3.3 V 200 MHz 1:4 LVCMOS/LVTTL Low Skew Fanout Buffer

Description

The NB3M8304C is 1:4 fanout buffer with LVCMOS/LVTTL input and output. The device supports the core supply voltage of 3.3 V (V_{DD} pin) and output supply voltage of 2.5 V or 3.3 V (V_{DDO} pin). The V_{DDO} pin powers the four single ended LVCMOS/LVTTL outputs.

The NB3M8304C is Form, Fit and Function (pin to pin) compatible to ICS8304 and ICS8304I. The NB3M8304C is qualified for industrial operating temperature range.

Features

- Input Clock Frequency up to 200 MHz
- Low Output to Output Skew: 45 ps max
- Low Part to Part Skew: 500 ps max
- Low Additive RMS Phase Jitter
- Input Clock Accepts LVCMOS/ LVTTL Levels
- Operating Voltage:
 - Core Supply: $V_{DD} = 3.3 \text{ V} \pm 5\%$
 - Output Supply: $V_{DDO} = 3.3 \text{ V} \pm 5\% \text{ or } 2.5 \text{ V} \pm 5\%$
- Operating Temperature Range:
- Industrial: -40° C to $+85^{\circ}$ C
- These Devices are Pb-Free and are RoHS Compliant

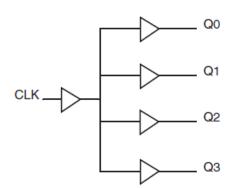
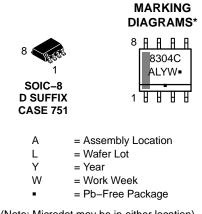



Figure 1. Block Diagram

ON Semiconductor®

www.onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

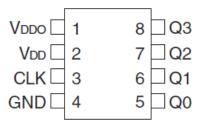


Figure 2. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin Number	Name	Туре	Description
1	VDDO	Output Power	Clock output Supply pin.
2	VDD	Input and Core Power	Input and Core Supply pin.
3	CLK	LVCMOS/LVTTL Input	Clock Input. Internally pull-down.
4	GND	Ground	Supply Ground.
5, 6, 7, 8	Q[0:3]	LVCMOS/LVTTL Output	LVCMOS/LVTTL Clock output.

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition	Min	Max	Unit
V _{DD,} V _{DDO}	Power Supply		-	4.6	V
VI	Input Voltage		-0.5	V _{DD} + 0.5	V
T _{stg}	Storage Temperature		-65	+150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) SOIC-8	0 lfpm 500 lfpm		80 55	°C/W
θJC	Thermal Resistance (Junction to Case) (Note 1)			12–17	°C/W
T _{sol}	Wave Solder	3 sec		265	°C
MSL	Moisture Sensitivity SOIC-8	Indefinite Time Out of Drypack (Note 2)	Level 1		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

2. For additional information, see Application Note AND8003/D.

Table 3. DC OPERATING CHARACTERISTICS (V_DD = 3.3 V $\pm 5\%$; T_A = -40°C to +85°C)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
R _{IN}	Input Pull-down Resistor (CLK Pin)			51		kΩ
C _{IN}	Input Capacitance			4		pF
R _{OUT}	Output Impedance (Note 3)		5	7	12	Ω
C _{PD}	Power Dissipation Capacitance (per output)	V _{DD} = V _{DDO} = 3.465 V		15		pF
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
I _{IH}	Input High Current	V _{IN} = V _{DD} = 3.465 V			150	μΑ
IIL	Input Low Current	V_{DD} 3.465 V, V_{IN} = 0.0 V	-0.5			μΑ

3. Outputs terminated with 50 Ω to V_DDO/2. See Figure 4 for supply considerations.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. DC OPERATING CHARACTERISTICS (T_A = $-40^\circ C$ to $+85^\circ C)$

Symbol	Parameter	Condition	Min	Max	Unit
V _{DD} = 3.3 V	′ ±5%, V _{DDO} = 2.5 V ±5%		•		
V _{DDO}	Output Supply Voltage		2.375	2.625	V
V _{OH} Outpu	Output HIGH Voltage	I _{OH} = -100 μA	2.2		V
		I _{OH} = -16 mA	2.1		
		50 Ω to V_DDO/2	2.1		
V _{OL}	Output LOW Voltage	I _{OL} = 16 mA		0.25	
		I _{OL} = 100 μA		0.2	V
		50 Ω to V _{DDO} /2		0.5	

V_{DD} = V_{DDO} = 3.3 V ±5%

V _{DDO}	Output Supply Voltage		3.135	3.465	V
V _{OH}	Output HIGH Voltage	I _{OH} = –16 mA	2.9		V
		I _{OH} = −100 μA	3		
		50 Ω to V_{DDO}/2	2.6		
V _{OL}	Output LOW Voltage	l _{OL} = 16 mA		0.25	
		I _{OL} = 100 μA		0.15	V
		50 Ω to V_{DDO}/2		0.5	

Table 5. DC OPERATING CHARACTERISTICS

 $({\sf T}_{\sf A}=-40^{\circ}{\rm C} \text{ to }+85^{\circ}{\rm C}; \, {\sf V}_{\sf DD}={\sf V}_{\sf DDO}=3.3 \; {\sf V} \; \pm5\%; \, {\sf V}_{\sf DD}=3.3 \; {\sf V} \; \pm5\%, \, {\sf V}_{\sf DDO}=2.5 \; {\sf V} \; \pm5\%)$

Symbol	Parameter	Condition	Min	Max	Unit
I _{DD}	Quiescent Power Supply Current	No Load		15	mA
I _{DDO}	Quiescent Power Supply Current	No Load		8	mA
V _{IH}	Input HIGH Voltage		2	V _{DD} + 0.3	V
V _{IL}	Input LOW Voltage		-0.3	1.3	V

Table 6. AC CHARACTERISTICS (Note 4)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _A = -40°C	to +85°C; V_{DD} = 3.3 V ±5%, V_{DDO} = 3.3 V ±5%					
F _{IN}	Input Frequency				200	MHz
t _{PLH}	Propagation Delay (Note 5)	Fin = 200 MHz	1.9		3.3	ns
t _{SKEW}	Output to Output Skew(Note 6)			25	45	ps
	Part to Part Skew (Note 6)			250	800	ps
t _{SKEWDC}	Output Duty Cycle (see Figure 3)	Fin = 200 MHz	40		60	%
tr/tf	Output rise and fall times (Note 7)	30% to 70%, RS = 33 Ω , CL = 10 pF	250		500	ps

T_A = -40°C to +85°C; V_{DD} = 3.3 V ±5%, V_{DDO} = 2.5 V ±5%

F _{IN}	Input Frequency				200	MHz
t _{PLH}	Propagation Delay (Note 5)	Fin = 200 MHz	2.2		3.7	ns
t _{SKEW}	Output to Output Skew(Note 6)			25	45	ps
	Part to Part Skew (Note 6)			250	500	ps
t _{SKEWDC}	Output Duty Cycle (see Figure 3)	Fin = 200 MHz	40		60	%
tr/tf	Output rise and fall times (Note 7)	30% to 70%, RS = 33 Ω, CL = 10 pF	200		500	ps

4. Clock input with 50% duty cycle. Outputs terminated with 50 Ω to V_{DDO}/2. See Figures 3 and 4.

5. Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. 6. Similar input conditions and the same supply voltages. Measured at $V_{DDO}/2$. See Figures 3 and 4. 7. RS is Series Resistance and CL is Load Capacitance at the clock outputs.

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

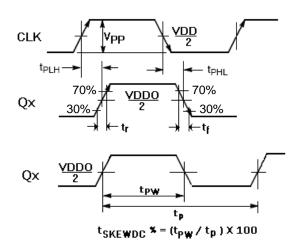
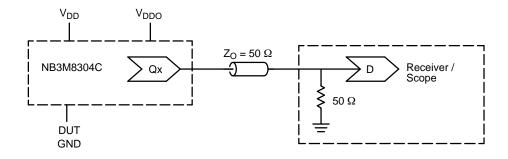
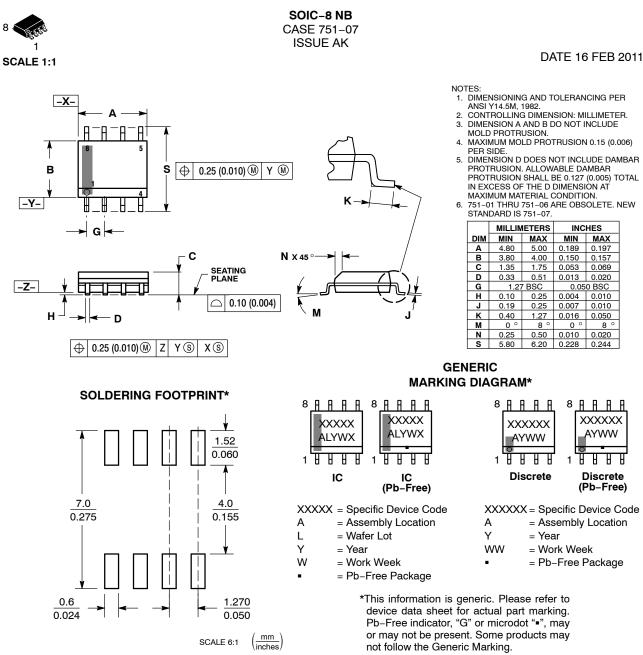



Figure 3. AC Reference Measurement

Spec Condition:	TEST SETUP V _{DD} :	TEST SETUP V _{DDO} :	TEST SETUP DUT GND:
$V_{DD}=V_{DDO}=3.3~V~\pm5\%$	1.65 V ±5%	1.65 V ±5%	-1.65 V ±5%
V_{DD} = 3.3 V ±5%; V_{DDO} = 2.5 V ±5%	2.05 V ±5%	1.25 V ±5%	-1.25 V ±5%


Figure 4. Output Driver Typical Device Evaluation and Termination Setup

ORDERING INFORMATION

Device	Package	Shipping [†]
NB3M8304CDG	SOIC-8 (Pb-Free)	98 Units / Rail
NB3M8304CDR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION: SOIC-8 NB PAGE 1 OF				
the right to make changes without furth purpose, nor does onsemi assume ar	er notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other courses no warranty, representation or guarantee regarding the suitability of its proof any product or circuit, and specifically disclaims any and all liability, incle under its patent rights nor the rights of others.	oducts for any particular	

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5.

6.

7.

8 GATE 1

SOURCE 1/DRAIN 2

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 MIRROR 1 8. STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT OVI O 2 UVLO З. 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 З. BASE #2 COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2			

onsem and of isor in are trademarks or semiconductor compension instructions, the do onsem or its subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced stat purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

7.

8

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative