NTLUD3A260PZ

MOSFET - Power, Dual, P-Channel, ESD, μ Cool, UDFN, 1.6X1.6X0.55 mm -20 V, -2.1 A

Features

- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 1.6x1.6x0.55 mm for Board Space Saving
- ESD Protected
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- High Side Load Switch
- PA Switch
- Optimized for Power Management Applications for Portable Products, such as Cell Phones, PMP, DSC, GPS, and others

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise stated)

Parameter			Symbol	Value	Units
Drain-to-Source Voltage			$V_{\text {DSS }}$	-20	V
Gate-to-Source Voltage			$V_{G S}$	± 8.0	V
Continuous Drain Current (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	-1.7	A
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		-1.2	
	$\mathrm{t} \leq 5 \mathrm{~s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-2.1	
Power Dissipation (Note 1)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	0.8	W
	$\mathrm{t} \leq 5 \mathrm{~s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.3	
Continuous Drain Current (Note 2)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	-1.3	A
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		-0.9	
Power Dissipation (Note 2)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	0.5	W
Pulsed Drain Current		tp $=10 \mu \mathrm{~s}$	I_{DM}	-8.0	A
Operating Junction and Storage Temperature			$\begin{gathered} \mathrm{T}_{\mathrm{J},} \\ \mathrm{~T}_{\mathrm{STG}} \end{gathered}$	$\begin{gathered} -55 \text { to } \\ 150 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Source Current (Body Diode) (Note 2)			Is	-0.6	A
Lead Temperature for Soldering Purposes ($1 / 8^{\prime \prime}$ from case for 10 s)			TL	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.

1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area $=1.127$ in sq [2 oz] including traces).
2. Surface-mounted on FR4 board using the minimum recommended pad size of $30 \mathrm{~mm}^{2}, 2 \mathrm{oz}$. Cu

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MOSFET		
$\mathrm{V}_{\text {(BR) } \mathrm{DSS}}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }} \mathrm{MAX}$	ID MAX
-20 V	$200 \mathrm{~m} \Omega$ @ -4.5 V	-2.1 A
	$290 \mathrm{~m} \Omega$ @ -2.5V	
	$390 \mathrm{~m} \Omega$ @ -1.8V	
	$650 \mathrm{~m} \Omega$ @ -1.5V	

AD = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet

NTLUD3A260PZ

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Ambient - Steady State (Note 3)	$\mathrm{R}_{\theta \mathrm{JA}}$	155	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient - t $\leq 5 \mathrm{~s}$ (Note 3)	$\mathrm{R}_{\text {ӨJA }}$	100	
Junction-to-Ambient - Steady State min Pad (Note 4)	$\mathrm{R}_{\text {ӨJA }}$	245	

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Typ	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}} / \mathrm{T}_{\mathrm{J}}$	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, ref to $25^{\circ} \mathrm{C}$			-10		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Zero Gate Voltage Drain Current	${ }_{\text {ISSS }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{DS}}=-20 \mathrm{~V} \end{gathered}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			-1.0	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			-10	
Gate-to-Source Leakage Current	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 8.0 \mathrm{~V}$				± 10	$\mu \mathrm{A}$

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-0.4		-1.0	V
Negative Threshold Temp. Coefficient	$\mathrm{V}_{\mathrm{GS} \text { (TH) }} / \mathrm{T}_{J}$			2.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Drain-to-Source On Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.0 \mathrm{~A}$		160	200	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.2 \mathrm{~A}$		226	290	
		$\mathrm{V}_{\mathrm{GS}}=-1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.24 \mathrm{~A}$		300	390	
		$\mathrm{V}_{\mathrm{GS}}=-1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.18 \mathrm{~A}$		390	650	
Forward Transconductance	grs	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.5 \mathrm{~A}$		3.7		S

CHARGES, CAPACITANCES \& GATE RESISTANCE

Input Capacitance	$\mathrm{C}_{\text {ISS }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V} \end{gathered}$	300	pF
Output Capacitance	Coss		34	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {RSS }}$		29	
Total Gate Charge	$\mathrm{Q}_{\mathrm{G}(\text { (TOT) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V} ; \\ \mathrm{I}_{\mathrm{D}}=-1.7 \mathrm{~A} \end{gathered}$	4.2	nC
Threshold Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{TH})}$		0.3	
Gate-to-Source Charge	$Q_{G S}$		0.7	
Gate-to-Drain Charge	Q_{GD}		1.1	

SWITCHING CHARACTERISTICS, VGS = 4.5 V (Note 6)

| Turn-On Delay Time | $\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$ | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Rise Time | t_{r} | $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-10 \mathrm{~V}$, | | |
| Turn-Off Delay Time | $\mathrm{I}_{\mathrm{D}}=-1.5 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1 \Omega$ | 32.3 | | |
| Fall Time | $\mathrm{t}_{\mathrm{d}(\mathrm{OFF})}$ | | | |

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	VSD	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-0.6 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	0.8	1.2	V
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.68		
Reverse Recovery Time	t_{RR}	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{dis} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{us}, \\ \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~A} \end{gathered}$		10.6		ns
Charge Time	t_{a}			8.7		
Discharge Time	t_{b}			1.9		
Reverse Recovery Charge	$\mathrm{Q}_{\text {RR }}$			5.1		nC

3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area $=1.127$ in sq [2 oz] including traces).
4. Surface-mounted on FR4 board using the minimum recommended pad size of $30 \mathrm{~mm}^{2}, 2 \mathrm{oz}$. Cu.
5. Pulse Test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
6. Switching characteristics are independent of operating junction temperatures.

NTLUD3A260PZ

TYPICAL CHARACTERISTICS

- V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 1. On-Region Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 5. On-Resistance Variation with Temperature

- V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTLUD3A260PZ

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 11. Threshold Voltage

Figure 8. Gate-to-Source and
Drain-to-Source Voltage vs. Total Charge

Figure 10. Diode Forward Voltage vs. Current

Figure 12. Single Pulse Maximum Power Dissipation

NTLUD3A260PZ

TYPICAL CHARACTERISTICS

Figure 13. Maximum Rated Forward Biased

Figure 14. FET Thermal Response
DEVICE ORDERING INFORMATION

Device	Package	Shipping †
NTLUD3A260PZTAG	UDFN6 (Pb-Free)	$3000 /$ Tape \& Reel
NTLUD3A260PZTBG	UDFN6 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
μ Cool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

*For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON32372E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 6 PIN UDFN, 1.6X1.6, 0.5P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

