NSB1706DMW5T1G, NSVB1706DMW5T1G

Dual Bias Resistor
 Transistor
 NPN Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the NSB1706DMW5T1G, two BRT devices are housed in the SC-88A package which is ideal for low power surface mount applications where board space is at a premium.

Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted, common for Q_{1} and Q_{2})

Rating	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	50	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	50	Vdc
Collector Current	I_{C}	100	mAdc

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	187 (Note 1) 256 (Note 2) 1.5 (Note 1) 2.0 (Note 2)	mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	670 (Note 1) 490 (Note 2)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	250 (Note 1) 385 (Note 2) 2.0 (Note 1) 3.0 (Note 2)	mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	$\begin{aligned} & 493 \text { (Note 1) } \\ & 325 \text { (Note 2) } \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Lead	$\mathrm{R}_{\theta \mathrm{JL}}$	$\begin{aligned} & 188 \text { (Note 1) } \\ & 208 \text { (Note 2) } \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-4 @ Minimum Pad.
2. FR-4 @ 1.0×1.0 inch Pad.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAM

U6 = Device Marking
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NSB1706DMW5T1G	SC-88A $($ Pb-Free)	$3000 /$ Tape \& Reel
NSVB1706DMW5T1G	SC-88A (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, common for Q_{1} and $\left.\mathrm{Q}_{2}\right)$

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\text {CBO }}$	-	-	100	nAdc
$\begin{aligned} & \text { Collector-Emitter Cutoff Current } \\ & \quad\left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\right) \end{aligned}$	$I_{\text {CEE }}$	-	-	500	nAdc
Emitter-Base Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\text {ebo }}$	-	-	0.18	mAdc
Collector-Base Breakdown Voltage $\left(I_{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	50	-	-	Vdc
Collector-Emitter Breakdown Voltage (Note 3) $\left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {(BR)CEO }}$	50	-	-	Vdc

ON CHARACTERISTICS (Note 3)

$\begin{aligned} & \text { DC Current Gain } \\ & \left(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right) \end{aligned}$	$h_{\text {FE }}$	80	200	-	
Collector-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {CE(sat) }}$	-	-	0.25	Vdc
Input Voltage (off) $\left(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\text {i(off) }}$	-	0.6	0.5	Vdc
Input Voltage (on) $\left(\mathrm{V}_{\mathrm{CE}}=0.3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {i(on) }}$	1.3	0.9	-	Vdc
Output Voltage (on) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	$\mathrm{V}_{\text {OL }}$	-	-	0.2	Vdc
Output Voltage (off) $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0.25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega\right)$	V_{OH}	4.9	-	-	Vdc
Input Resistor	R1	3.3	4.7	6.1	k Ω
Resistor Ratio	R1/R2	0.055	0.1	0.185	

NOTE: New resistor combinations. Updated curves to follow in subsequent data sheets.
3. Pulse Test: Pulse Width $<300 \mu \mathrm{~s}$, Duty Cycle $<2.0 \%$.

Figure 1. Derating Curve

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	
G	0.026 BSC		0.65	

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

```
```

STYLE 1:

```
```

STYLE 1:
STYLE 1:
STYLE 1:
2. EMITTER
2. EMITTER
3. BASE
3. BASE
4. COLLECTOR
4. COLLECTOR
5. COLLECTOR

```
```

 5. COLLECTOR
    ```
```

```
STYLE 2:
    PIN 1. ANODE
    2. EMITTER
    STYLE 3
```

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
5. COLLECTOR 2/BASE

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3
PIN 1. ANODE
2. N/C
3. ANODE 2
4. CATHODE 2
5. CATHODE

STYLE 8

PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

SOLDER FOOTPRINT

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:

PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88A (SC-70-5/SOT-353) | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

