onsemi

MOSFET - Power, Single N-Channel

100 V, 10.6 mΩ, 57.8 A

NVTFS010N10MCL

Features

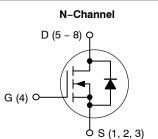
- Small Footprint (3.3 x 3.3 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- NVTFWS010N10MCLTAG Wettable Flanks Product
- AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

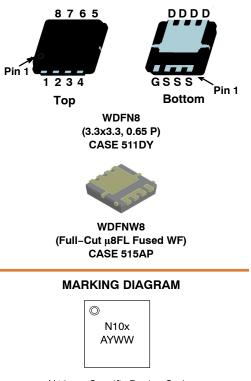
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	100	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady State	$T_{C} = 25^{\circ}C$	I _D	57.8	А
Current R _{0JC} (Notes 1, 2, 3)		T _C = 100°C		40.8	
Power Dissipation		T _C = 25°C	PD	77.8	W
$R_{\theta JC}$ (Notes 1, 2)		T _C = 100°C		38.9	
Continuous Drain	Steady State	$T_A = 25^{\circ}C$	۱ _D	11.7	А
Current R _{θJA} (Notes 1, 2, 3)		T _A = 100°C		8.3	
Power Dissipation		$T_A = 25^{\circ}C$	PD	3.2	W
$R_{\theta JA}$ (Notes 1, 2)		T _A = 100°C		1.6	
Pulsed Drain Current	$T_{C} = 25^{\circ}C, t_{p} = 10 \ \mu s$		I _{DM}	232	А
Source Current			I _S	64.8	А
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 2.9 A)			E _{AS}	526	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)


Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{\theta JC}$	1.93	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	46.6	


1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

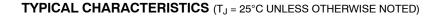
2. Surface-mounted on FR4 board using a 650 mm^2 , 2 oz. Cu pad.

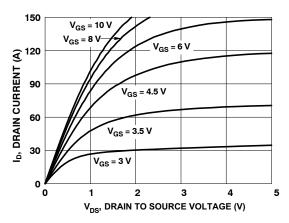
Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
100 V	10.6 mΩ @ 10 V	57.8 A
100 V	15.9 mΩ @ 4.5 V	57.6 A

Y = Year Code

WW = Work Week Code


ORDERING INFORMATION


See detailed ordering, marking and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				64		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$, $T_J = 25^{\circ}C$				1.0	
		V _{DS} = 80 V T _J = 125	T _J = 125°C			250	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V				100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 85 \ \mu A$		1.0	1.5	3.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-5.3		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 15 A		9.1	10.6	
		V _{GS} = 4.5 V	I _D = 12 A		13.5	15.9	mΩ
Forward Transconductance	9 _{FS}	V _{DS} =5 V, I _D = 15 A			54		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				1530	2150	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MH	Hz, V _{DS} = 50 V		625	875	
Reverse Transfer Capacitance	C _{RSS}				10	18	1
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 50 V; I_{D} = 15 A			10		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 50 V; I_{D} = 15 A			22	30	nC
Gate-to-Source Charge	Q _{GS}				4.0		.0
Gate-to-Drain Charge	Q _{GD}	V _{GS} = 10 V, V _{DS} =	50 V; I _D = 15 A		3.0		nC
SWITCHING CHARACTERISTICS (Note 5	5)						
Turn-On Delay Time	t _{d(ON)}				9.0		
Rise Time	tr	V _{GS} = 10 V, Vr	ns = 50 V,		3.0		
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 10 V, V_{DS} = 50 V, I _D = 15 A, R_G = 6 Ω			28		- ns
Fall Time	t _f				5.0		
DRAIN-SOURCE DIODE CHARACTERIS	TICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 15 A			0.8	1.3	V
Reverse Recovery Time	t _{RR}	I _F = 8 A, di/dt = 300 A/μs			22	36	ns
Reverse Recovery Charge	Q _{RR}				35	56	nC
Reverse Recovery Time	t _{RR}	I _F = 8 A, di/dt = 1000 A/μs			17	30	ns
Reverse Recovery Charge	Q _{RR}				79	126	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Pulse Test: pulse width ≤ 300 µs, duty cycle ≤ 2%.
5. Switching characteristics are independent of operating junction temperatures.

vs. Junction Temperature

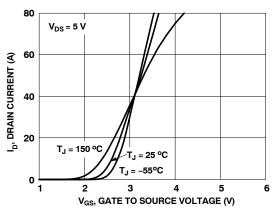
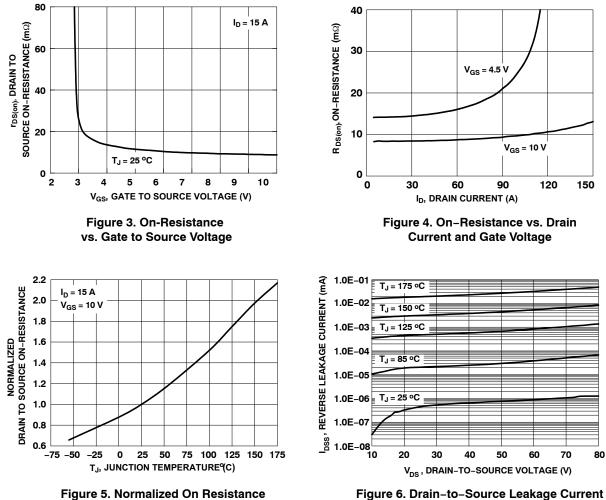
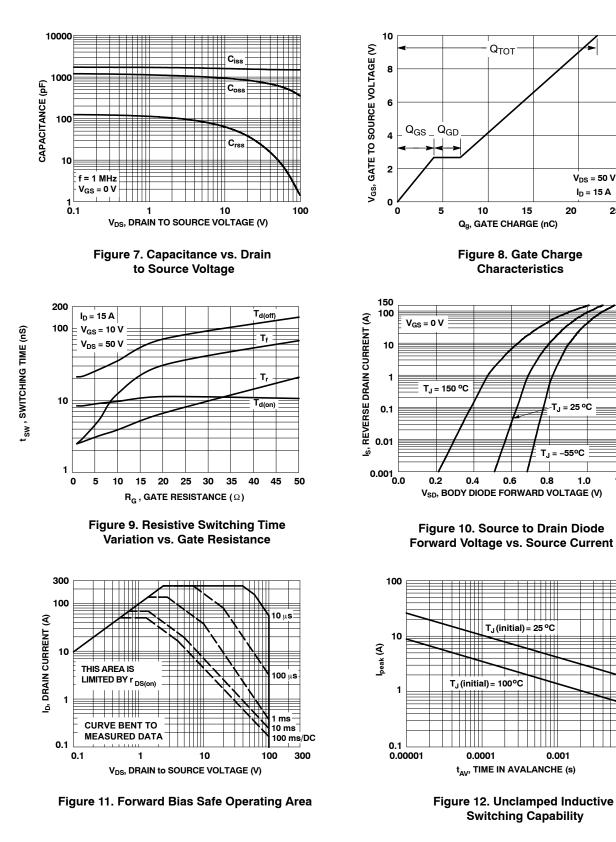



Figure 2. Transfer Characteristics

V_{DS} = 50 V I_D = 15 A


1.0

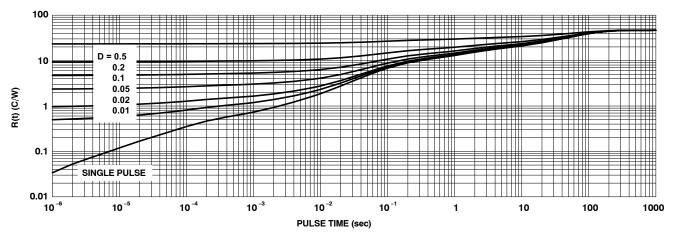
1.2

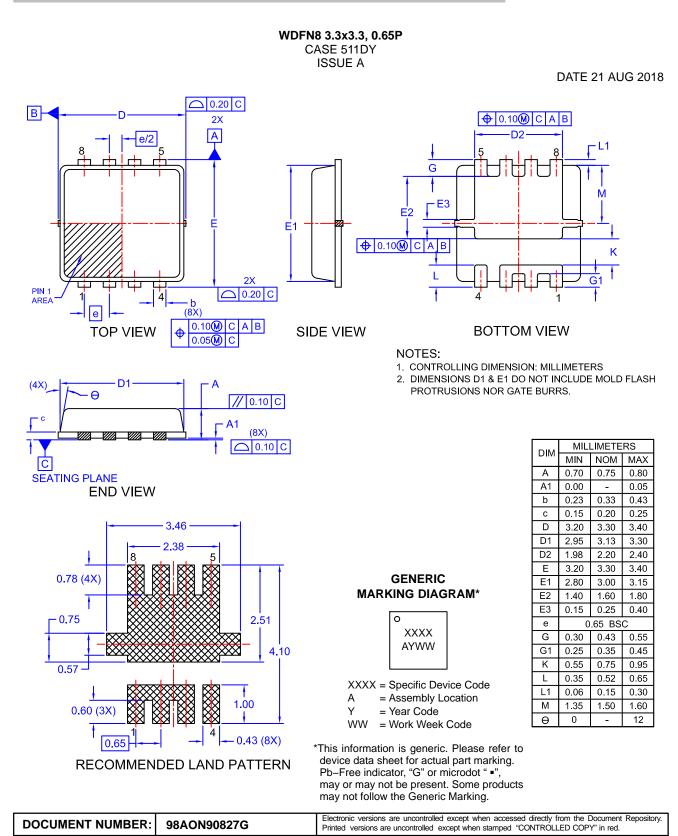
0.01

25

TYPICAL CHARACTERISTICS (T_J = 25°C UNLESS OTHERWISE NOTED)

TYPICAL CHARACTERISTICS (CONTINUED)

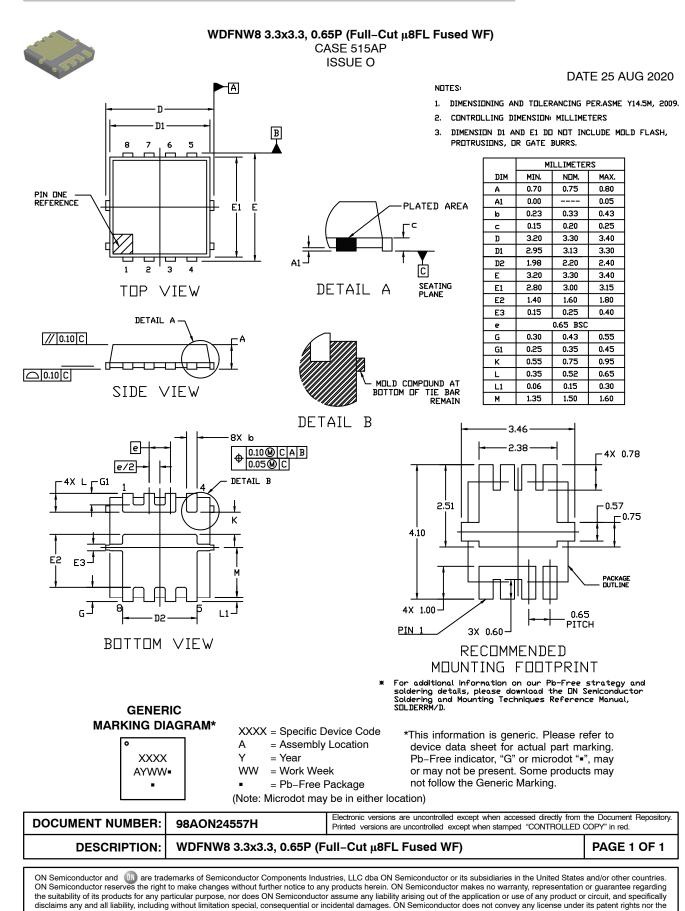



Figure 13. Junction-to-Case Transient Thermal Response Curve

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVTFS010N10MCLTAG	N10L	WDFN8 (Pb–Free)	1500 / Tape & Reel
NVTFWS010N10MCLTAG	N10W	WDFNW8 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



DESCRIPTION:	WDFN8 3.3x3.3, 0.65P		PAGE 1 OF 1		
ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding					

the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

© Semiconductor Components Industries, LLC, 2018

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative