

8-Pin DIP Low Input Current High Gain Split Darlington Optocouplers

Single-Channel: 6N138M, 6N139M Dual-Channel: HCPL2730M, HCPL2731M

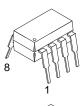
Description

The single-channel, 6N138M, 6N139M and dual-channel HCPL2730M, HCPL2731M optocouplers consist of an AlGaAs LED optically coupled to a high gain split darlington photodetector.

The split darlington configuration separating the input photodiode and the first stage gain from the output transistor permits lower output saturation voltage and higher speed operation than possible with conventional darlington phototransistor optocoupler. In the dual channel devices, HCPL2730M and HCPL2731M, an integrated emitter—base resistor provides superior stability over temperature.

The combination of a very low input current of 0.5 mA and a high current transfer ratio of 2000% makes this family particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as well as high fan–out TTL requirements. An internal noise shield provides exceptional common mode rejection of $10 \, kV/\mu s$.

Features


- Low Current 0.5 mA
- Superior CTR 2000%
- Superior CMR 10 kV/µs
- CTR Guaranteed 0 to 70°C
- Dual Channel HCPL2730M, HCPL2731M
- Safety and Regulatory Approvals
- UL1577, 5,000 VAC_{RMS} for 1 Minute
- DIN EN/IEC60747-5-5
- These are Pb-Free Devices

Applications

- Digital Logic Ground Isolation
- Telephone Ring Detector
- EIA-RS-232C Line Receiver
- High Common Mode Noise Line Receiver
- μP Bus Isolation
- Current Loop Receiver

PDIP8 6.6x3.81, 2.54P CASE 646BW

PDIP8 9.655x6.6, 2.54P CASE 646CQ

PDIP8 GW CASE 709AC

MARKING DIAGRAM

6N138 VXXYYB

6N138 = Device Number

= DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)

XX = Two-Digit Year Code, e.g., '16'

YY = Two-Digit Work Week, Ranging from

'01' to '53'

B = Assembly Package Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 11 of this data sheet.

Related Resources

- https://www.onsemi.com/products/interfaces/ high-performance-optocouplers/high-performance-transistor-optocouplers
- https://www.onsemi.com/products/interfaces/
 https://www.onsemi.com/products/
 https://www.onsemi.com/pr
- https://www.onsemi.com/products/interfaces/ high-performance-optocouplers/high-performance-transistor-optocouplers/hcpl0731

1

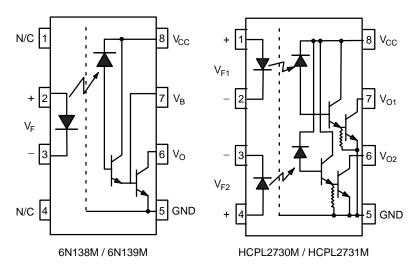


Figure 1. Schematics

SAFETY AND INSULATION RATINGS (As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.)

Parameter	Characteristics			
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated	<150 V _{RMS}	I–IV		
Mains Voltage	<300 V _{RMS}	I–IV		
	<450 V _{RMS}	I–III		
	<600 V _{RMS}	I–III		
	<1,000 V _{RMS} (Option T, TS)	I–III		
Climatic Classification		40/100/21		
Pollution Degree (DIN VDE 0110/1.89)	2			
Comparative Tracking Index	Comparative Tracking Index			

Symbol	Parameter	Value	Unit
V _{PR}	Input–to–Output Test Voltage, Method A, V_{IORM} x 1.6 = V_{PR} , Type and Sample Test with t_m = 10 s, Partial Discharge < 5 pC	2,262	V _{peak}
	Input–to–Output Test Voltage, Method B, V_{IORM} x 1.875 = V_{PR} , 100% Production Test with t_m = 1 s, Partial Discharge < 5 pC	2,651	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	1,414	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6,000	V _{peak}
	External Creepage	≥8.0	mm
	External Clearance	≥7.4	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥10.16	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥0.5	mm
T _S	Case Temperature (Note 1)	150	°C
I _{S,INPUT}	Input Current (Note 1)	200	mA
P _{S,OUTPUT}	Output Power (Duty Factor ≤ 2.7%) (Note 1)	300	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V (Note 1)	>10 ⁹	Ω

^{1.} Safety limit value – maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

Symbol	Parameter	Device	Value	Unit
T _{STG}	Storage Temperature		-40 to +125	°C
T _{OPR}	Operating Temperature		-40 to +100	°C
T_J	Junction Temperature		-40 to +125	°C
T _{SOL}	Lead Solder Temperature		260 for 10 s	°C
EMITTER				
I _F (avg)	DC/Average Forward Input Current Per Channel	All	20	mA
I _F (pk)	Peak Forward Input Current Per Channel (50% Duty Cycle, 1 ms P.W.)	All	40	mA
I _F (trans)	Peak Transient Input Current Per Channel (≤1 μs P.W., 300 pps)	All	1	Α
V _R	Reverse Input Voltage Per Channel	All	5	V
P _D	Input Power Dissipation Per Channel (Note 2)	All	35	mW
DETECTOR				
I _O (avg)	Average Output Current Per Channel	All	60	mA
V _{ER}	Emitter-Base Reverse Voltage	6N138M, 6N139M	0.5	V
V _{CC} , V _O	Supply Voltage, Output Voltage	6N138M, HCPL2730M	-0.5 to 7.0	V
		6N139M, HCPL2731M	-0.5 to 18.0	
Po	Output Power Dissipation Per Channel	All	100	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. No derating required for devices operated within the T_{OPR} specification (6N138M and 6N139M only).

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Device Test Conditions Min		Min	Тур	Max	Unit
INDIVIDUA at $T_{\Delta} = 25^{\circ}$		STICS (V _{CC} = 5.	0 V, $T_A = 0$ °C to 70 °C unless otherwis	e specifie	d. Typical v	value is me	asured

EMITTER								
V _F	Input Forward Voltage	All	I _F = 1.6 mA, T _A = 25°C	-	1.30	1.70	V	
			I _F = 1.6 mA	-	-	1.75		
BV _R	Input Reverse Breakdown Voltage	All	$I_R = 10 \mu A, T_A = 25^{\circ}C$	5.0	19.0	-	V	
ΔV _F / ΔT _A	Temperature Coefficient of Forward Voltage	All	I _F = 1.6 mA	_	-1.94	_	mV/°C	
DETECTO	DETECTOR							
I _{CCL}	Logic Low Supply Current	6N138M, 6N139M	$I_F = 1.6$ mA, $V_O = Open$, $V_{CC} = 18$ V	_	0.4	1.5	mA	
		HCPL2730M	$V_{CC} = 7 \text{ V}$ $I_{F1} = I_{F2} = 1.6 \text{ mA},$	- 1.25	1.25	3		
		HCPL2731M	V _{CC} = 18 V V _{O1} = V _{O2} = Open					
Іссн	Logic High Supply Current	6N138M, 6N139M	$I_F = 0$ mA, $V_O = Open$, $V_{CC} = 18$ V	_	0.0003	10	μΑ	
		HCPL2730M	$V_{CC} = 7 V$ $I_{F1} = I_{F2} = 0 \text{ mA},$ $V_{O1} = V_{O2} = \text{Open}$	-	0.0003	20	1	
		HCPL2731M	V _{CC} = 18 V V _{O1} = V _{O2} = Open					

TRANSFER CHARACTERISTICS

OUPLE	D						
CTR Current Transfer Ratio (Note 3) (Note 4)	6N138M	$I_F = 1.6 \text{ mA}, V_O = 0.4 \text{ V},$	300	1600	-	%	
	(11016 4)	HCPL2730M	$V_{CC} = 4.5 \text{ V}$		2400		
		6N139M	$I_F = 0.5 \text{ mA}, V_O = 0.4 \text{ V},$	400	2000	-	
		HCPL2731M	$V_{CC} = 4.5 \text{ V}$		3500		
		6N139M	$I_F = 1.6 \text{ mA}, V_O = 0.4 \text{ V},$	500	1600	-	
	HCPL2731M	V _{CC} = 4.5 V		2400			
I _{OH}	Logic High Output Current	6N138M	$I_F = 0 \text{ mA}, V_O = V_{CC} = 7 \text{ V}$	_	0.001	250	μΑ
		HCPL2730M					
		6N139M	$I_F = 0 \text{ mA}, V_O = V_{CC} = 18 \text{ V}$	_	0.0036	100	
		HCPL2731M					
V_{OL}	Logic Low Output Voltage	6N138M	$I_F = 1.6 \text{ mA}, I_O = 4.8 \text{ mA},$	_	0.06	0.4	V
	(Note 4)	HCPL2730M	$V_{CC} = 4.5 \text{ V}$		0.05		
		6N139M	$I_F = 0.5 \text{ mA}, I_O = 2 \text{ mA}, V_{CC} = 4.5 \text{ V}$	-	0.05	0.4	
		6N139M	$I_F = 1.6 \text{ mA}, I_O = 8 \text{ mA},$	_	0.093	0.4	
		HCPL2731M	V _{CC} = 4.5 V		0.08		
		6N139M	$I_F = 5 \text{ mA}, I_O = 15 \text{ mA},$	_	0.13	0.4	
		HCPL2731M	V _{CC} = 4.5 V		0.12		
		6N139M	$I_F = 12 \text{ mA}, I_O = 24 \text{ mA},$	_	0.18	0.4	
		HCPL2731M	$V_{CC} = 4.5 \text{ V}$		0.17		

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Device	Test Conditions	Min	Тур	Max	Unit
SWITCHIN	IG CHARACTERISTICS (V _{CC} = 5.	0 V, $T_A = 0^{\circ}C$ to	70°C unless otherwise specified. Typi	ical value is	measured	at T _A = 2	5°C.)
t _{PHL}	Propagation Delay Time to	6N139M	$R_L = 270 \Omega$, $I_F = 12 \text{ mA}$	_	0.2	2	μS
		HCPL2730M, HCPL2731M	R_L = 270 Ω, I_F = 12 mA	_	0.5	3	
		6N138M	$R_L = 2.2 \text{ k}\Omega, I_F = 1.6 \text{ mA}$	-	1.0	15	
		HCPL2730M, HCPL2731M	$R_L = 2.2 \text{ k}\Omega, I_F = 1.6 \text{ mA}$	_	2.5	25	
		6N139M	$R_L = 4.7 \text{ k}\Omega, I_F = 0.5 \text{ mA}$	-	2.5	30	
		HCPL2731M	$R_L = 4.7 \text{ k}\Omega, I_F = 0.5 \text{ mA}$	_	8.4	120	
t _{PLH}	Propagation Delay Time to Logic HIGH (Note 4) (Figure 14)	6N139M	$R_L = 270 \Omega$, $I_F = 12 \text{ mA}$	_	1.3	10	μs
	Logic Fight (Note 4) (Figure 14)	HCPL2730M, HCPL2731M	$R_L = 270 \ \Omega, I_F = 12 \ mA$	_	1.0	15	
		6N138M, HCPL2730M, HCPL2731M	$R_L = 2.2 \text{ k}\Omega, I_F = 1.6 \text{ mA}$	-	7.3	50	
		6N139M, HCPL2731M	$R_L = 4.7 \text{ k}\Omega, I_F = 0.5 \text{ mA}$	_	13.6	90	
CM _H	Common Mode Transient Immunity at Logic High (Note 5) (Figure 15)	All	$I_F = 0$ mA, $IV_{CM}I = 10$ V_{P-P} , $R_L = 2.2$ k Ω , $T_A = 25$ °C	1,000	10,000	-	V/μs
CM _L	Common Mode Transient Immunity at Logic Low (Note 5) (Figure 15)	All	I_F = 1.6 mA, $IV_{CM}I$ = 10 V_{P-P} , R_L = 2.2 kΩ, T_A = 25°C	1,000	10,000	-	V/μs
ISOLATIO	N CHARACTERISTICS (T _A = 25°	C unless otherw	rise specified.)				
V _{ISO}	Withstand Insulation Test Voltage (Note 6) (Note 7)	All	$RH \leq 50\%, \ T_A = 25^{\circ}C, \\ I_{I-O} \leq 10 \ \mu A, \ t = 1 \ min, \ f = 50 \ Hz$	5,000	-	-	VAC _{RMS}
R _{I-O}	Resistance (Input to Output) (Note 6)	All	V _{I-O} = 500 V _{DC}	_	10 ¹¹	-	Ω
C _{I–O}	Capacitance (Input to Output)	All	f = 1 MHz, V _{I–O} = 0 V	_	1	_	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

f = 1 MHz

 $V_{I-I} = 500 V_{DC}$

 $RH \le 45\%$, $V_{I-I} = 500 V_{DC}$, t = 5 s

0.005

10¹¹

0.03

uΑ

Ω

pF

3. Current Transfer Ratio is defined as a ratio of output collector current, IO, to the forward LED input current, IF, times 100%.

HCPL2730M.

HCPL2731M

HCPL2730M,

HCPL2731M HCPL2730M,

HCPL2731M

4. Pin 7 open. (6N138M and 6N139M only)

(Note 9)

(Note 6) (Note 8)

Current (Note 9)

 I_{I-I}

 R_{I-I}

 C_{I-I}

Input-Input Insulation Leakage

Input-Input Resistance (Note 9)

Input-Input Capacitance

- 5. Common mode transient immunity in logic HIGH level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic HIGH state (i.e., $V_O > 2.0 \text{ V}$). Common mode transient immunity in logic LOW level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a logic LOW state (i.e., V_O < 0.8 V).

 6. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 7. 5000 VAC_{RMS} for 1 minute duration is equivalent to 6000 VAC_{RMS} for 1 second duration.
- 8. For dual channel devices, C_{I=O} is measured by shorting pins 1 and 2 or pins 3 and 4 together and pins 5 through 8 shorted together.
- 9. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

ELECTRICAL CHARACTERISTICS (continued)

(T_A = 25°C unless otherwise specified.)

Current Limiting Resistor Calculations:

 $R_{1} \text{ (Non-Invert)} = \frac{V_{CC1} - V_{DF} - V_{OL1}}{I_{E}}$ (eq. 1)

 $R_{1} \text{ (Invert)} = \frac{V_{CC1} - V_{OH1} - V_{DF}}{I_{F}}$ (eq. 2)

 ${\rm R_2} = \frac{{\rm V_{CC2} - V_{OLX} \, (@ \, I_L - I_2)}}{{\rm I_L}}$ (eq. 3) Where:

V_{CC1} = Input Supply Voltage V_{CC2} = Output Supply Voltage

V_{DF} = Diode Forward Voltage

V_{OL1} = Logic "0" Voltage of Driver V_{OH1} = Logic "1" Voltage of Driver

I_F = Diode Forward Current

V_{OLX} = Saturation Voltage of Output Transistor

I_L = Load Current Through Resistor R₂

I₂ = Input Current of Output Gate

INF	PUT			R ₂ ((Ω) @ OUTP	UT CONFIGU	JRATION		
CONFIGURATION		R ₁ (Ω)	CMOS @ 5 V	CMOS @ 10 V	74XX	74LXX	74SXX	74LSXX	74HXX
CMOS @	NON-INV.	2000	1000	2200	750	1000	1000	1000	560
5 V	INV.	510	1						
CMOS @	NON-INV.	5100							
10 V	INV.	4700							
74XX	NON-INV.	2200							
	INV.	180							
74LXX	NON-INV.	1800							
	INV.	100							
74SXX	NON-INV.	2000							
	INV.	360							
74LSXX	NON-INV.	2000							
	INV.	180							
74HXX	NON-INV.	2000	1						
	INV.	180							

Figure 2. Resistor Values for Logic Interface

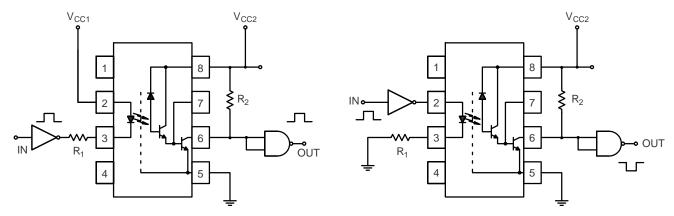


Figure 3. Non-Inverting Logic Interface

Figure 4. Inverting Logic Interface

TYPICAL PERFORMANCE CURVES

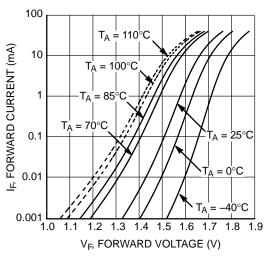


Figure 5. LED Forward Current vs. Forward Voltage

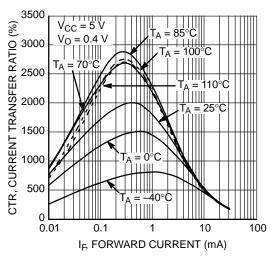


Figure 7. Current Transfer Ratio vs. Forward Current (6N138M / 6N139M Only)

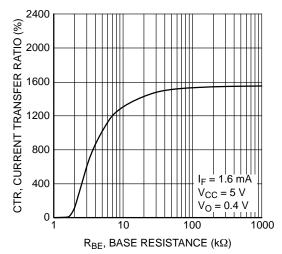


Figure 9. Current Transfer Ratio vs. Base–Emitter Resistance (6N138M / 6N139M Only)

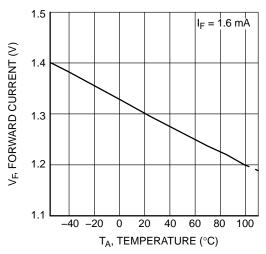


Figure 6. LED Forward Current vs. Temperature

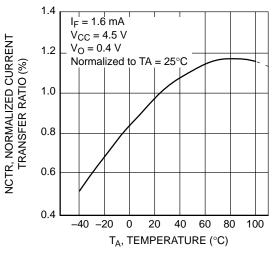


Figure 8. Normalized Current Transfer Ratio vs. Ambient Temperature (6N138M / 6N139M Only)

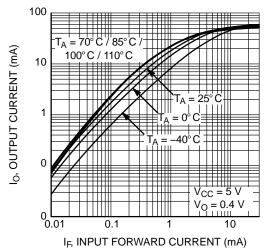


Figure 10. Output Current vs. Input Diode Forward Current (6N138M / 6N139M Only)

TYPICAL PERFORMANCE CURVES (continued)

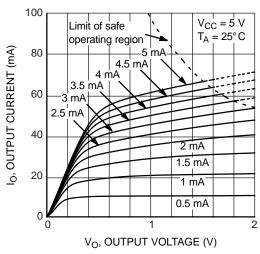


Figure 11. Output Current vs Output Voltage (6N138M / 6N139M Only)

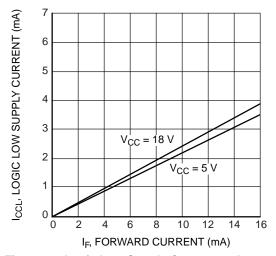


Figure 12. Logic Low Supply Current vs. Input Diode Forward Current (6N138M / 6N139M Only)

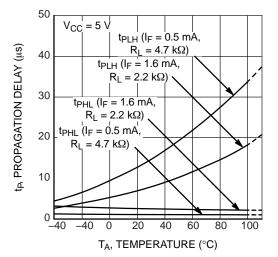


Figure 13. Propagation Delay vs. Temperature (6N138M / 6N139M Only)

TEST CIRCUITS

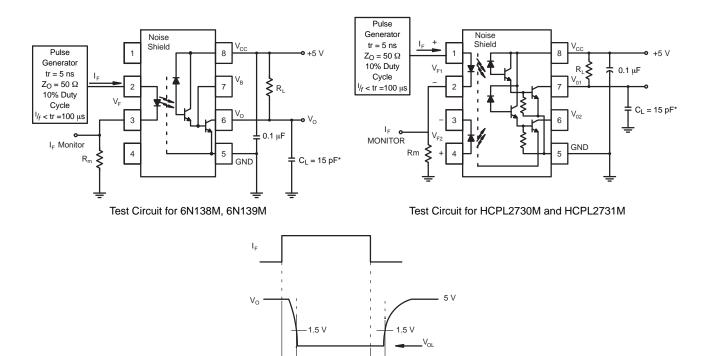


Figure 14. Switching Time Test Circuit

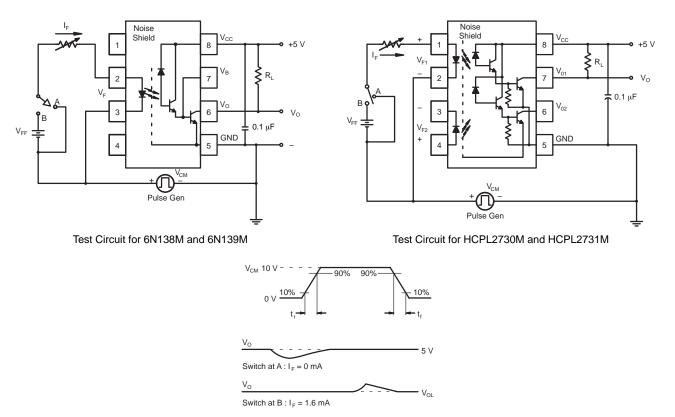
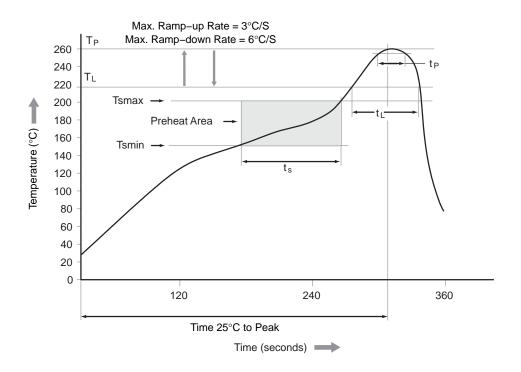
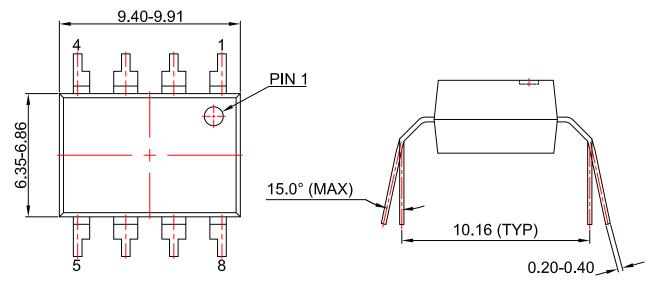



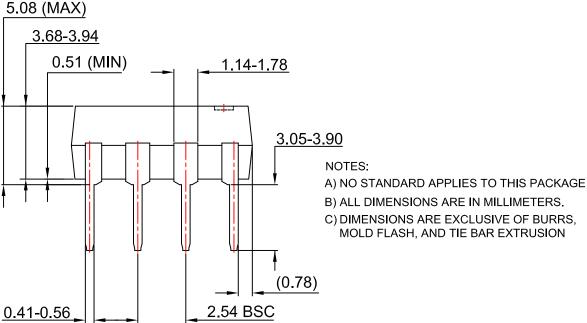
Figure 15. Common Mode Immunity Test Circuit

REFLOW PROFILE

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60 – 120 seconds
Ramp–up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.

Figure 16. Reflow Profile

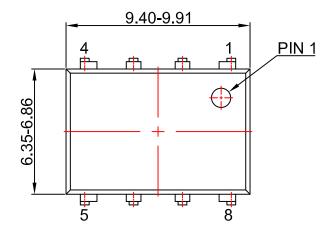

ORDERING INFORMATION

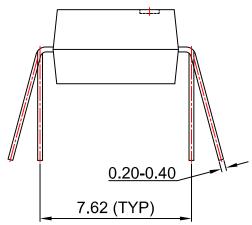

Part Number	Package	Shipping [†]
6N138M	DIP 8-Pin (Pb-Free)	50 Units / Tube
6N138SM	SMT 8-Pin (Lead Bend) (Pb-Free)	50 Units / Tube
6N138SDM	SMT 8-Pin (Lead Bend) (Pb-Free)	1,000 Units / Tape & Reel
6N139M	DIP 8-Pin (Pb-Free)	50 Units / Tube
6N139SM	SMT 8-Pin (Lead Bend) (Pb-Free)	50 Units / Tube
6N139SDM	SMT 8-Pin (Lead Bend) (Pb-Free)	1,000 Units / Tape & Reel
6N139VM	DIP 8-Pin, DIN EN/IEC 60747-5-5 Option (Pb-Free)	50 Units / Tube
6N139SVM	N139SVM SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-5 Option (Pb-Free)	
6N139SDVM	SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-5 Option (Pb-Free)	1,000 Units / Tape & Reel
6N139TVM	DIP 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-5 Option (Pb-Free)	50 Units / Tube
HCPL2730M	DIP 8-Pin (Pb-Free)	50 Units / Tube
HCPL2730SM	SMT 8-Pin (Lead Bend) (Pb-Free)	50 Units / Tube
HCPL2730SDM	SMT 8-Pin (Lead Bend) (Pb-Free)	1,000 Units / Tape & Reel
HCPL2731M	DIP 8-Pin (Pb-Free)	50 Units / Tube
HCPL2731SM	SMT 8-Pin (Lead Bend) (Pb-Free)	50 Units / Tube
HCPL2731SDM	SMT 8-Pin (Lead Bend) (Pb-Free)	1,000 Units / Tape & Reel
HCPL2731VM	DIP 8-Pin, DIN EN/IEC 60747-5-5 Option (Pb-Free)	50 Units / Tube

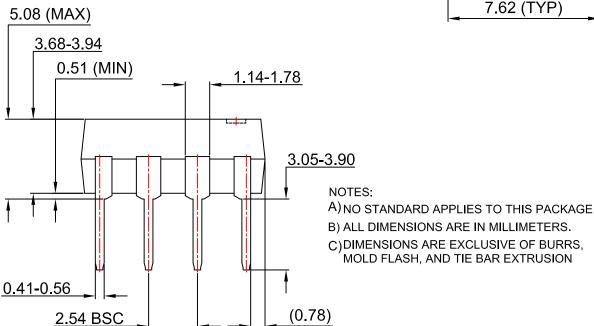
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PDIP8 6.6x3.81, 2.54P CASE 646BW ISSUE O

DATE 31 JUL 2016

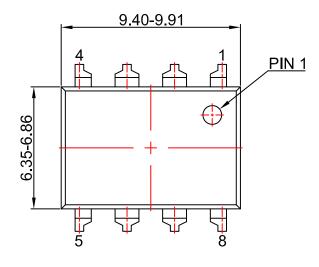


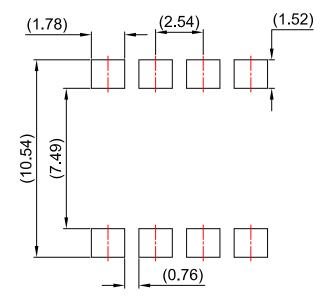

DOCUMENT NUMBER:	98AON13445G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP8 6.6X3.81, 2.54P		PAGE 1 OF 1	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP8 9.655x6.6, 2.54P CASE 646CQ ISSUE O

DATE 18 SEP 2017




DOCUMENT NUMBER:	98AON13446G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP8 9.655X6.6, 2.54P		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

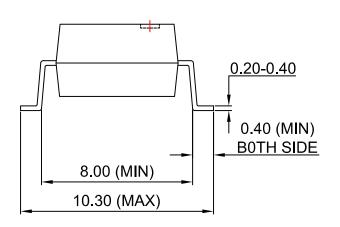
PDIP8 GW CASE 709AC ISSUE O

DATE 31 JUL 2016

5.08 (MAX)

3.68-3.94

0.51 (MIN)


1.14-1.78

(0.78)

2.54BSC

0.41-0.56

LAND PATTERN RECOMMENDATION

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

DOCUMENT NUMBER:	98AON13447G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PDIP8 GW		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative