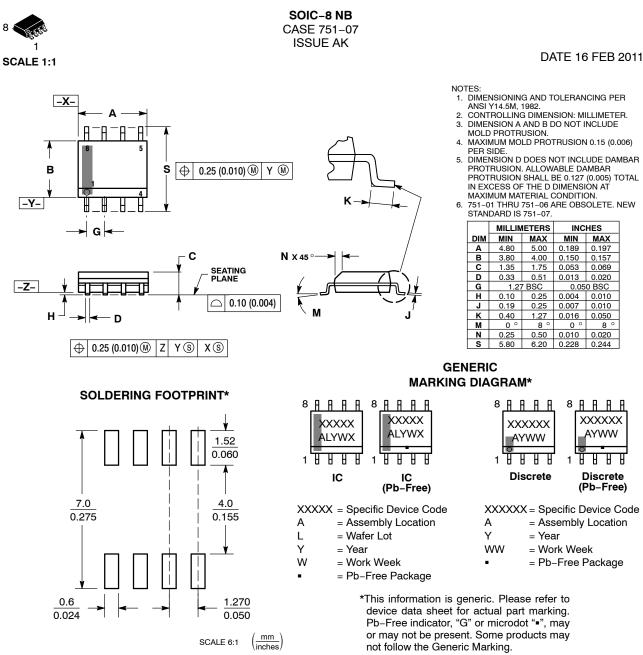
Figure 28. Large Signal Transient Response

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface

between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process.


ORDERING INFORMATION

Operational Amplifier Function	Device	Operating Temperature Range	Package	Shipping [†]
	MC33201DR2G	$T_A = -40^\circ \text{ to } +105^\circ \text{C}$	SOIC-8 (Pb-Free)	2500 / Tape & Reel
Single	MC33201VDR2G	$T_A = -55^\circ$ to 125° C		2500 / Tape & Reel
	NCV33201VDR2G			2500 / Tape & Reel
	MC33202DR2G	T_A = -40 ° to +105°C	SOIC-8 (Pb-Free)	2500 / Tape & Reel
	MC33202DMR2G		Micro-8 (Pb-Free)	4000 / Tape & Reel
Dual	NCV33202DMR2G*			
	MC33202VDR2G	$T_A = -55^\circ$ to 125° C	SOIC-8 (Pb-Free)	2500 / Tape & Reel
	NCV33202VDR2G*			
	MC33204DR2G	T_A = -40 ° to +105°C	SO-14 (Pb-Free)	2500 Units / Tape & Reel
Quad	MC33204DTBR2G	1	TSSOP-14 (Pb-Free)	2500 Units / Tape & Reel
Quau	NCV33204DR2G*	$T_A = -55^\circ$ to 125° C	SO-14 (Pb-Free)	2500 Units / Tape & Reel
	NCV33204DTBR2G*	1	TSSOP-14 (Pb-Free)	2500 Units / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

MARKING DIAGRAMS

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DESCRIPTION: SOIC-8 NB PAGE 1		PAGE 1 OF 2	
the right to make changes without furth purpose, nor does onsemi assume ar	er notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other courses no warranty, representation or guarantee regarding the suitability of its proof any product or circuit, and specifically disclaims any and all liability, incle under its patent rights nor the rights of others.	oducts for any particular	

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5.

6.

7.

8 GATE 1

SOURCE 1/DRAIN 2

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 MIRROR 1 8. STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT OVI O 2 UVLO З. 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 З. BASE #2 COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2		

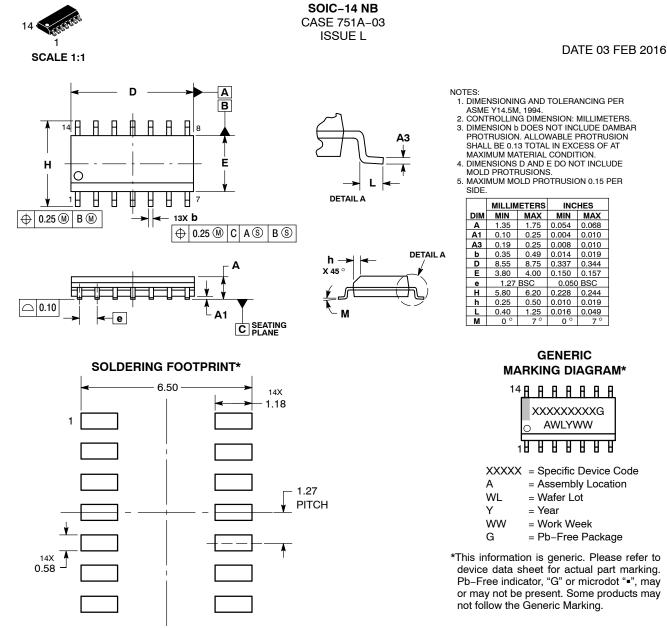
onsem and of isor in are trademarks or semiconductor compension instructions, the do onsem or its subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced stat purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

7.

8

COLLECTOR, #1

COLLECTOR, #1


DUSEM

0.068

0.019

0.344

0.244

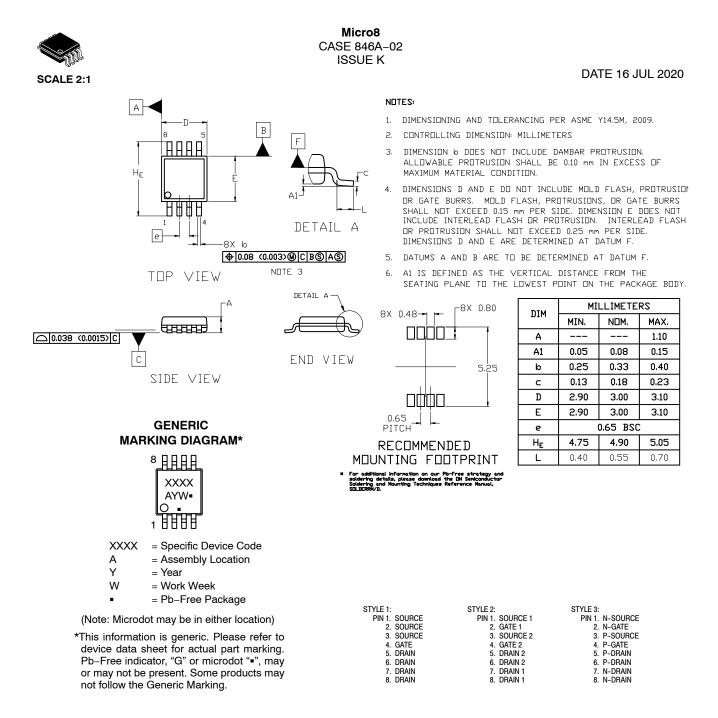
DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

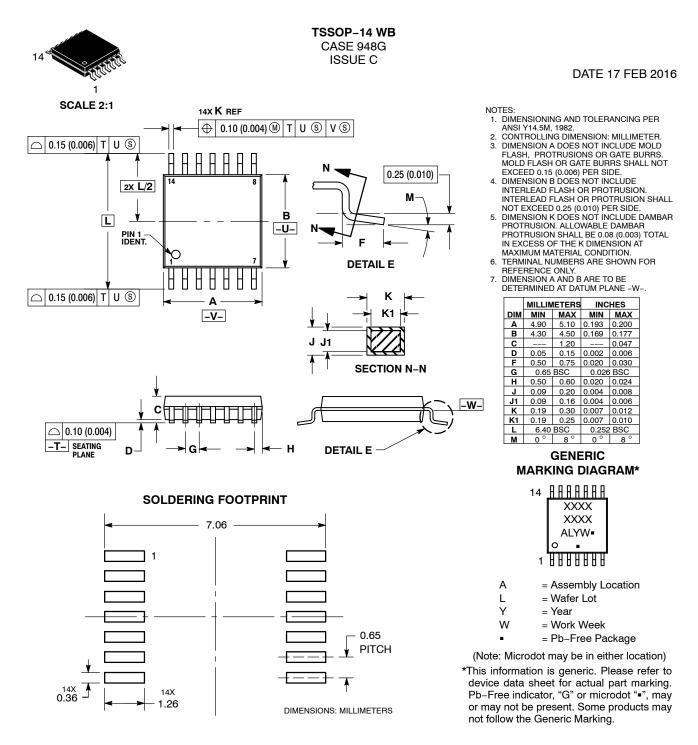
SOIC-14 CASE 751A-03 ISSUE L


DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2	

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	MICRO8		PAGE 1 OF 1
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o acidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED			
DESCRIPTION:	TSSOP-14 WB	14 WB PA			
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular					

purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative