Onsemi

MOSFET - Power, Single **N-Channel**

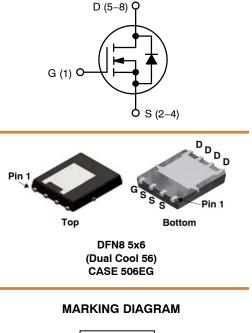
80 V, 10 mΩ, 61 A

NTMFSC011N08M7

Features

- DUAL COOL Top Side Cooling PQFN Package
- Max $r_{DS(on)} = 10 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 10 \text{ A}$
- High Performance Technology for Extremely Low r_{DS(on)}
- 100% UIL Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) Parameter Symbol Value Unit Drain-to-Source Voltage V_{DSS} 80 V Gate-to-Source Voltage ±20 V V_{GS} Continuous Drain A Steady $T_C = 25^{\circ}C$ 61 I_D Current R_{0JC} State $T_{\rm C} = 100^{\circ}{\rm C}$ 38.6 (Notes 1, 3) Power Dissipation $T_{C} = 25^{\circ}C$ P_{D} 78.1 W R_{0JC} (Note 1) $T_{C} = 100^{\circ}C$ 31.2 Continuous Drain А Steady $T_A = 25^{\circ}C$ I_D 12.5 Current $R_{\theta JA}$ (Notes 1, 2, 3) State $T_A = 100^{\circ}C$ 7.9 Power Dissipation W $T_{\Delta} = 25^{\circ}C$ P_D 3.3 R_{0JA} (Notes 1, 2) T_A = 100°C 1.3 Pulsed Drain Current $T_A = 25^{\circ}C, t_p = 10 \ \mu s$ 180 A IDM °C Operating Junction and Storage Temperature T_J, T_{sta} -55 to Range +150 I_{S} Source Current (Body Diode) 61 А Single Pulse Drain-to-Source Avalanche E_{AS} 640 mJ Energy (I_{L(pk)} = 3.9 A) Lead Temperature for Soldering Purposes ΤL 260 °C (1/8" from case for 10 s)


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

- 2. Surface-mounted on FR4 board using a 1 in² pad size, 1 oz Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	10 m Ω @ 10 V	61 A

N-Channel MOSFET

WW = Work Week

A

γ

= Lot Traceability

ΖZ 11N8M7 = Specific Device Code

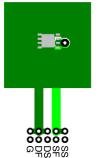
ORDERING INFORMATION

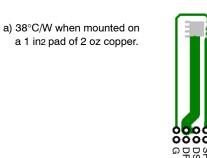
Device	Package	Shipping
NTMFSC011N08M7	DFN8 (Pb–Free)	3000 / Tape & Reel

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	-			-	-		-
Drain to Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		80			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				49		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 80 V	$T_J = 25^{\circ}C$			10	μA
			$T_J = 125^{\circ}C$			100	
Zero Gate Voltage Drain Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = :	± 20 V			±100	nA
ON CHARACTERISTICS (Note 4)	-			-	-		-
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 120 \ \mu A$		2.5	3.3	4.5	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-9		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		7.6	10	mΩ
Forward Transconductance	gFS	V _{DS} = 5 V	I _D = 10 A		21.5	40	S
CHARGES, CAPACITANCES & GATE I	RESISTANCE			-	-		-
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1 MHz V _{DS} = 0 V		2373		pF	
	C _{iss}		V _{DS} = 40 V		2080	2700	
Output Capacitance	C _{oss}				286	430	
Reverse Transfer Capacitance	C _{rss}				11	17	
Gate Resistance	Rg	V _{GS} = 0.5 V, f = 1MHz			1	2	Ω
Threshold Gate Charge	Q _{g(th)}	$V_{GS} = 0$ to 2 V	V _{GS} = 10 V,		4.3		nC
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 0 to 10 V	V _{DS} = 40 V; I _D = 10 A		29.3	38	1
Gate to Source Gate Charge	Q _{gs}	V _{GS} = 0 to 10 V			11.8		
Gate to Drain "Miller" Charge	Q _{gd}				4.3		
Plateau Voltage	V _{GP}				5.5		V
Output Charge	Q _{oss}	V _{DS} = 40 V, V _{GS} = 0 V			26		nC
SWITCHING CHARACTERISTICS (Note	e 5)						
Turn-On Delay Time	t _{d(ON)}	V_{DD} = 40 V, I_D = 10 A, V_{GS} = 10 V, R_{GEN} = 6 Ω			14		ns
Turn-On Rise Time	t _r				6		ns
Turn-Off Delay Time	t _{d(OFF)}				27	1	ns
Turn-Off Fall Time	t _f				6		ns
DRAIN – SOURCE DIODE CHARACTE	RISTICS	-		-	-	-	-
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 10 A, V _{GS} =	= 0 V		0.82	1.2	V
Reverse Recovery Time	T _{RR}	$V_{GS} = 0 \text{ V, } dI_{SD}/dt = 100 \text{ A/}\mu\text{s},$ $I_{S} = 10 \text{ A}$			41	50	ns
Charge Time	t _a				24.6		1
Discharge Time	t _b				16.1		1
Reverse Recovery Charge	Q _{RR}				45	58	nC

4. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.


5. Switching characteristics are independent of operating junction temperatures.


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Symbol Value Unit Parameter Thermal Resistance, Junction to Case $R_{\theta JC}$ (Top Source) 1.6 Thermal Resistance, Junction to Case (Bottom Drain) 3.0 $R_{\theta JC}$ Thermal Resistance, Junction to Ambient (Note 1a) 38 $R_{\theta JA}$ Thermal Resistance, Junction to Ambient (Note 1b) 81 $R_{\theta JA}$ $R_{\theta JA}$ Thermal Resistance, Junction to Ambient (Note 1c) 27 Thermal Resistance, Junction to Ambient (Note 1d) 34 $R_{\theta JA}$ Thermal Resistance, Junction to Ambient (Note 1e) 16 R_{0JA} °C/W $R_{\theta JA}$ Thermal Resistance, Junction to Ambient (Note 1f) 19 $R_{\theta JA}$ Thermal Resistance, Junction to Ambient (Note 1g) 26 Thermal Resistance, Junction to Ambient (Note 1h) 61 $R_{\theta JA}$ $R_{\theta JA}$ Thermal Resistance, Junction to Ambient (Note 1i) 16 Thermal Resistance, Junction to Ambient (Note 1j) 23 $R_{\theta JA}$ Thermal Resistance, Junction to Ambient (Note 1k) 11 $R_{\theta JA}$ Thermal Resistance, Junction to Ambient (Note 1I) 13 $R_{\theta JA}$

THERMAL CHARACTERISTICS

 R_{0JA} is determined with the device mounted on a FR-4 board using a specified pad of 2 oz copper as shown below. R_{0JA} is guaranteed by design while R_{CA} is determined by the user's board design.

b) 81°C/W when mounted on a minimum pad of 2 oz copper.

d) Still air, 20.9 10.4 12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper

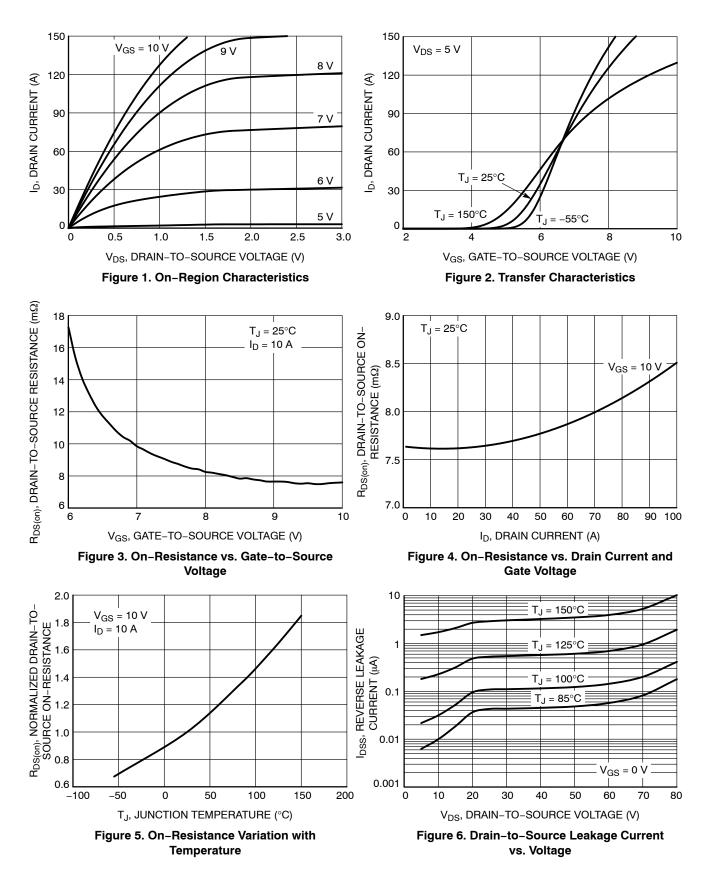
e) Still air, 45.2.41.4.11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in2 pad of 2 oz copper

f) Still air, 45.2·41.4·11.7 mm Aavid Thermalloy Part # 10–L41B–11 Heat Sink, minimum pad of 2 oz copper

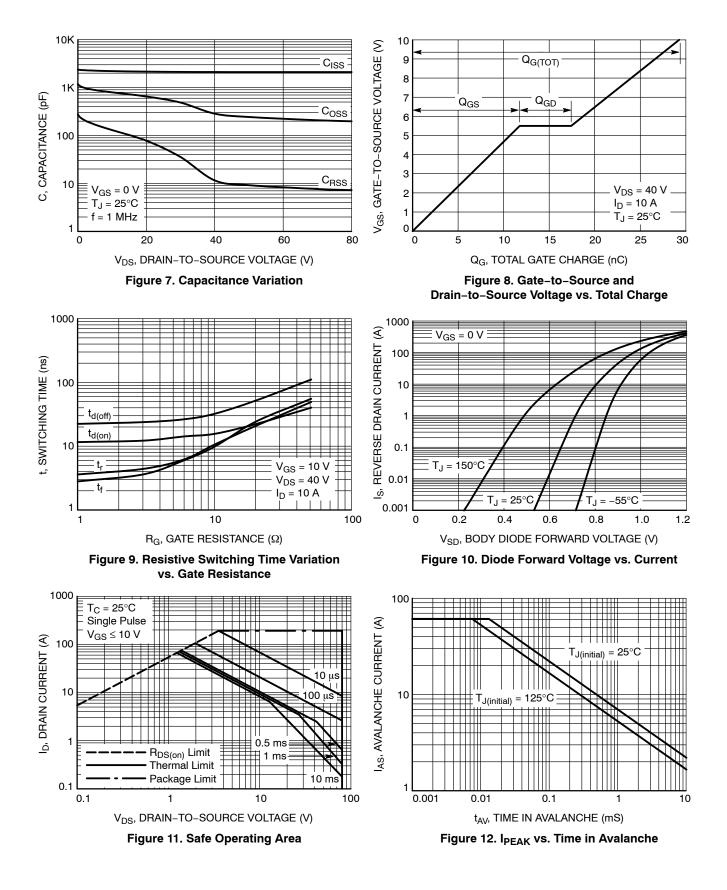
g) .200FPM Airflow, No Heat Sink, 1 in2 pad of 2 oz copper

h) .200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper

i) .200FPM Airflow, 20.9 10.4 12.7 mm Aluminum Heat Sink, 1 in2 pad of 2 oz copper


j) .200FPM Airflow, 20.9 10.4 12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper

k) .200FPM Airflow, 45.2-41.4-11.7 mm Aavid Thermalloy Part # 10 - L41B - 11 Heat Sink, 1 in2 pad of 2 oz copper


I) .200FPM Airflow, 45.2-41.4-11.7 mm Aavid Thermalloy Part # 10 - L41B - 11 Heat Sink, minimum pad of 2 oz copper

7. Pulse Test: Pulse Width < 300 _s, Duty cycle < 2.0%.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

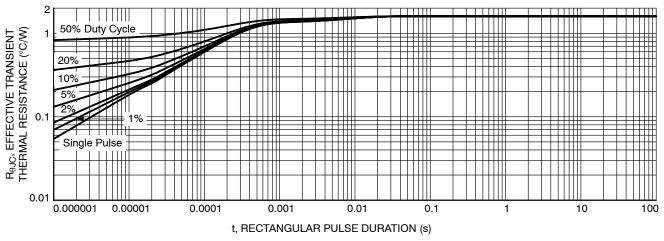
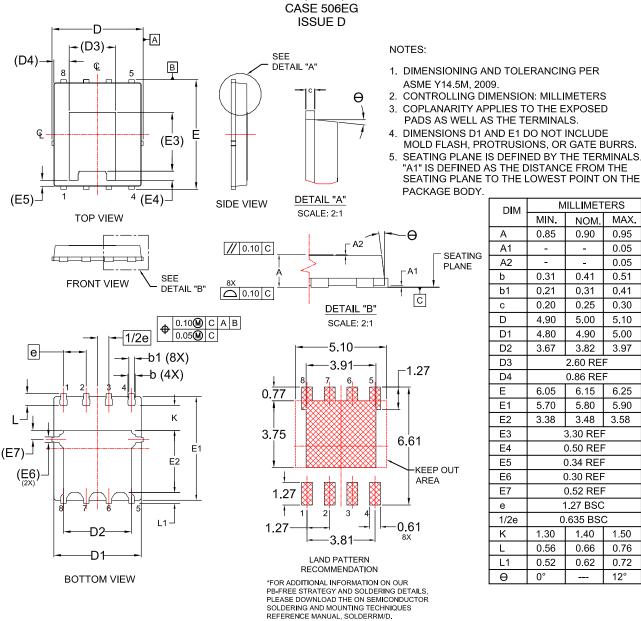



Figure 13. Thermal Response

DUAL COOL is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PACKAGE DIMENSIONS

DFN8 5.1x6.15, 1.27P, DUAL COOL

DIM	MILLIMETERS			
Dim	MIN.	MIN. NOM.		
А	0.85	0.90	0.95	
A1	-	-	0.05	
A2	-	-	0.05	
b	0.31	0.41	0.51	
b1	0.21	0.31	0.41	
С	0.20	0.25	0.30	
D	4.90	5.00	5.10	
D1	4.80	4.90	5.00	
D2	3.67 3.82 3.97			
D3	2.60 REF			
D4	0.86 REF			
E	6.05	6.15	6.25	
E1	5.70	5.80	5.90	
E2	3.38	3.48	3.58	
E3	3.30 REF			
E4	0.50 REF			
E5	0.34 REF			
E6	0.30 REF			
E7	0.52 REF			
е	1.27 BSC			
1/2e	0.635 BSC			
К	1.30	1.40	1.50	
L	0.56	0.66	0.76	
L1	0.52	0.62	0.72	
θ	0°		12°	

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative