Single Bit Uni-Directional Translator

FXLP34

Description

The FXLP34 is a single translator with two separate supply voltages: $\mathrm{V}_{\mathrm{CC} 1}$ for input translation voltages and V_{CC} for output translation voltages. The FXLP34 is part of onsemi's Ultra Low Power (ULP) series of products. This device operates with VCC values from 1.0 V to 3.6 V , and is intended for use in portable applications that require ultra low power consumption.

The internal circuit is composed of a minimum of buffer stages, to enable ultra low dynamic power.

The FXLP34 is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

- 1.0 V to 3.6 V V CC Supply Voltage
- Converts Any Voltage (1.0 V to 3.6 V) to (1.0 V to 3.6 V)
- 4.6 V Tolerant Inputs and Outputs
- tpD:
- 4 ns Typical for 3.0 V to $3.6 \mathrm{~V}_{\mathrm{CC}}$
- Power-Off High Impedance Inputs and Outputs
- Static Drive $\left(\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}\right)$:
- $\pm 2.6 \mathrm{~mA}$ at $3.00 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
- Uses Proprietary Quiet Series Noise / EMI Reduction Circuitry
- Ultra-Small MicroPak ${ }^{\text {TM }}$ Leadless Packages
- Ultra-Low Dynamic Power
- These are $\mathrm{Pb}-$ Free Devices

X3, X34 = Device Code
M = Assembly Operation Month

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

FXLP34

PIN CONFIGURATION

Figure 1. SC70 (Top View)

Figure 2. MicroPak (Top Through View)

PIN DEFINITIONS

Pin \# SC70	Pin \# MicroPak	Name	Description
1	1	Vcc1	Input Translation Voltage
2	2	A	Input
3	3	GND	Ground
4	4	Y	Output
	5	NC	No Connect
5	6	Vcc	Output Translation Voltage

TRUTH TABLE

Input	Outputs
\mathbf{A}	\mathbf{Y}
L	L
H	H

H = Logic Level HIGH
$\mathrm{L}=$ Logic Level Low

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min	Max	Unit
Vcc, Vcc1	Supply Voltage		-0.5	+4.6	V
VIN	DC Input Voltage		-0.5	+4.6	V
Vout	DC Output Voltage	HIGH or LOW State (Note 1)	-0.5	$\mathrm{V}_{C C}+0.5 \mathrm{~V}$	V
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-0.5	+4.6	
IIK	DC Input Diode Current	$\mathrm{V}_{\text {IN }}<0$	-	-50	mA
Iok	DC Output Diode Current	$\mathrm{V}_{\text {OUT }}<0 \mathrm{~V}$	-	-50	mA
		Vout > Vcc	-	+50	
$\mathrm{IOH} / \mathrm{lOL}$	DC Output Source/Sink Current		-	± 50	mA
Icc or IGND	DC V ${ }_{\text {CC }}$ or Ground Current per Supply Pin		-	± 100	mA
Tsta	Storage Temperature Range		-65	150	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation at $+85^{\circ} \mathrm{C}$	SC70-6	-	180	mW
		MicroPak ${ }^{\text {m }}$-6	-	130	
		MicroPak2 ${ }^{\text {TM }}$-6	-	120	
ESD	Human Body Model, JEDEC:JESD22-A114		-	4000	V
	Charge Device Model, JEDEC:JESD22-C101		-	2000	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. IO Absolute Maximum Rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
Vcc, Vcc1	Supply Voltage		1.0	3.6	V
Vin	Input Voltage		0	3.6	V
Vout	Output Voltage	HIGH or LOW State	0	Vcc	V
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	0	3.6	
$\mathrm{loh} / \mathrm{loL}$	Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	$\mathrm{V}_{\text {CC }}=3.0$ to 3.6 V	-	± 2.6	mA
		$\mathrm{V}_{\text {CC }}=2.3$ to 2.7 V	-	± 2.1	
		$\mathrm{V}_{\mathrm{CC}}=1.65$ to 1.95 V	-	± 1.5	
		$\mathrm{V}_{\text {CC }}=1.40$ to 1.60 V	-	± 1.0	
		$\mathrm{V}_{\mathrm{CC}}=1.10$ to 1.30 V	-	± 0.5	
		$\mathrm{V}_{\mathrm{CC}}=1.0 \mathrm{~V}$	-	± 20	$\mu \mathrm{A}$
$\mathrm{T}_{\text {A }}$	Operating Temperature, Free Air		-40	+85	${ }^{\circ} \mathrm{C}$
ӨJA	Thermal Resistance	SC70-6	-	425	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		MicroPak-6	-	500	
		MicroPak2-6	-	560	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
2. Unused inputs must be held HIGH or LOW. They may not float.

ELECTRICAL CHARACTERISTIICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{CC1}}(\mathrm{~V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\text {A }}=-40$ to $85^{\circ} \mathrm{C}$		Unit
					Min	Max	Min	Max	
V_{IH}	HIGH Level Input ($\mathrm{V}_{\mathrm{CC} 1}$)		1.0 to 3.6	1.0	$0.65 \times \mathrm{V}_{\text {CCI }}$	-	$0.65 \times \mathrm{V}_{\mathrm{CCI}}$	-	V
				$1.10 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.30$	$0.65 \times \mathrm{V}_{\text {ClI }}$	-	$0.65 \times \mathrm{V}_{\text {ClI }}$	-	
				$1.40 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.60$	$0.65 \times \mathrm{V}_{\text {CCI }}$	-	$0.65 \times \mathrm{V}_{\mathrm{CCI}}$	-	
				$1.65 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.95$	$0.65 \times \mathrm{V}_{\text {CCI }}$	-	$0.65 \times \mathrm{V}_{\mathrm{Cl}}$	-	
				$2.30 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 2.70$	1.6	-	1.6	-	
				$3.00 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 3.60$	2.1	-	2.1	-	
V_{IL}	LOW Level Input ($\mathrm{V}_{\mathrm{CC} 1}$)		1.0 to 3.6	1.0	-	$0.35 \times \mathrm{V}_{\mathrm{CCI}}$	-	$0.35 \times \mathrm{V}_{\mathrm{CCI}}$	V
				$1.10 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.30$	-	$0.35 \times \mathrm{V}_{\text {Cl }}$	-	$0.35 \times \mathrm{V}_{\text {ClI }}$	
				$1.40 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.60$	-	$0.35 \times \mathrm{V}_{\text {ClI }}$	-	$0.35 \times \mathrm{V}_{\mathrm{CCI}}$	
				$1.65 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.95$	-	$0.35 \times \mathrm{V}_{\mathrm{CCI}}$	-	$0.35 \times \mathrm{V}_{\mathrm{CCI}}$	
				$2.30 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 2.70$	-	0.7	-	0.7	
				$3.00 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 3.60$	-	0.9	-	0.9	
V_{OH}	HIGH Level Output (V_{CC})	$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$	1.0	1.0 to 3.6	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	V
			$1.10 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.30$		$\mathrm{V}_{\text {CC }}-0.1$	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	
			$1.40 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.60$		$\mathrm{V}_{\text {CC }}-0.1$	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	
			$1.65 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.95$		$\mathrm{V}_{\text {CC }}-0.1$	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	
			$2.30 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 2.70$		$\mathrm{V}_{\text {CC }}-0.1$	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	
			$3.00 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 3.60$		$\mathrm{V}_{C C}-0.1$	-	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	
		$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	$1.10 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.30$	1.0 to 3.6	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.70 \times \mathrm{V}_{\mathrm{CC}}$	-	
		$\mathrm{IOH}^{2}=-1.0 \mathrm{~mA}$	$1.40 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.60$		1.07	-	0.99	-	
		$\mathrm{I}_{\mathrm{OH}}=-1.5 \mathrm{~mA}$	$1.65 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.95$		1.24	-	1.22	-	
		$\mathrm{I}_{\mathrm{OH}}=-2.1 \mathrm{~mA}$	$2.30 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 2.70$		1.95	-	1.87	-	
		$\mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$	$3.00 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 3.60$		2.61	-	2.55	-	
$\mathrm{V}_{\text {OL }}$	LOW Level Output (V_{CC})	$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}$	1.0	1.0 to 3.6	-	0.1	-	0.1	V
			$1.10 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.30$		-	0.1	-	0.1	
			$1.40 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.60$		-	0.1	-	0.1	
			$1.65 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.95$		-	0.1	-	0.1	
			$2.30 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 2.70$		-	0.1	-	0.1	
		$\mathrm{IOL}=0.5 \mathrm{~mA}$	$1.10 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.30$	1.0 to 3.6	-	$0.30 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.30 \times \mathrm{V}_{\mathrm{CC}}$	
		$\mathrm{l}_{\mathrm{OL}}=1.0 \mathrm{~mA}$	$1.40 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.60$		-	0.31	-	0.37	
		$\mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA}$	$1.65 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 1.95$		-	0.31	-	0.35	
		$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	$2.30 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 2.70$		-	0.31	-	0.33	
		$\mathrm{l}_{\mathrm{OL}}=2.6 \mathrm{~mA}$	$3.00 \leq \mathrm{V}_{\mathrm{CC} 1} \leq 3.60$		-	0.31	-	0.33	
I_{N}	Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 3.60$		1.0 to 3.6	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$
IoFF	Power Off Leakage Current	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathbb{N}}, \mathrm{V}_{\mathrm{O}}\right) \\ & \leq 3.60 \end{aligned}$	0	0	-	1.0	-	5.0	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$	1.0 to 3.6	1.0 to 3.6	-	0.9	-	5.0	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTIICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Figure
				Min	Typ	Max	Min	Max		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHLL}}, \\ & \mathrm{t}_{\mathrm{PLL}} \end{aligned}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.0$	$\begin{aligned} & C_{L}=10 \mathrm{pF}, \\ & R_{L}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	26.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	15.0	25.0	38.1	12.0	43.3		
			1.40 to 1.60	14.0	24.0	36.7	11.0	42.0		
			1.65 to 1.95	13.0	23.0	36.0	10.0	41.4		
			2.30 to 2.70	12.0	22.0	35.5	9.0	40.9		
			3.00 to 3.60	11.0	21.0	35.5	8.0	40.6		
$\begin{aligned} & \mathrm{t}_{\mathrm{pHL}}, \\ & \mathrm{t}_{\mathrm{pLL}} \end{aligned}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.2$	$\begin{aligned} & C_{L}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{MS} \end{aligned}$	1.0	-	18.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	8.0	15.0	23.2	6.0	41.0		
			1.40 to 1.60	7.5	14.0	21.7	5.5	39.1		
			1.65 to 1.95	7.0	13.0	20.9	5.0	32.3		
			2.30 to 2.70	6.5	12.0	20.4	4.5	29.6		
			3.00 to 3.60	6.0	12.0	20.2	4.0	29.4		
$\begin{aligned} & \mathrm{t}_{\mathrm{pHL}}, \\ & \mathrm{t}_{\mathrm{pLL}} \end{aligned}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.5$	$\begin{aligned} & C_{L}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	14.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	5.0	11.0	16.3	4.0	20.6		
			1.40 to 1.60	4.8	10.0	14.8	3.5	19.3		
			1.65 to 1.95	4.5	9.0	14.1	3.0	18.7		
			2.30 to 2.70	4.0	8.0	13.5	2.5	18.0		
			3.00 to 3.60	3.5	8.0	13.3	2.0	17.8		
$\begin{aligned} & \text { tpHL, } \\ & \mathrm{t}_{\text {PLL }} \end{aligned}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.8$	$\begin{aligned} & C_{L}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	13.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	4.0	9.0	13.5	3.0	17.5		
			1.40 to 1.60	3.5	8.0	12.0	2.5	16.3		
			1.65 to 1.95	3.0	7.0	11.3	2.0	15.6		
			2.30 to 2.70	2.5	6.0	10.7	1.5	15.0		
			3.00 to 3.60	2.5	6.0	10.5	1.0	14.7		
$\begin{aligned} & \mathrm{t}_{\mathrm{pHL}}, \\ & \mathrm{t}_{\mathrm{pLL}} \end{aligned}$	Propagation Delay Output Translation $V_{C C}(V)=2.5$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	12.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	3.0	7.0	10.9	2.5	14.3		
			1.40 to 1.60	2.5	6.0	9.4	2.0	13.1		
			1.65 to 1.95	2.0	5.0	8.6	1.5	11.4		
			2.30 to 2.70	1.5	4.0	8.0	1.0	10.8		
			3.00 to 3.60	1.5	4.0	7.8	1.0	10.5		
$\overline{t_{\text {PHL }}},$$t_{\text {PLH }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=3.3$	$\begin{aligned} & C_{L}=10 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	11.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	3.0	6.0	10.1	2.0	13.8		
			1.40 to 1.60	2.5	5.0	8.2	1.5	10.5		
			1.65 to 1.95	2.0	4.0	7.4	1.0	9.9		
			2.30 to 2.70	1.0	3.0	6.8	1.0	9.2		
			3.00 to 3.60	1.0	3.0	6.6	1.0	9.0		

AC ELECTRICAL CHARACTERISTIICS (continued)

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$		Unit	Figure
				Min	Typ	Max	Min	Max		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHLL}}, \\ & \mathrm{t}_{\mathrm{PLL}} \end{aligned}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.0$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	28.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	16.0	27.0	43.0	12.0	44.8		
			1.40 to 1.60	15.0	26.0	41.6	11.0	43.6		
			1.65 to 1.95	14.0	25.0	40.9	10.0	47.9		
			2.30 to 2.70	13.0	24.0	40.5	9.0	47.5		
			3.00 to 3.60	12.0	23.0	40.4	8.0	41.4		
$\begin{aligned} & \hline \mathrm{tpHL}^{\prime}, \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.2$	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & R_{L}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	19.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	9.0	16.0	24.6	8.0	43.1		
			1.40 to 1.60	8.5	15.0	23.1	7.5	42.2		
			1.65 to 1.95	8.0	14.0	22.4	7.0	31.4		
			2.30 to 2.70	7.5	13.0	21.8	6.5	30.7		
			3.00 to 3.60	7.0	13.0	21.6	6.0	30.5		
$\begin{aligned} & \text { tpHL, } \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.5$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	15.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	6.0	12.0	17.2	5.5	21.5		
			1.40 to 1.60	5.8	11.0	15.7	5.0	20.3		
			1.65 to 1.95	5.5	10.0	14.9	4.5	19.6		
			2.30 to 2.70	5.0	9.0	14.3	4.0	18.9		
			3.00 to 3.60	4.5	. 0	14.2	3.5	18.7		
$\mathrm{t}_{\mathrm{PHL}}$, tpLH	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.8$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	14.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	5.0	8.0	14.2	5.5	18.2		
			1.40 to 1.60	4.5	7.0	12.7	4.0	17.0		
			1.65 to 1.95	4.0	6.0	11.9	3.5	16.3		
			2.30 to 2.70	3.5	5.0	11.3	3.0	15.7		
			3.00 to 3.60	3.5	5.0	11.2	2.5	14.4		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}}, \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=2.5$	$\begin{aligned} & \hline C_{L}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	12.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	4.0	7.0	11.3	3.5	14.9		
			1.40 to 1.60	3.5	6.0	9.8	3.0	13.6		
			1.65 to 1.95	3.0	5.0	9.1	2.5	12.0		
			2.30 to 2.70	2.5	4.0	8.5	2.0	11.3		
			3.00 to 3.60	2.5	4.0	8.3	2.0	11.1		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}}, \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=3.3$	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	11.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	3.0	6.0	10.5	2.0	14.2		
			1.40 to 1.60	2.5	5.0	8.6	1.5	11.0		
			1.65 to 1.95	2.0	4.0	7.8	1.0	10.3		
			2.30 to 2.70	1.5	3.0	7.2	1.0	9.7		
			3.00 to 3.60	1.5	3.0	7.0	1.0	9.4		

AC ELECTRICAL CHARACTERISTIICS (continued)

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$		Unit	Figure
				Min	Typ	Max	Min	Max		
$\begin{aligned} & \text { tpHL, } \\ & t_{\text {tpLH }} \end{aligned}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.0$	$\begin{aligned} & C_{L}=30 \mathrm{pF}, \\ & R_{L}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	34.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	19.0	32.0	48.6	15.0	55.5		
			1.40 to 1.60	18.0	31.0	47.1	14.0	52.3		
			1.65 to 1.95	17.0	30.0	46.4	13.0	50.6		
			2.30 to 2.70	16.0	29.0	45.9	12.0	49.2		
			3.00 to 3.60	15.0	28.0	45.8	10.0	49.1		
${ }^{\text {tpHL }}$, tpLH	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.2$	$\begin{aligned} & C_{L}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	22.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	11.0	19.0	29.0	10.0	46.5		
			1.40 to 1.60	10.0	18.0	27.5	9.0	42.6		
			1.65 to 1.95	9.0	17.0	26.7	8.0	36.7		
			2.30 to 2.70	8.5	16.0	26.1	7.0	36.0		
			3.00 to 3.60	8.0	16.0	26.0	6.0	35.9		
$t_{\text {PHL }}$, tpLH	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.5$	$\begin{aligned} & C_{L}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	16.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	6.0	13.0	19.8	5.5	25.3		
			1.40 to 1.60	5.8	12.0	18.3	5.0	23.0		
			1.65 to 1.95	5.5	11.0	17.6	4.5	22.4		
			2.30 to 2.70	5.0	10.0	17.0	4.0	21.7		
			3.00 to 3.60	4.5	9.0	16.8	3.5	21.5		
$\begin{aligned} & \hline \text { tPHL, } \\ & \text { tpLH } \end{aligned}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=1.8$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{MS} \end{aligned}$	1.0	-	15.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	5.0	11.0	16.2	5.5	20.4		
			1.40 to 1.60	4.5	10.0	14.7	4.0	19.2		
			1.65 to 1.95	4.0	9.0	13.9	3.5	18.5		
			2.30 to 2.70	3.5	8.0	13.3	3.0	17.9		
			3.00 to 3.60	3.5	8.0	13.1	2.5	17.6		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}}, \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay Output Translation $V_{C C}(V)=2.5$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	13.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	4.0	8.0	12.7	3.5	15.9		
			1.40 to 1.60	3.5	7.0	11.2	3.0	14.3		
			1.65 to 1.95	3.0	6.0	10.5	2.5	13.6		
			2.30 to 2.70	2.5	5.0	9.9	2.0	12.8		
			3.00 to 3.60	2.5	5.0	9.7	2.0	12.5		
$t_{\text {PHL }}$,$t_{\text {PLL }}$	Propagation Delay Output Translation $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})=3.3$	$\begin{aligned} & C_{L}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$	1.0	-	12.0	-	-	-	ns	Figure 3, Figure 4
			1.10 to 1.30	3.0	8.0	11.7	2.0	15.0		
			1.40 to 1.60	2.5	7.0	9.8	1.5	12.2		
			1.65 to 1.95	2.0	6.0	8.9	1.0	11.5		
			2.30 to 2.70	1.5	5.0	8.3	1.0	10.7		
			3.00 to 3.60	1.5	5.0	8.1	1.0	10.4		

CAPACITANCE

Symbol	Parameter	Conditions	$\begin{gathered} \mathrm{v}_{\mathrm{CC}} / \\ \mathrm{v}_{\mathrm{CC} 1}(\mathrm{~V}) \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Unit
				Typ	
$\mathrm{C}_{\text {IN }}$	Input Capacitance			2	pF
$\mathrm{C}_{\text {/ }}$	Input/Output Capacitance			4	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC} 1}, \mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CC} 1}=3.6 \mathrm{~V}$	1.0 to 3.60	8	pF

Translator Power-up Sequence Recommendations

To ensure that the system does not experience unnecessary I_{CC} current draw, bus contention, or oscillations during power-up; adhere to the following guidelines. This device is designed with the output pin(s) supplied by V_{CC} and the input pin(s) supplied by $\mathrm{V}_{\mathrm{CC} 1}$. The first recommendation is to begin by powering up the input side of the device with $\mathrm{V}_{\mathrm{CC} 1}$. The Input pin(s) should be ramped with or ahead of $\mathrm{V}_{\mathrm{CC} 1}$ or held LOW. This guards against bus contentions and oscillations as all inputs and the
input $\mathrm{V}_{\mathrm{CC} 1}$ are powered at the same time. The output V_{CC} can then be powered to the target voltage level to which the device will translate. The output pin(s) then translate to logic levels dictated by the output V_{CC} levels.

Upon completion of these steps, the device can be configured for the desired operation. Following these steps helps prevent possible damage to the translator device as well as other system components

AC Loadings and Waveforms

Figure 3. AC Test Circuit

Figure 4. Waveform for Inverting and Non-Inverting Functions

Table 1. AC LOAD TABLE

Symbol	V_{CC}					
	$\mathbf{3 . 3} \mathrm{V} \pm \mathbf{0 . 3} \mathrm{V}$	$\mathbf{2 . 5} \mathrm{V} \pm \mathbf{0 . 2} \mathrm{V}$	$\mathbf{1 . 8} \mathrm{V} \pm \mathbf{0 . 1 5} \mathrm{V}$	$\mathbf{1 . 5} \mathrm{V} \pm \mathbf{0 . 1 0} \mathrm{V}$	$\mathbf{1 . 2} \mathrm{V} \pm \mathbf{0 . 1 0} \mathrm{V}$	$\mathbf{1 . 0} \mathbf{V}$
	1.5 V	$\mathrm{~V}_{\mathrm{CC} 1} / 2$				
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$				

ORDERING INFORMATION

Part Number	Top Mark	Package Type	Shipping ${ }^{\dagger}$
FXLP34P5X	X34	5-Lead SC70, EIAJ SC-88a, 1.25 mm Wide ($\mathrm{Pb}-\mathrm{Free}$)	3000 / Tape \& Reel
FXLP34L6X	X3	SIP6, 6-Lead MicroPak, 1.00 mm Wide ($\mathrm{Pb}-\mathrm{Free}$)	5000 / Tape \& Reel
FXLP34FHX	X3	UDFN6, 6-Lead, MicroPak2, 1×1 mm Body, .35 mm Pitch ($\mathrm{Pb}-\mathrm{Free}$)	5000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

| DOCUMENT NUMBER: | 98AON13590G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SIP6 1.45X1.0 | PAGE 1 OF 1 |

TOP VIEW

SYMBOL	MIN	NOM	MAX	
A	0.80		1.10	
A1	0.00		0.10	
A2	0.80		1.00	
b	0.15		0.30	
c	0.10		0.18	
D	1.80	2.00	2.20	
E	1.80	2.10	2.40	
E1	1.15	1.25	1.35	
e	0.65 BSC			
L	0.26	0.36	0.46	
L1	0.42 REF			
L2	0.15 BSC			
θ	0°		8°	
$\theta 1$	4°		10°	

SIDE VIEW

END VIEW

Notes:
(1) All dimensions are in millimeters. Angles in degrees.
(2) Complies with JEDEC MO-203.

DOCUMENT NUMBER:	98AON34260E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-88A (SC-70 5 LEAD), 1.25X2	PAGE 1 OF 1	

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

| DOCUMENT NUMBER: | 98AON13593G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN6 1.0X1.0, 0.35P | PAGE 1 OF 1 |

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

