MOSFET – Power, Dual, N-Channel 40 V, 11.5 mΩ, 36 A

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

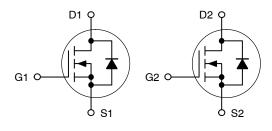
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltage	Э		V _{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	36	Α
Current R _{θJC} (Notes 1, 2, 3)	Steady	T _C = 100°C		23	
Power Dissipation	State	T _C = 25°C	P_{D}	24	W
R _{θJC} (Notes 1, 2)		T _C = 100°C		12	
Continuous Drain		T _A = 25°C	I _D	11	Α
Current R _{θJA} (Notes 1, 2, 3)	Steady	T _A = 100°C		8.0	
Power Dissipation	State T _A = 25°C		P_{D}	3.0	W
R _{θJA} (Notes 1 & 2)		T _A = 100°C		1.5	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	110	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to + 175	°C
Source Current (Body Diode)			I _S	15	Α
Single Pulse Drain-to-Source Avalanche Energy ($T_J = 25$ °C, $I_{L(pk)} = 2 \text{ A}$)			E _{AS}	49	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

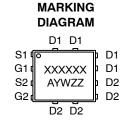
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	5.3	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	49	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
40 V	11.5 mΩ @ 10 V	36 A	
	17.8 mΩ @ 4.5 V		

Dual N-Channel

A = Assembly Location

= Year

W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Section	Unit	Max	Тур	Min	Test Condition		Symbol	Parameter
Drain-to-Source Breakdown Voltage Temperature Coefficient	•							OFF CHARACTERISTICS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V			40	V _{GS} = 0 V, I _D = 250 μA		V _{(BR)DSS}	Drain-to-Source Breakdown Voltage
V _{DS} = 40 V T _J = 125°C 10 10	mV/°C		24				V _{(BR)DSS} /	
Gate-to-Source Leakage Current I _{GSS} V _{DS} = 0 V, V _{GS} = 20 V 10 10		10			T _J = 25 °C	V _{GS} = 0 V,	I _{DSS}	Zero Gate Voltage Drain Current
ON CHARACTERISTICS (Note 4) Gate Threshold Voltage $V_{GS(TH)}$ $V_{GS} = V_{DS}$, $I_D = 20 \mu A$ 1.2 2. Negative Threshold Temperature Coefficient $V_{GS(TH)}/T_J$ $V_{GS} = 10 \text{ V}$ $I_D = 5 \text{ A}$ 9.2 11 Drain-to-Source On Resistance $R_{DS(on)}$ $V_{GS} = 10 \text{ V}$ $I_D = 5 \text{ A}$ 9.2 11 Forward Transconductance g_{FS} $V_{DS} = 15 \text{ V}$, $I_D = 15 \text{ A}$ 30 30 CHARGES, CAPACITANCES & GATE RESISTANCE Input Capacitance C_{ISS} $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$, $V_{DS} = 25 \text{ V}$ 200 20 Reverse Transfer Capacitance C_{RSS} $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$, $V_{DS} = 25 \text{ V}$ 200 30.0 Total Gate Charge $Q_{G(TO)}$ $V_{GS} = 4.5 \text{ V}$, $V_{DS} = 32 \text{ V}$, $I_D = 15 \text{ A}$ 4.0 4.0 Total Gate Charge $Q_{G(TO)}$ $V_{GS} = 10 \text{ V}$, $V_{DS} = 32 \text{ V}$, $I_D = 15 \text{ A}$ 4.0 4.0 Threshold Gate Charge Q_{GC} Q_{GC} 1.1 4.0 4.0 Gate-to-Drain Charge Q_{GD} $V_{GS} = 4.5 \text{ V}$, $V_{DS} $	μΑ	100			T _J = 125°C	V _{DS} = 40 V		
Gate Threshold Voltage $V_{GS(TH)}$ $V_{GS} = V_{DS}$, $I_D = 20$ μA 1.2 2.2 Negative Threshold Temperature Coefficient $V_{GS(TH)}/J_J$ —4.5 Drain-to-Source On Resistance $P_{DS(on)}$ $V_{GS} = 10$ V $I_D = 5$ A 9.2 11 Forward Transconductance g_{FS} $V_{DS} = 15$ V, $I_D = 15$ A 30 30 CHARGES, CAPACITANCES & GATE RESISTANCE Input Capacitance C_{ISS} $V_{DS} = 15$ V, $I_D = 15$ A 590 Output Capacitance C_{OSS} $V_{GS} = 0$ V, $f = 1$ MHz, $V_{DS} = 25$ V 200 Reverse Transfer Capacitance C_{RSS} $V_{GS} = 0$ V, $f = 1$ MHz, $V_{DS} = 25$ V 200 Total Gate Charge $Q_{G(TOT)}$ $V_{GS} = 4.5$ V, $V_{DS} = 32$ V; $I_D = 15$ A 4.0 Threshold Gate Charge $Q_{G(TOT)}$ $V_{GS} = 10$ V, $V_{DS} = 32$ V; $I_D = 15$ A 9.0 Threshold Gate Charge Q_{GD} $V_{GS} = 4.5$ V, $V_{DS} = 32$ V; $I_D = 15$ A 1.6 Gate-to-Drain Charge Q_{GD} $V_{GS} = 4.5$ V, $V_{DS} = 32$ V, V_{DS}	nA	100			= 20 V	V _{DS} = 0 V, V _{GS}	I _{GSS}	Gate-to-Source Leakage Current
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								ON CHARACTERISTICS (Note 4)
Drain-to-Source On Resistance R _{DS(on)} V _{GS} = 10 V I _D = 5 A 9.2 11	2 V	2.2		1.2	$V_{GS} = V_{DS}$, $I_D = 20 \mu A$		V _{GS(TH)}	Gate Threshold Voltage
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mV/°C		-4.5				V _{GS(TH)} /T _J	Negative Threshold Temperature Coefficient
Forward Transconductance		11.5	9.2		I _D = 5 A	V _{GS} = 10 V	R _{DS(on)}	Drain-to-Source On Resistance
$ \begin{array}{ c c c c c } \hline \textbf{Charges, CaPaCitances & Gate Resistance} \\ \hline \textbf{Input Capacitance} & \textbf{C}_{ISS} \\ \hline \textbf{Output Capacitance} & \textbf{C}_{OSS} \\ \hline \textbf{Reverse Transfer Capacitance} & \textbf{C}_{RSS} \\ \hline \textbf{Total Gate Charge} & \textbf{Q}_{G(TOT)} \\ \hline \textbf{Total Gate Charge} & \textbf{Q}_{G(TOT)} \\ \hline \textbf{V}_{GS} = 4.5 \text{ V, V}_{DS} = 32 \text{ V; I}_{D} = 15 \text{ A} \\ \hline \textbf{Q}_{GC} \\ \hline \textbf{SWITCHING CHARACTERISTICS} \\ \hline Note In the part of the par$	mΩ 8	17.8	14.6		I _D = 5 A	V _{GS} = 4.5 V		
	S		30		= 15 A	V_{DS} = 15 V, I_{D}	9FS	Forward Transconductance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							STANCE	CHARGES, CAPACITANCES & GATE RESIS
Reverse Transfer Capacitance C_{RSS} 8.0 Total Gate Charge $Q_{G(TOT)}$ $V_{GS} = 4.5 \text{ V}$, $V_{DS} = 32 \text{ V}$; $I_D = 15 \text{ A}$ 4.0 Total Gate Charge $Q_{G(TOT)}$ $V_{GS} = 10 \text{ V}$, $V_{DS} = 32 \text{ V}$; $I_D = 15 \text{ A}$ 9.0 Threshold Gate Charge $Q_{G(TH)}$ 1.1 1.1 Gate-to-Source Charge Q_{GS} 2.2 2.2 Gate-to-Drain Charge Q_{GD} 1.6 1.6 Plateau Voltage V_{GP} 3.2 3.2 SWITCHING CHARACTERISTICS (Note 5) $V_{GS} = 4.5 \text{ V}$, $V_{DS} = 32 \text{ V}$, V_{D			590		V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V		C _{ISS}	Input Capacitance
	pF		200				C _{OSS}	Output Capacitance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			8.0				C _{RSS}	Reverse Transfer Capacitance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.0		V _{GS} = 4.5 V, V _{DS} = 32 V; I _D = 15 A		Q _{G(TOT)}	Total Gate Charge
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			9.0		V _{GS} = 10 V, V _{DS} = 32 V; I _D = 15 A		Q _{G(TOT)}	Total Gate Charge
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nC		1.1					Threshold Gate Charge
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.2		$V_{GS} = 4.5 \text{ V}, V_{DS} = 32 \text{ V}; I_D = 15 \text{ A}$		Q_{GS}	Gate-to-Source Charge
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.6				Q_{GD}	Gate-to-Drain Charge
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V		3.2				V_{GP}	Plateau Voltage
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								SWITCHING CHARACTERISTICS (Note 5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			9.3					Turn-On Delay Time
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			55		s = 32 V,	V _{GS} = 4.5 V, V _{DS}	t _r	Rise Time
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns		20		= 1.0 Ω	$I_D = 15 \text{ A}, R_G = 1.0 \Omega$		Turn-Off Delay Time
Forward Diode Voltage V_{SD} $V_{GS} = 0 \text{ V}, \\ I_{S} = 5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ 1.0 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5			36				t _f	Fall Time
$I_{S} = 5 \text{ A}$ $T_{J} = 125^{\circ}\text{C}$ 0.8							s	DRAIN-SOURCE DIODE CHARACTERISTIC
$I_S = 5 \text{ A}$ $T_J = 125^{\circ}\text{C}$ 0.8		1.2	1.0		T _J = 25°C	V _{GS} = 0 V,	V_{SD}	Forward Diode Voltage
Payarra Pagayary Time			0.8		T _J = 125°C	$I_S = 5 \text{ A}$	$I_S = 5$	
nevelse necovery little RR 20			20		$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 15 \text{ A}$		t _{RR}	Reverse Recovery Time
Charge Time $t_a = V_{GS} = 0 \text{ V, } dI_S/dt = 100 \text{ A/}\mu\text{s},$	ns		10				t _a	Charge Time
			10				t _b	Discharge Time
Reverse Recovery Charge Q _{RR} 9	nC		9				Q _{RR}	Reverse Recovery Charge

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

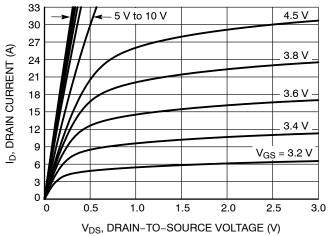


Figure 1. On-Region Characteristics

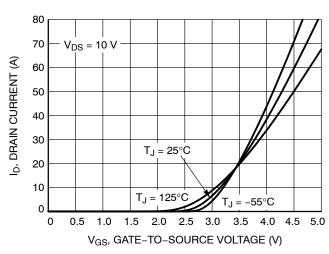


Figure 2. Transfer Characteristics

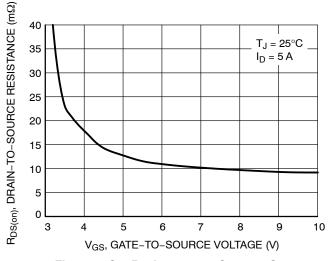


Figure 3. On-Resistance vs. Gate-to-Source Voltage

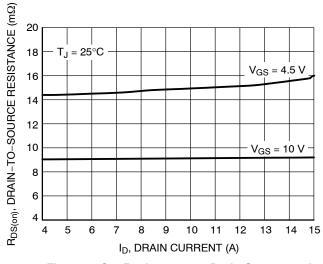


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

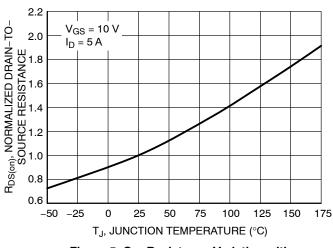


Figure 5. On–Resistance Variation with Temperature

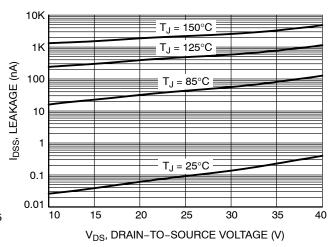


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

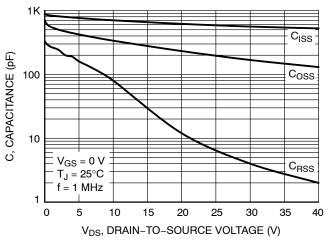


Figure 7. Capacitance Variation

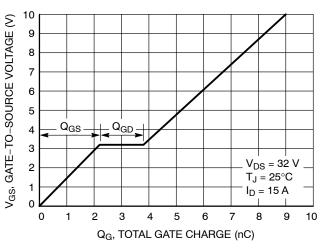


Figure 8. Gate-to-Source vs. Total Charge

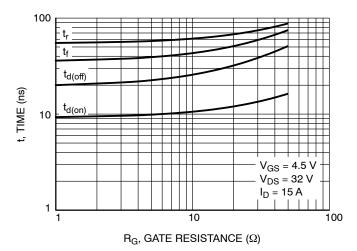


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

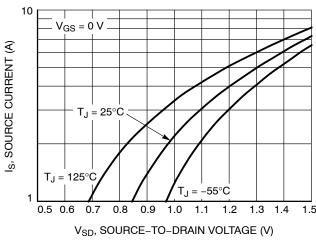


Figure 10. Diode Forward Voltage vs. Current

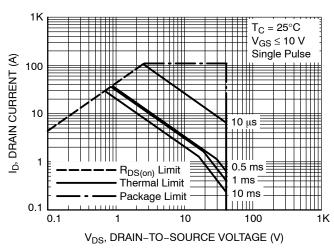


Figure 11. Maximum Rated Forward Biased Safe Operating Area

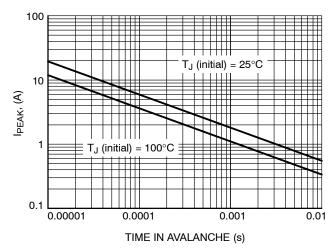
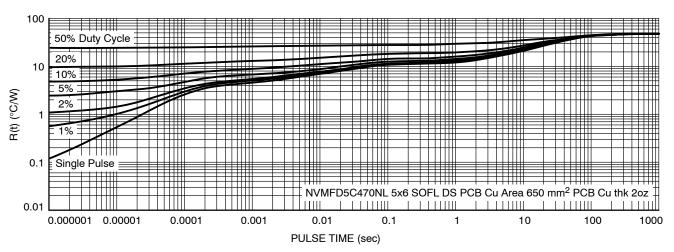
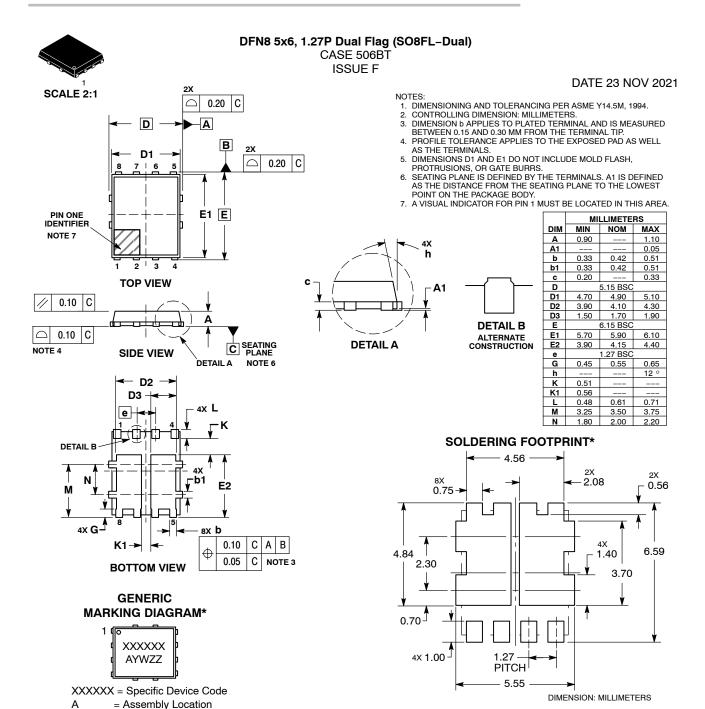


Figure 12. $I_{\mbox{\scriptsize PEAK}}$ vs. Time in Avalanche

TYPICAL CHARACTERISTICS




Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMFD5C470NLT1G	5C470L	DFN8 (Pb-Free)	1500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DOCUMENT NUMBER:	98AON50417E Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN8 5X6, 1.27P DUAL FL	PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular e, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

= Year

not follow the Generic Marking.

= Work Week

= Lot Traceability *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may

٧

W

ZZ

*For additional information on our Pb-Free strategy and soldering

Mounting Techniques Reference Manual, SOLDERRM/D.

details, please download the ON Semiconductor Soldering and

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative