MOSFET - Single, N-Channel, Small Signal, SOT-883, (XDFN3), 1.0 x 0.6 x 0.4 mm 12 V, 758 mA

- Single N-Channel MOSFET
- Ultra Low Profile SOT-883 (XDFN3) 1.0 x 0.6 x 0.4 mm for Extremely Thin Environments such as Portable Electronics
- Low R_{DS(on)} Solution in Ultra Small 1.0 x 0.6 mm Package
- 1.8 V Gate Drive
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Load Switch
- High Speed Interfacing
- Level Shift and Translate
- Optimized for Power Management in Ultra Portable Solutions

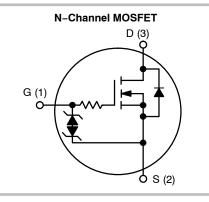
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

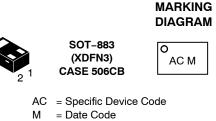
Parameter			Symbol	Value	Units		
Drain-to-Source Voltage			V _{DSS}	12	V		
Gate-to-Source Voltage			V _{GS}	±8	V		
Continuous Drain	Steady State	$T_A = 25^{\circ}C$	۱ _D	758	mA		
Current (Note 1)	Sidle	$T_A = 85^{\circ}C$		547			
	t ≤ 5 s	$T_A = 25^{\circ}C$		898			
Power Dissipa- tion (Note 1)	Steady State	$T_A = 25^{\circ}C$	P _D	156	mW		
	t ≤ 5 s	T _A = 25°C		219			
Pulsed Drain Current t _p = 10 μs		I _{DM}	2.2	А			
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C		
Source Current (Body Diode) (Note 2)			۱ _S	223	mA		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	800	°C/W
Junction-to-Ambient – t \leq 5 s (Note 1)	$R_{\theta JA}$	570	


 Surface Mounted on FR4 Board using the minimum recommended pad size, (or 2 mm²), 1 oz Cu.



ON Semiconductor®

www.onsemi.com

MOSFET					
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX			
12 V	0.160 Ω @ 4.5 V				
	0.175 Ω @ 3.7 V				
	0.185 Ω @ 3.3 V	758 mA			
	0.230 Ω @ 2.5 V				
	0.440 Ω @ 1.8 V				

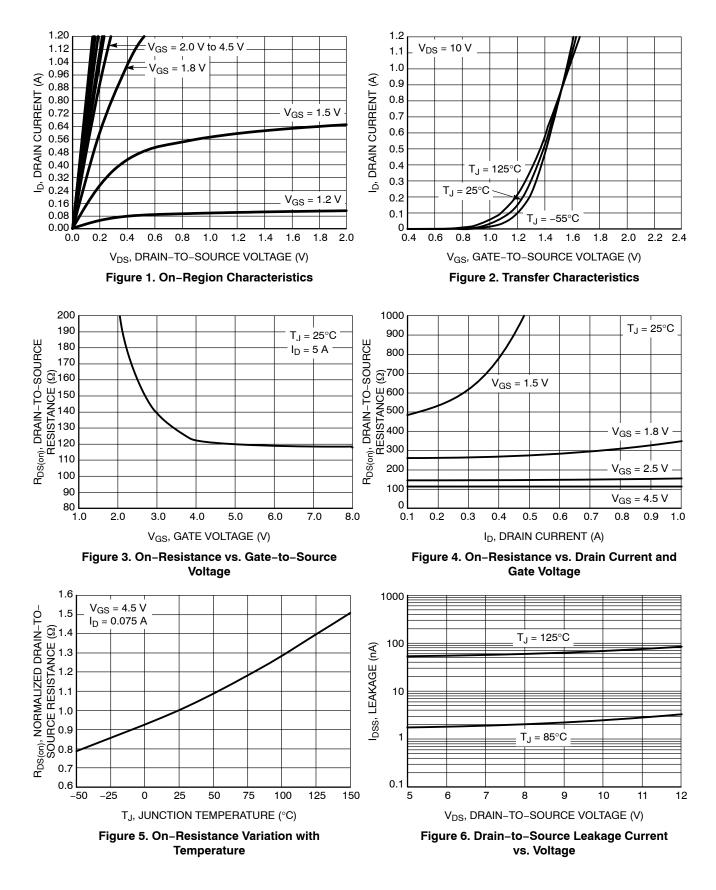
ORDERING INFORMATION

Device	Package	Shipping [†]
NTNS3C68NZT5G	SOT-883 (Pb-Free)	8000 / Tape & Reel

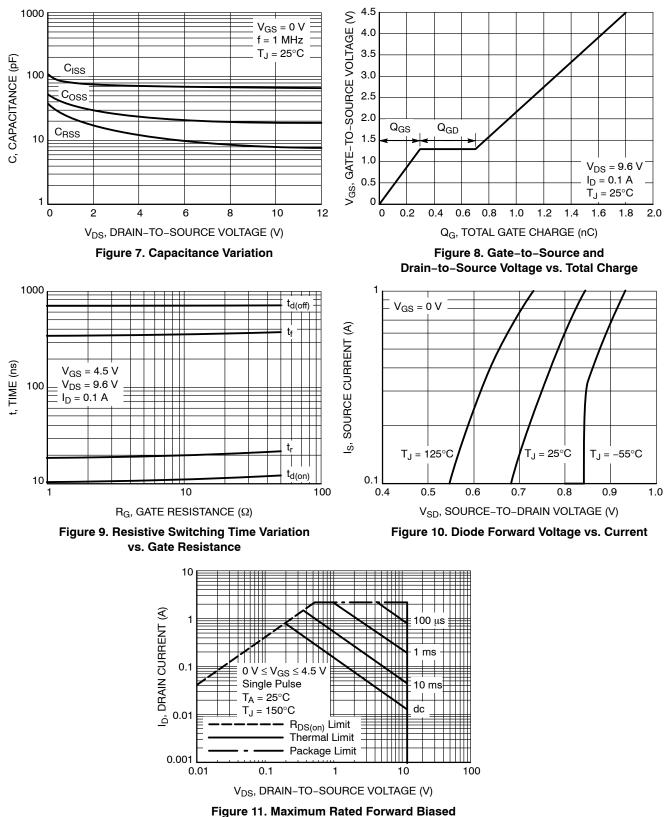
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS		•		•	•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		12			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = 250 \ \mu\text{A}, \text{ ref to } 25^\circ\text{C}$			11		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 9.6 V	$T_J = 25^{\circ}C$			1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±10 V				±10	μA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} ,	I _D = 250 μA	0.4		1.0	V
Negative Gate Threshold Temperature Coefficient	$V_{GS(TH)}/T_J$				1.1		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D = 100 mA			0.120	0.160	Ω
		V_{GS} = 3.7 V, I _D = 75 mA			0.130	0.175	
		V_{GS} = 3.3 V, I _D = 75 mA			0.135	0.185	
		V_{GS} = 2.5 V, I _D = 50 mA			0.167	0.230	
		V_{GS} = 1.8 V, I _D = 20 mA			0.250	0.440	
		V_{GS} = 1.5 V, I _D = 10 mA			0.44		
Forward Transconductance	9fs	V _{DS} = 5 V, I _D = 100 mA			0.8		S
Source-Drain Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 100 mA			0.68	1.1	V
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 9.6 V			67		pF
Output Capacitance	C _{OSS}				19]
Reverse Transfer Capacitance	C _{RSS}				8.5		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 9.6 V, I _D = 100 mA			1.8		nC
Threshold Gate Charge	Q _{G(TH)}				0.1		7
Gate-to-Source Charge	Q _{GS}				0.3		
Gate-to-Drain Charge	Q _{GD}				0.4		

SWITCHING CHARACTERISTICS, VGS = 4.5 V (Note 3)


Turn-On Delay Time	t _{d(ON)}		10.7	ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DD} = 9.6 V,	19.4	
Turn-Off Delay Time	t _{d(OFF)}	I_D = 100 mA, R_G = 2 Ω	710	
Fall Time	t _f		310	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Safe Operating Area

TYPICAL CHARACTERISTICS

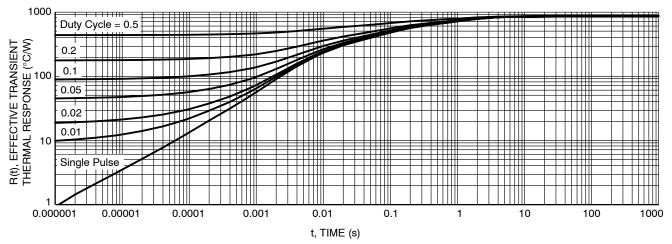
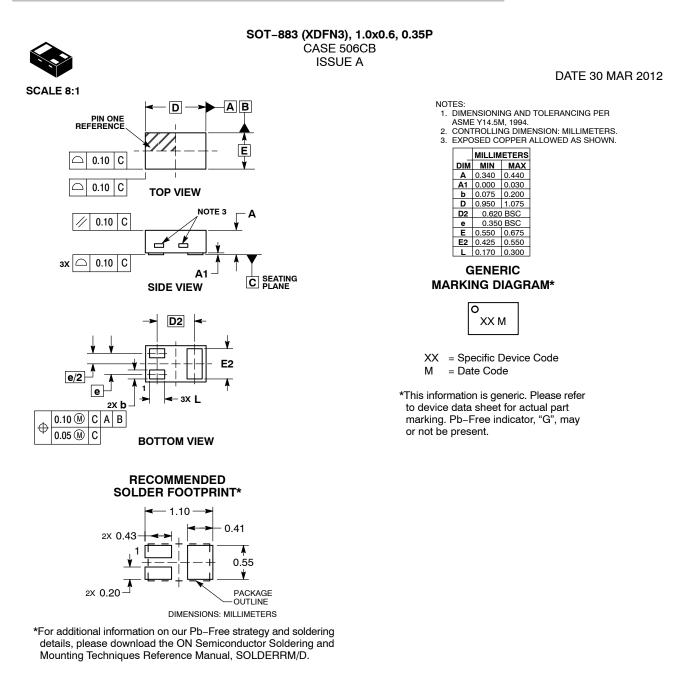



Figure 12. FET Thermal Response

DOCUMENT NUMBER:	98AON65407E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-883 (XDFN3), 1.0X0.6	PAGE 1 C			
ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative