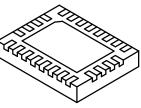
onsemi

Low-Voltage, Dual-Supply, 8-Bit, Signal Translator with Configurable Voltage Supplies, Bushold Data Inputs, 3-State Outputs and 26 Ω Series Resistors in the B-Port Outputs

FXLH42245

Description


The FXLH42245 is a configurable dual-voltage-supply translator designed for bi-directional voltage translation of signals between two voltage levels. The device allows translation between voltages as high as 3.6 V to as low as 1.1 V. The A port tracks the V_{CCA} level and the B port tracks the V_{CCB} level. Both ports are designed to accept supply voltage levels from 1.1 V to 3.6 V. This allows for bi-directional voltage translation over a variety of voltage levels: 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V.

The device remains in 3-state until both V_{CC} s reach active levels, allowing either V_{CC} to be powered-up first. The device also contains power-down control circuits that place the device in 3-state if either V_{CC} is removed.

The Transmit/Receive (T/\overline{R}) input determines the direction of data flow through the device. The \overline{OE} input, when HIGH, disables both the A and B ports by placing them in a 3-state condition. The FXLH42245 is designed with the control pins $(T/\overline{R} \text{ and } \overline{OE})$ supplied by V_{CCA}.

Features

- Bi–Directional Interface between Two Levels from 1.1 V to 3.6 V
- Fully Configurable, Inputs Track V_{CC} Level
- Non-Preferential Power-Up; Either V_{CC} May Be Powered-Up First
- Outputs Remain in 3-State Until Active V_{CC} Level is Reached
- Outputs Switch to 3-State if Either V_{CC} is at GND
- Bushold on Data Inputs Eliminates the need for External Pull–Up / Pull–Down Resistors
- 26 Ω Output Series Resistors on the B Port to Reduce Line Noise
- Power–Off Protection
- Control Input $(T/\overline{R}, \overline{OE})$ Levels are Referenced to V_{CCA} Voltage
- Packaged in 24-Pin MLP
- ESD Protection Exceeds:
 - 4 kV Human Body Model (JESD22–A114 & Mil Std 883e 3015.7)
 - 8 kV Human Body Model I/O to GND (JESD22–A114 & Mil Std 883e 3015.7)
 - 1 kV Charge Device Model (ESD STM 5.3)
 - 200 V Machine Model (JESD22–A115 & ESD STM5.2)

DATA SHEET

WQFN24, 4.5 x 3.5, 0.5P CASE 510CE

MARKING DIAGRAM

= **onsemi** logo

\$Y

&Z

&2

&K

- = Assembly Plant Code
- = 2-Digit Date Code
- = 2–Digits Lot Run Traceability Code

FXLH42245 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FXLH42245MPX	WQFN24 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

PIN CONFIGURATION

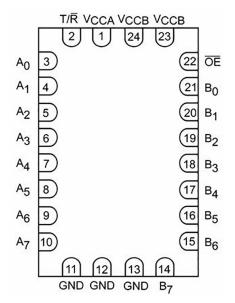


Figure 1. Pin Configuration (Top Through View)

PIN DEFINITIONS

Pin No.	Name	Description
1	V _{CCA}	Side-A Power Supply
2	T/R	Transmit / Receive Input
3, 4, 5, 6, 7, 8, 9, 10	A ₀ , A ₁ , A ₂ , A ₃ , A ₄ , A ₅ , A ₆ , A ₇	Side-A Inputs or 3-State Outputs
11, 12, 13	GND	Ground
14, 15, 16, 17, 18, 19, 20, 21	B ₇ , B ₆ , B ₅ , B ₄ , B ₃ , B ₂ , B ₁ , B ₀	Side-B Inputs or 3-State Outputs
22	ŌE	Output Enable Input
23, 24	V _{CCB}	Side-B Power Supply

TRUTH TABLE

Inp	uts	
OE	Description	
LOW Voltage Level	LOW Voltage Level	Bus B Data to Bus A
LOW Voltage Level	HIGH Voltage Level	Bus A Date to Bus B
HIGH Voltage Level	Don't Care	3-State

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	C	ondition	Min	Max	Unit
V _{CCA}	Supply Voltage			-0.5	4.6	V
V _{CCB}				-0.5	4.6	
VI	DC Input Voltage	I/O Port A		-0.5	V _{CCA} + 0.5	V
		I/O Port B		-0.5	V _{CCB} + 0.5	
		Control Inputs (T/R, OE)		-0.5	4.6	
Vo	Output Voltage (Note 1)	Output 3-State		-0.5	4.6	V
		Output Active (A _n)		-0.5	V _{CCA} + 0.5	
		Output Active (B _n)		-0.5	V _{CCB} + 0.5	
I _{IK}	DC Input Diode Current	V ₁ < 0 V			-50	mA
I _{OK}	DC Output Diode Current	V _O < 0 V			-50	mA
		$V_{O} > V_{CC}$			50	
I _{OH} /I _{OL}	DC Output Source/Sink Cur	rent			±50	mA
I _{CC}	DC V _{CC} or Ground Current	per Supply Pin			±100	mA
T _{STG}	Storage Temperature Range	Э		-65	+150	°C
ESD	Electrostatic Discharge	Human Body Model,			4	kV
	Capability	JESD22-A114, Mil Std 883e 3015.7	I/O to GND		8	
		Charged Device Model,	IESD22-C101, STM 5.3		1	
		Machine Model, JESD22	-A115, STM 5.2		200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. I/O absolute maximum ratings must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Conditions	Min	Max	Unit
V _{CC}	Power Supply	Operating V _{CCA} or V _{CC}	Operating V_{CCA} or V_{CCB}		3.6	V
VI	Input Voltage	Port A			V _{CCA}	V
		Port B		0	V _{CCB}	
		Control Input (T/R, OE)		0	V _{CCA}	
I _{OH} /I _{OL}	Output Current	Port A	3.0 V to 3.6 V		±24	mA
		V _{CCA}	2.3 V to 2.7 V		±18	1
			1.65 V to 1.95 V		±6	1
			1.40 V to 1.65 V		±2	1
			1.1 V to 1.4. V		±0.5	1
		Port B	3.0 V to 3.6 V		±14	1
		V _{CCB} Resistor Outputs	2.3 V to 2.7 V		±8	1
			1.65 V to 1.95 V		±3	1
			1.40 V to 1.65 V		±1	1
			1.1 V to 1.4. V		±0.25	1
T _A	Operating Temperature	, Free Air		-40	+85	°C
$\Delta V / \Delta t$	Input Edge Rate	V _{CCA/B} = 1.1 V to 3.6 V	1		10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 2. All unused inputs must be held at V_{CCI} or GND.

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	V _{CCI} (V)	V _{CCO} (V)	Min	Max	Unit
V _{IH}	HIGH Level Input	Data Inputs An, Bn	2.70 to 3.60	1.1 to 3.6	2.0	-	V
	(Note 3)		2.30 to 2.70		1.6	-	
			1.65 to 2.30		0.65 x V _{CCI}	-	
			1.40 to 1.65		0.65 x V _{CCI}	-	
			1.10 to 1.40		0.9 x V _{CCI}	-	
		Control Pins OE, T/R	2.70 to 3.60	1.1 to 3.6	2.0	-	
		(Referenced to V _{CCA})	2.30 to 2.70		1.6	-	
			1.65 to 2.30		0.65 x V _{CCA}	-	
			1.40 to 1.65		0.65 x V _{CCA}	-	
			1.10 to 1.40		0.9 x V _{CCA}	-	
VIL	LOW Level Input	Data Inputs An, Bn	2.70 to 3.60	1.1 to 3.6	-	0.8	V
	(Note 3)		2.30 to 2.70		-	0.7	
			1.65 to 2.30		-	0.35 x V _{CCI}	
			1.40 to 1.65		_	0.35 x V _{CCI}	
			1.10 to 1.40		-	0.10 x V _{CCI}	
		Control Pins OE, T/R	2.70 to 3.60	1.1 to 3.6	-	0.8	
		(Referenced to V_{CCA})	2.30 to 2.70		-	0.7	
			1.65 to 2.30		-	$0.35 \times V_{CCA}$	
			1.40 to 1.65		-	$0.35 \times V_{CCA}$	
			1.10 to 1.40		-	0.10 x V _{CCA}	
V _{OH}	HIGH Level Output	I _{OH} = -100 μA	1.1 to 3.6	1.1 to 3.6	V _{CC0} to 0.2	-	V
	B Port (Note 4)	I _{OH} = -6 mA	2.7	2.7	2.2	-	
		I _{OH} = -8 mA	3.0	3.0	2.4	-	
		I _{OH} = -12 mA	3.0	3.0	2.2	-	
		I _{OH} = -4 mA	2.3	2.3	2.0	-	
		I _{OH} = -6 mA	2.3	2.3	1.8	-	
		I _{OH} = -8 mA	2.3	2.3	1.7	-	
		I _{OH} = -3 mA	1.65	1.65	1.25	-	
		I _{OH} = -1 mA	1.4	1.4	1.05	-	
		I _{OH} = -0.25 mA	1.1	1.1	0.75 x V _{CC0}	-	
	HIGH Level Output	I _{OH} = -100 μA	1.1 to 3.6	1.1 to 3.6	V _{CC0} to 0.2	-	
	A Port (Note 4)	I _{OH} = -12 mA	2.7	2.7	2.2	-	
		I _{OH} = -18 mA	3.0	3.0	2.4	-	
		I _{OH} = -24 mA	3.0	3.0	2.2	-	
		I _{OH} = -6 mA	2.3	2.3	2.0	-	
		I _{OH} = -12 mA	2.3	2.3	1.8	_	
		I _{OH} = -18 mA	2.3	2.3	1.7	-	
		I _{OH} = -6 mA	1.65	1.65	1.25	-	
		I _{OH} = -2 mA	1.4	1.4	1.05	-	
		I _{OH} = -0.5 mA	1.1	1.1	0.75 x V _{CC0}	_	

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Conditions	V _{CCI} (V)	V _{CCO} (V)	Min	Мах	Unit
V _{OL}	LOW Level Output	I _{OH} = 100 μA	1.1 to 3.6	1.1 to 3.6	_	0.2	V
	B Port (Note 4)	I _{OH} = 6 mA	2.7	2.7	-	0.4	
		I _{OH} = 8 mA	3.0	3.0	-	0.55	
		I _{OH} = 12 mA	3.0	3.0	-	0.80	
		I _{OH} = 6 mA	2.3	2.3	-	0.4	
		I _{OH} = 8 mA	2.3	2.3	-	0.6	
		I _{OH} = 3 mA	1.65	1.65	-	0.3	
		I _{OH} = 1 mA	1.4	1.4	-	0.35	
		I _{OH} = 0.25 mA	1.1	1.1	-	0.3 x V _{CC0}	
	LOW Level Output	I _{OH} = 100 μA	1.1 to 3.6	1.1 to 3.6	-	0.2	
	A Port (Note 4)	I _{OH} = 12 mA	2.7	2.7	-	0.4	
		I _{OH} = 18 mA	3.0	3.0	-	0.4	
		I _{OH} = 24 mA	3.0	3.0	-	0.55	
		I _{OH} = 12 mA	2.3	2.3	-	0.4	
		I _{OH} = 18 mA	2.3	2.3	_	0.6	
		I _{OH} = 6 mA	1.65	1.65	-	0.3	
		I _{OH} = 2 mA	1.4	1.4	-	0.35	
		I _{OH} = 0.5 mA	1.1	1.1	-	0.3 x V _{CC0}	1
۱L	Input Leakage Current, Control Pins	$V_I = V_{CCA}$ or GND	1.1 to 3.6	3.6	-	±1.0	μΑ
(HOLD)	Bushold Input	V _{IN} = 0.8	3.0	3.0	75	-	μA
	Minimum Drive Current	V _{IN} = 2.0	3.0	3.0	-75	-	
		V _{IN} = 0.7	2.3	2.3	45	-	
		V _{IN} = 1.6	2.3	2.3	-45	-	
		V _{IN} = 0.57	1.65	1.65	25	-	
		V _{IN} = 10.7	1.65	1.65	-25	-	
		V _{IN} = 0.49	1.4	1.4	11	-	
		V _{IN} = 0.91	1.4	1.4	-11	-	
		V _{IN} = 0.11	1.1	1.1	_	4	
		V _{IN} = 0.99	1.1	1.1	_	-4	
I _{I(OD)}	Bushold Input	(Note 5)	3.6	3.6	450	-	μA
	Over-Drive Current-to-Current	(Note 6)	3.6	3.6	-450	-	
	State	(Note 5)	2.7	2.7	300	-	
		(Note 6)	2.7	2.7	-300	-	1
		(Note 5)	1.95	1.95	200	-	1
		(Note 6)	1.95	1.95	-200	-	1
		(Note 5)	1.6	1.6	120	-	1
		(Note 6)	1.6	1.6	-120	-	1
		(Note 5)	1.4	1.4	80	-	
		(Note 6)	1.4	1.4	-80	_	1

Symbol	Parameter	Conditions	V _{CCI} (V)	V _{CCO} (V)	Min	Max	Unit
I _{OFF}	Power Off Leakage	A_n , V_l or V_O = 0 V to 3.6 V	0	3.6	_	±10	μΑ
	Current	B_n , V_l or $V_O = 0$ V to 3.6 V	3.6	0	-	±10	
I _{OZ}	3-State Output	$A_n, B_n, \overline{OE} = V_{IH}$	3.6	3.6	_	±10	μΑ
	Leakage (V _O , V _{CC} or GND V _I = V _{IH} or V _{IL})	Bn, OE = Don't Care (Note 7)	0	3.6	_	±10	
		An, OE = Don't Care (Note 7)	3.6	0	_	±10	
I _{CCA/B}	Quiescent Supply	$V_{I} = V_{CCI}$ or GND; $I_{O} = 0$	1.1 to 3.6	1.1 to 3.6	_	20	μA
I _{CCZ}	Current (Note 8)		1.1 to 3.6	1.1 to 3.6	_	20	μΑ
I _{CCA}		$V_{I} = V_{CCA}$ or GND; $I_{O} = 0$	0	1.1 to 3.6	_	-10	μA
			1.1 to 3.6	0	_	10	
I _{CCB}		$V_{I} = V_{CCB}$ or GND; $I_{O} = 0$	1.1 to 3.6	0	_	-10	μΑ
			0	1.1 to 3.6	_	10	
$\Delta I_{CCA/B}$	Increase in I_{CC} per Input; Other Inputs at V_{CC} or GND	V _{IH} = 3.0	3.6	3.6	_	500	μΑ

ELECTRICAL CHARACTERISTICS (continued)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product Product parametric performance is indicated in the Electrical Characteristics for the listed test condition performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. V_{CCI} = the V_{CC} associated with the data input under test. 4. V_{CCO} = the VCC associated with the output under test. 5. An external driver must source at least the specified current to switch LOW-to-HIGH. 6. An external driver must source at least the specified current to switch HIGH-to-LOW.

7. Don't care = any valid logic level.

8. Reflects current per supply, V_{CCA} or V_{CCB} .

AC ELECTRICAL CHARACTERISTICS

V_{CCA} = 3.0 V to 3.6 V

					٦	Γ _A = -40°0	C to +85°C	2								
			V _{CCB} = 3.0 V to 3.6 V							V _{CCB} = 1.65 V to 1.95 V		V _{CCB} = to 1		V _{CCB} = 1.1 V to 1.3 V		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit				
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.5	3.9	0.5	4.5	0.9	5.9	1.0	7.4	1.6	22.0	ns				
	Propagation Delay B to A	0.2	3.5	0.2	3.8	0.3	4.0	0.5	4.3	0.8	13.0					
t _{PZL} , t _{PZH}	Output Enable OE-to-B	0.7	4.8	1.0	5.1	1.5	6.7	1.5	7.1	2.0	18.0	ns				
	Output Enable OE-to-A	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0					
t _{PHZ} , t _{PZL}	Output Enable OE-to-B	0.4	4.3	0.4	4.4	0.9	5.2	1.7	6.8	2.0	19.0	ns				
	Output Enable OE-to-A	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7					

AC ELECTRICAL CHARACTERISTICS (continued)

V_{CCA} = 2.3 V to 2.7 V

					-	T _A = -40°C	C to +85°0	2						
			V _{CCB} = 3.0 V to 3.6 V			V _{CCB} = 2.3 V to 2.7 V		V _{CCB} = 1.65 V to 1.95 V		V _{CCB} = to 1		V _{CCB} = 1.1 V to 1.3 V		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.5	4.3	0.6	4.8	0.9	6.0	1.0	7.6	1.6	22.0	ns		
	Propagation Delay B to A	0.3	3.9	0.4	4.2	0.5	4.5	0.5	4.8	1.0	7.0			
t _{PZL} , t _{PZH}	Output Enable OE-to-B	0.8	5.1	1.0	5.5	1.5	6.9	1.5	7.4	2.0	19.0	ns		
	Output Enable OE-to-A	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5			
t _{PHZ} , t _{PZL}	Output Enable OE-to-B	0.4	4.6	0.4	4.8	0.9	5.3	1.7	7.1	2.0	19.0	ns		
	Output Enable OE-to-A	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0			

V_{CCA} = 1.65 V to 1.95 V

						T _A = -40°0	C to +85°0	C				
		V _{CCB} = to 3	= 3.0 V 8.6 V	V _{CCB} = to 2	= 2.3 V 2.7 V	V _{CCB} = to 1.	1.65 V 95 V	V _{CCB} = to 1			V _{CCB} = 1.1 V to 1.3 V	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.5	4.6	0.7	5.1	1.1	6.2	1.1	7.8	1.7	22.0	ns
	Propagation Delay B to A	0.5	5.4	0.5	5.6	0.8	5.7	1.0	6.0	1.2	8.0	
t _{PZL} , t _{PZH}	Output Enable OE-to-B	0.8	5.4	1.0	5.9	1.5	7.3	1.5	7.7	2.0	20.0	ns
	Output Enable OE-to-A	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	
t _{PHZ} , t _{PZL}	Output Enable OE-to-B	0.4	4.7	0.4	4.9	1.0	5.4	1.7	7.2	2.0	19.0	ns
	Output Enable OE-to-A	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	

AC ELECTRICAL CHARACTERISTICS (continued)

V_{CCA} = 1.4 V to 1.6 V

					٦	Γ _A = -40°C	C to +85°C	>				
			V _{CCB} = 3.0 V to 3.6 V		V _{CCB} = 2.3 V to 2.7 V		V _{CCB} = 1.65 V to 1.95 V		⊧ 1.4 V .6 V	V _{CCB} = 1.1 V to 1.3 V		
Symbol	Parameter	Min	Мах	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.7	4.8	0.8	5.3	1.2	6.4	1.3	7.9	1.7	22.0	ns
	Propagation Delay B to A	0.6	6.8	0.8	6.9	0.9	7.1	1.0	7.3	1.2	9.5	
t _{PZL} , t _{PZH}	Output Enable OE-to-B	1.1	5.8	1.3	6.3	1.5	7.8	2.0	8.1	2.0	20.0	ns
	Output Enable OE-to-A	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	
t _{PHZ} , t _{PZL}	Output Enable OE-to-B	0.6	4.8	0.6	5.1	1.1	5.8	2.0	7.7	2.0	18.0	ns
	Output Enable OE-to-A	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	0.5	6.0	

V_{CCA} = 1.1 V to 1.3 V

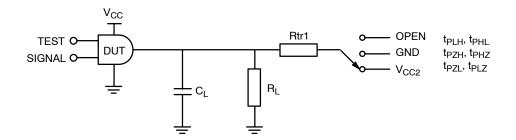
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$									
		V _{CCB} = to 3	= 3.0 V 8.6 V	V _{CCB} = to 2	= 2.3 V .7 V	V _{CCB} = to 1.	1.65 V .95 V	V _{CCB} = to 1		V _{CCB} = to 1	= 1.1 V .3 V	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay A to B	1.0	13.8	1.0	7.8	1.0	8.4	1.0	10.4	2.0	24.0	ns
	Propagation Delay B to A	1.4	22.0	1.4	22.0	1.5	22.0	1.5	22.0	2.0	24.0	
t _{PZL} , t _{PZH}	Output Enable OE-to-B	1.5	12.6	1.5	9.6	1.5	10.6	2.0	11.6	2.0	24.0	ns
	Output Enable OE-to-A	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	
t _{PHZ} , t _{PZL}	Output Enable OE-to-B	1.2	15.0	0.9	7.6	1.2	8.6	2.0	10.6	3.0	21.0	ns
	Output Enable OE-to-A	2.0	15.0	2.0	12.0	2.0	12.0	2.0	12.0	2.0	12.0	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

CAPACITANCE

Symbol	Parameter	Conditions	Typical (T _A = 25°C)	Unit
C _{IN}	Input Capacitance Control Pins (OE, T/R)		4	pF
C _{I/O}	Input / Output Capacitance A _n , B _n Port	$\label{eq:VCCA} \begin{array}{l} V_{CCA} = V_{CCB} = 3.3 \text{ V}, \\ V_{I} = 0 \text{ V or } V_{CCA/B} \end{array}$	5	pF
C _{PD}	Power Dissipation Capacitance	$\label{eq:VCCA} \begin{array}{l} V_{CCA} = V_{CCB} = 3.3 \ V, \\ V_{I} = 0 \ V \ \text{or} \ V_{CC}, \ f = 10 \ MHz \end{array}$	20	pF

AC LOADINGS AND WAVEFORMS



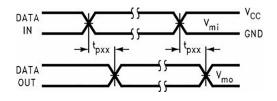
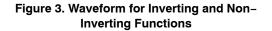
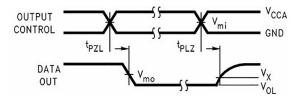
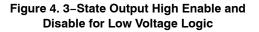

Figure 2. AC Test Circuit

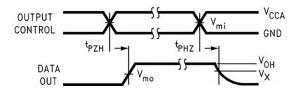
Table 1. TEST CIRCUIT PARAMETERS


Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PLZ} , t _{PZL}	V _{CC0} • 2 at V _{CC0} = 3.3 + 0.3 V, 2.5 V + 0.2 V, 1.8 V + 0.15 V, 1.5 V + 0.1 V, 1.2 V + 0.1 V
t _{PHZ} , t _{PZH}	GND


Table 2. AC LOAD TABLE

V _{CC0}	CL	RL	Rtr1
$1.2~V\pm0.1~V$	15 pF	2 kΩ	2 kΩ
$1.5~V\pm0.1~V$	15 pF	2 kΩ	2 kΩ
$1.8 \text{ V} \pm 0.15 \text{ V}$	30 pF	500 Ω	500 Ω
$2.5~V\pm0.2~V$	30 pF	500 Ω	500 Ω
$3.3~V\pm0.3~V$	30 pF	500 Ω	500 Ω




9. Input t_R = t_F = 2.0 ns, 10% to 90%

10. Input t_R = t_F = 2.0 ns, 10% to 90%

11. Input t_R = t_F = 2.0 ns, 10% to 90%

Figure 5. 3–State Output High Enable and Disable for Low Voltage Logic

	V _{cc}					
Symbol	3.3 V ± 0.3 V	$2.5 \text{ V} \pm 0.2 \text{ V}$	1.8 V ± 0.15 V	1.5 V ± 0.1 V	1.2 V ± 0.1 V	
V _{MI}	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2	
V _{MO}	V _{CC0} /2	V _{CC0} /2	V _{CC0} /2	V _{CC0} /2	V _{CC0} /2	
V _X	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V	V _{OH} – 0.1 V	V _{OH} – 0.1 V	
V _Y	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V	V _{OL} + 0.1 V	V _{OL} + 0.1 V	

Table 3.

12. For V_{MI} V_{CCO} = V_{CCA} for control pins T/ \overline{R} and \overline{OE} or $\overline{V_{CCA}/2}$.

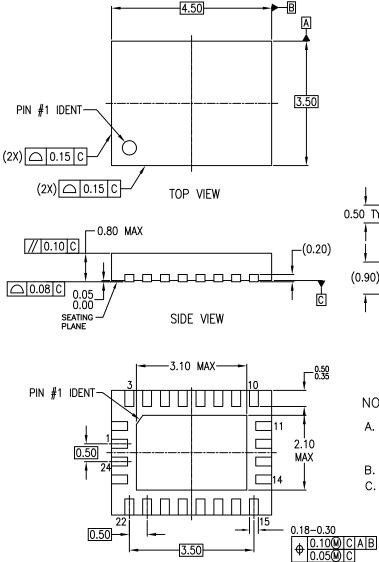
FUNCTIONAL DESCRIPTION

Power-Up/Power-Down Sequencing

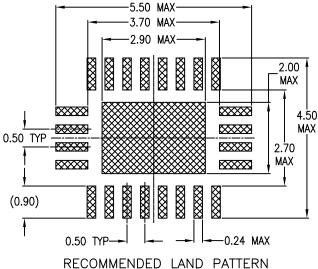
FXL translators offer an advantage in that either VCC may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0 V, outputs are in a High-impedance state. The control inputs (T/ \overline{R} and \overline{OE}) are designed to track the V_{CCA} supply. A pull-up resistor tying \overline{OE} to V_{CCA} should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/power-down. The size of the pull-up resistor is based upon the current-sinking capability of the OE driver.

The recommended power-up sequence is:

- 1. Apply power to either V_{CC} .
- 2. Apply power to the T/\overline{R} input (logic HIGH for A–to–B operation; logic LOW for B–to–A operation) and to the respective data inputs (A port or B port). This may occur at the same time as step 1.
- 3. Apply power to the other V_{CC} .
- 4. Drive the \overline{OE} input LOW to enable the device.


The recommended power-down sequence is:

- 1. Drive \overline{OE} input HIGH to disable the device.
- 2. Remove power from either $V_{\mbox{\scriptsize CC}}.$
- 3. Remove power from the other V_{CC} .



WQFN24 4.5x3.5, 0.5P CASE 510CE ISSUE O

DATE 31 AUG 2016

BOTTOM VIEW

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-220, VARIATION WFSD-2 FOR DIMENSIONS ONLY. PIN NUMBERING DOES NOT COMPLY.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

DOCUMENT NUMBER:	98AON13646G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	WQFN24 4.5X3.5, 0.5P		PAGE 1 OF 1			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically			

© Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative