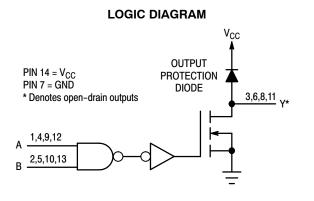
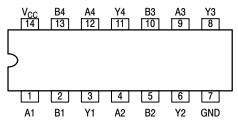
MC74HC03A

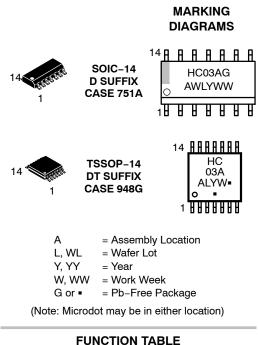

Quad 2-Input NAND Gate with Open-Drain Outputs High-Performance Silicon-Gate CMOS

The MC74HC03A is identical in pinout to the LS03. The device inputs are compatible with Standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.


The HC03A NAND gate has, as its outputs, a high-performance MOS N-Channel transistor. This NAND gate can, therefore, with a suitable pullup resistor, be used in wired-AND applications. Having the output characteristic curves given in this data sheet, this device can be used as an LED driver or in any other application that only requires a sinking current.

Features

- Output Drive Capability: 10 LSTTL Loads With Suitable Pullup Resistor
- Outputs Directly Interface to CMOS, NMOS and TTL
- High Noise Immunity Characteristic of CMOS Devices
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 µA
- In Compliance With the JEDEC Standard No. 7 A Requirements
- Chip Complexity: 28 FETs or 7 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant


Pinout: 14-Lead Packages (Top View)

ON Semiconductor®

http://onsemi.com

-UNCTION TABLE

Inp	Inputs		
Α	В	Y	
L	L	Z	
L	н	Z	
н	L	Z	
н	Н	L	

Z = High Impedance

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	– 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V_CC + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
I _{out}	DC Output Current, per Pin	± 25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	± 50	mA
P _D	Power Dissipation in Still Air SOIC Package [†] TSSOP Package [†]	500 450	mW
T _{stg}	Storage Temperature	–65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds SOIC or TSSOP Package	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

†Derating – SOIC Package: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		0	V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	(Figure 1) V _{CC}	= 2.0 V = 4.5 V = 6.0 V	0 0 0	1000 500 400	ns

DESIGN GUIDE

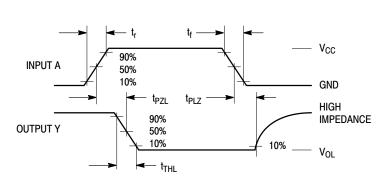
Criteria	Value	Unit
Internal Gate Count*	7.0	ea
Internal Gate Propagation Delay	1.5	ns
Internal Gate Power Dissipation	5.0	μW
Speed Power Product	0.0075	рJ

*Equivalent to a two-input NAND gate

MC74HC03A

DC CHARACTERISTICS (Voltages Referenced to GND)

			Vcc	Guara	nteed Lin	nit	
Symbol	Parameter	Condition	v	–55 to 25°C	≤ 85°C	≤125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$\label{eq:Vout} \begin{array}{l} V_{out} = 0.1V \text{ or } V_{CC} - 0.1V \\ \left I_{out} \right \leq 20 \mu A \end{array}$	2.0 3.0 4.5 6.0	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	V
V _{IL}	Maximum Low-Level Input Voltage	$\begin{split} V_{out} &= 0.1 V \text{ or } V_{CC} - 0.1 V \\ \left I_{out} \right &\leq 20 \mu A \end{split}$	2.0 3.0 4.5 6.0	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	V
V _{OL}	Maximum Low-Level Output Voltage	$\begin{array}{l} V_{out} = 0.1V \text{ or } V_{CC} - 0.1V \\ \left I_{out} \right \leq 20 \mu A \end{array} \end{array} \label{eq:Vout}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$ \begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & \begin{aligned} I_{out} \leq 2.4 \text{mA} \\ I_{out} \leq 4.0 \text{mA} \\ I_{out} \leq 5.2 \text{mA} \end{aligned} $	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC} \text{ or } GND$ $I_{out} = 0\mu A$	6.0	1.0	10	40	μΑ
I _{OZ}	Maximum Three-State Leakage Current	Output in High-Impedance State $V_{in} = V_{IL}$ or V_{IH} $V_{out} = V_{CC}$ or GND	6.0	±0.5	±5.0	±10	μΑ

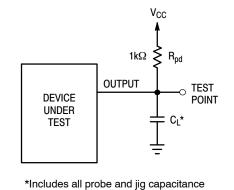
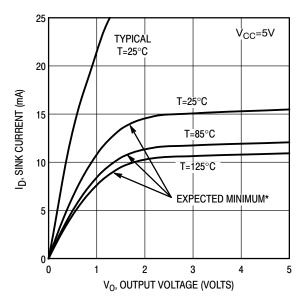
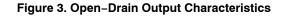

AC CHARACTERISTICS (C_L = 50 pF, Input t_r = t_f = 6 ns)

	V _{CC} Guaranteed Limit		nit			
Symbol	Parameter	V	–55 to 25°C	≤ 85°C	≤125°C	Unit
t _{PLZ} , t _{PZL}	Maximum Propagation Delay, Input A or B to Output Y (Figures 1 and 2)	2.0 3.0 4.5 6.0	120 45 24 20	150 60 30 26	180 75 36 31	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 2)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 16	110 36 22 19	ns
C _{in}	Maximum Input Capacitance		10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State)		10	10	10	pF

		Typical @ 25°C, V _{CC} = 5.0 V, V _{EE} = 0 V	
C _{PD}	Power Dissipation Capacitance (Per Buffer)*	8.0	pF

* Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

MC74HC03A

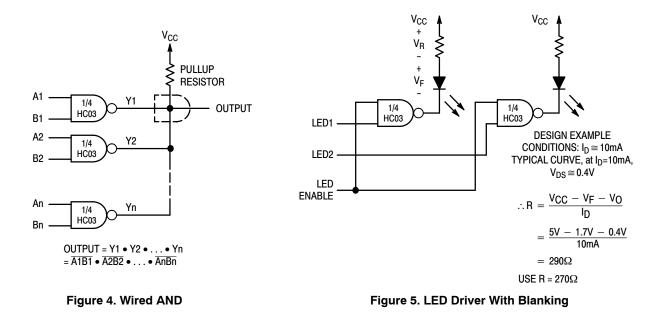

Figure 1. Switching Waveforms

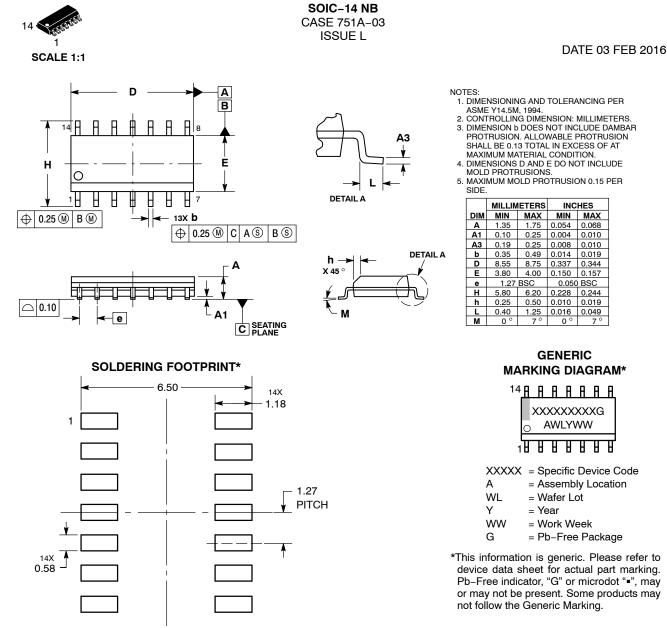
Figure 2. Test Circuit

*The expected minimum curves are not guarantees, but are design aids.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC03ADG	SOIC-14 (Pb-Free)	55 Units / Rail
MC74HC03ADR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel
MC74HC03ADTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
NLV74HC03ADG*	SOIC-14 (Pb-Free)	55 Units / Rail
NLV74HC03ADR2G*	SOIC-14 (Pb-Free)	2500 / Tape & Reel
NLV74HC03ADTR2G*	TSSOP-14 (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable


DUSEM

0.068

0.019

0.344

0.244

DIMENSIONS: MILLIMETERS

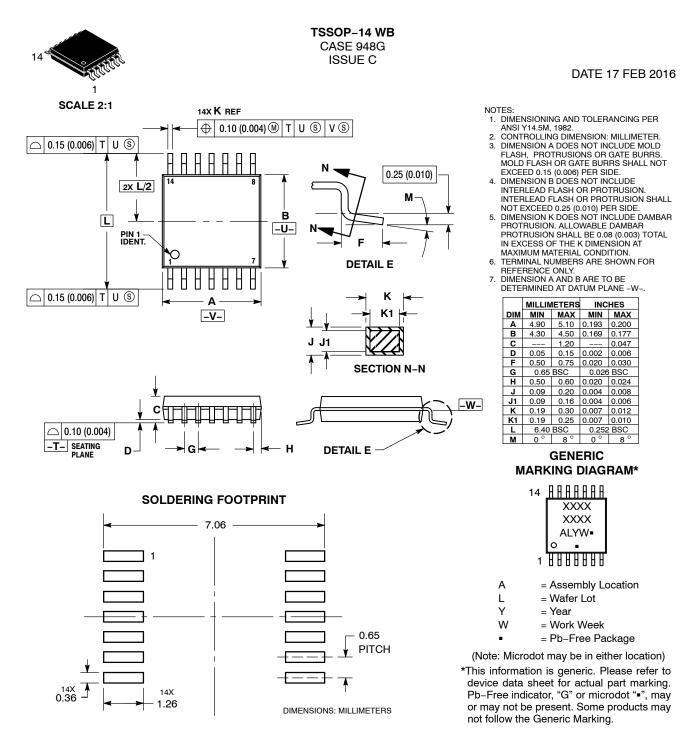
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016


STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2		

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1				
	onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular						

purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative