

MOSFET - Power, Single N-Channel, SO8-FL

30 V, 0.9 mΩ, 298 A

NTMFS0D9N03CG

Features

- Advanced Package (5x6 mm) with Excellent Thermal Conduction
- Ultra Low R_{DS(on)} to Improve System Efficiency
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

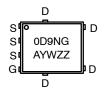
- Hot Swap Application
- Power Load Switch
- Battery Management and Protection

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Current R _{0JC}	Steady State	T _C = 25°C	I _D	298	Α
(Note 2)	State	T _C =100°C		211	
Power Dissipation R _{θJC} (Note 2)		T _C = 25°C	P _D	144	W
Continuous Drain Current R _{BJA}	Steady State	T _A = 25°C	I _D	48	Α
(Notes 1, 2)	State	T _A = 100°C		34	
Power Dissipation R _{θJA} (Notes 1, 2)		T _A = 25°C	P _D	3.8	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	900	Α
Source Current (Body Diode)			I _S	120	Α
Single Pulse Drain-to-Source Avalanche Energy (I_L = 29.2 A_{pk})			E _{AS}	556	mJ
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to +175	°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		, , , , , , , , , , , , , , , , , , , ,		260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using 1 in² pad, 2 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	0.9 m Ω @ 10 V	298 A

SO-8 FLAT LEAD CASE 488AA STYLE 1

MARKING DIAGRAM

A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{ heta JC}$	1.0	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	39	C/VV

^{3.} Surface-mounted on FR4 board using 1 in² pad, 2 oz Cu pad.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•			<u>I</u>		1	1
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA. ref to 25°C			13		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, T _J = 25°C				1.0	μΑ
		$V_{DS} = 30 \text{ V}$	T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{G}$	_S = 20 V			100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 200 μA	1.3		2.2	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 200 μA. re	ef to 25°C		-5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 20 A		0.71	0.9	mΩ
Forward Transconductance	9FS	V _{DS} = 3 V, I _D) = 20 A		70		S
Gate Resistance	R_{G}	T _A = 25°C			1.5		Ω
CHARGES AND CAPACITANCES	•					•	•
Input Capacitance	C _{ISS}	V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz		6615	9450	12285	pF
Output Capacitance	C _{OSS}			3014	4306	5598	
Reverse Transfer Capacitance	C _{RSS}			146	243	486	
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} =	15 V; I _D = 20 A		131.4		nC
Threshold Gate Charge	Q _{G(TH)}				14.2		
Gate-to-Source Charge	Q_{GS}				24.2		
Gate-to-Drain Charge	Q_{GD}				13.5		
SWITCHING CHARACTERISTICS (Note 5)	•					•	•
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 20 A, R_{G} = 3.0 Ω			20		ns
Rise Time	t _r				16		
Turn-Off Delay Time	t _{d(OFF)}				93		
Fall Time	t _f				24		
DRAIN-SOURCE DIODE CHARACTERIST	ics			<u>-</u>		-	-
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V$	T _J = 25°C		0.75	1.2	V
		I _S = 10 A	T _J = 125°C		0.60		┦
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/μs,			83		ns
Reverse Recovery Charge	Q _{RR}	$V_{DS} = 15 \text{ V}, I_{S}$	_S = 20 A		114		nC

^{4.} Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

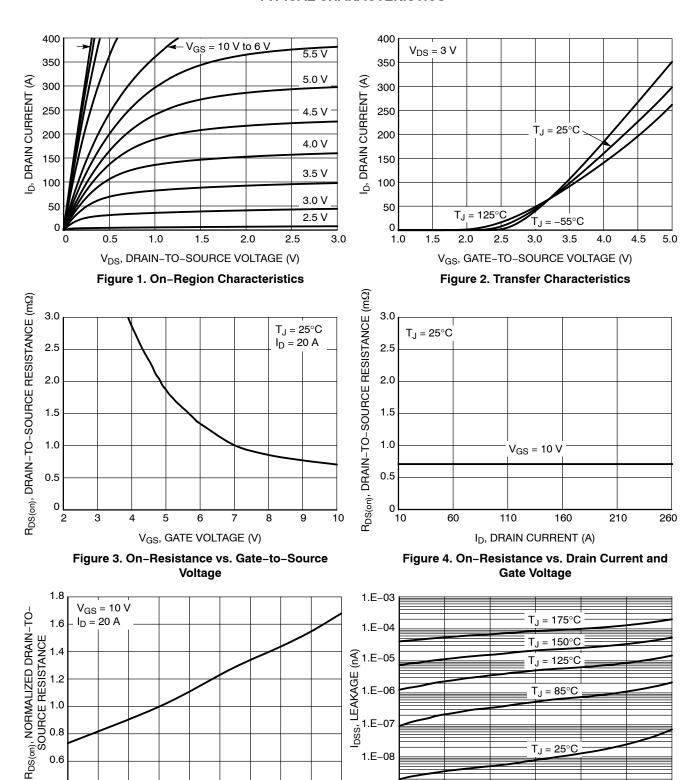


Figure 5. On–Resistance Variation with Temperature

T_J, JUNCTION TEMPERATURE (°C)

75

100

125

150

175

0.4 **_** -50

-25

0

Figure 6. Drain-to-Source Leakage Current vs. Voltage

15

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

20

25

30

1.E-09

0

5

10

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

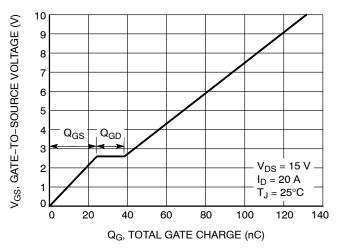


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

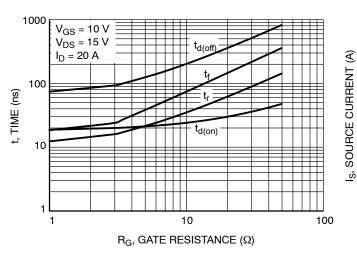


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

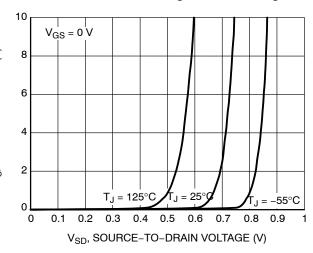


Figure 10. Diode Forward Voltage vs. Current

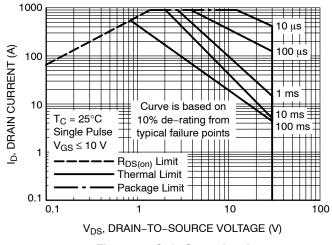


Figure 11. Safe Operating Area

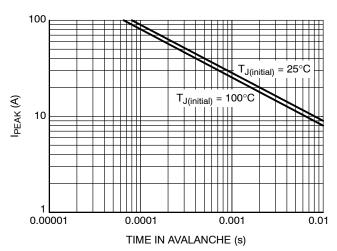


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

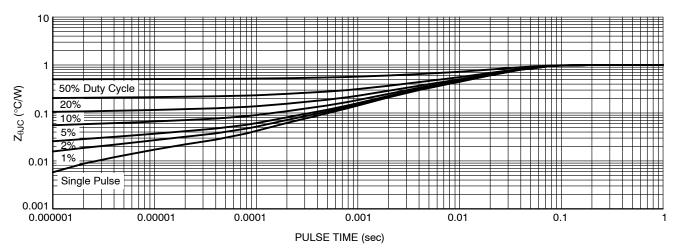


Figure 13. Thermal Impedance

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMFS0D9N03CGT1G	0D9NG	DFN5 (Pb-Free)	1500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

0.10

0.10

SIDE VIEW

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE N

DATE 25 JUN 2018

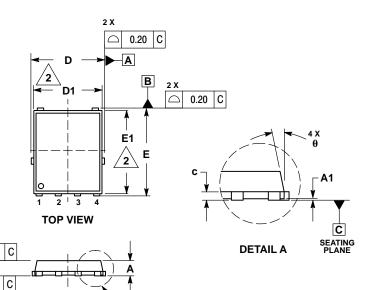
NOTES:

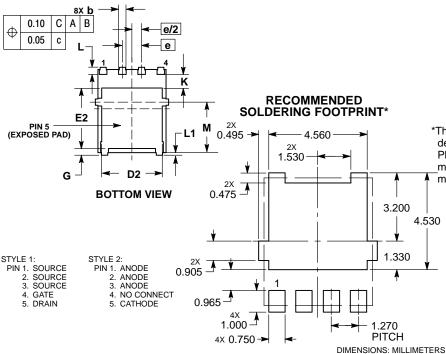
BURRS

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
E	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е	1.27 BSC			
G	0.51	0.575	0.71	
K	1.20	1.35	1.50	
L	0.51	0.575	0.71	
L1	0.125 REF			
M	3.00	3.40	3.80	
A	0 0		12 °	

GENERIC MARKING DIAGRAM*




XXXXXX = Specific Device Code

= Assembly Location Α

Υ = Year W = Work Week ZZ = Lot Traceability

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ÓN Semiconductor does not convey any license under its patent rights nor the rights of others

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative