P-Channel PowerTrench[®] MOSFET

–20 V, –75 A, 4.9 m Ω

General Description

This P–Channel MOSFET is produced using ON Semiconductor's advanced PowerTrench® process that has been optimized for $r_{DS(on)}$, switching performance and ruggedness.

Features

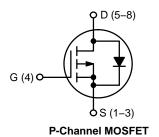
- Max $r_{DS(on)} = 4.9 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -18 \text{ A}$
- Max $r_{DS(on)} = 16.4 \text{ m}\Omega$ at $V_{GS} = -1.8 \text{ V}$, $I_D = -9 \text{ A}$
- High Performance Trench Technology for Extremely Low r_{DS(on)}
- High Power and Current Handling Capability in a Widely Used Surface Mount Package
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

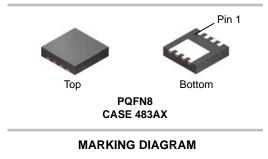
Applications

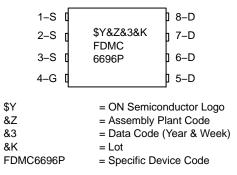
- Load Switch
- Battery Management
- Power Management
- Reverse Polarity Protection

MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)

Symbol	Parameter	Value	Unit
V _{DS}	Drain to Source Voltage	-20	V
V _{GS}	Gate to Source Voltage	±12	V
I _D	Drain Current: Continuous, $T_C = 25^{\circ}C$ (Note 5) Continuous, $T_C = 100^{\circ}C$ (Note 5) Continuous, $T_A = 25^{\circ}C$ (Note 1a) Pulsed (Note 4)	-75 -47 -18 -335	A
E _{AS}	Single Pulse Avalanche Energy (Note 3)	54	mJ
P _D	Power Dissipation: $T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ (Note 1a)	40 2.4	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.




ON Semiconductor®

www.onsemi.com

V _{DS}	R _{DS(ON)} MAX	I _D MAX
	4.9 mΩ @ -4.5 V	
–20 V	6.5 mΩ @ –2.5 V	–75 A
	16.4 mΩ @ –1.8 V	

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDMC6696P	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	3.1	°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient (Note 1a)	53	

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
FF CHARACT	ERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$	-20			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = -250 µA, Referenced to 25 °C		-15		mV/°0
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			-1	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ± 12 V, V_{DS} = 0 V			±100	nA
N CHARACTE	RISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-0.4	-0.7	-1.6	V
${\Delta V_{GS(th)} \over \Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = -250 µA, referenced to 25 °C		4		mV/°0
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -18 \text{ A}$		3.3	4.9	mΩ
		$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -11 \text{ A}$		4.1	6.5	
		$V_{GS} = -1.8 \text{ V}, I_D = -9 \text{ A}$		6.2	16.4	
		$V_{GS} = -4.5 \text{ V}, I_D = -18 \text{ A}, T_J = 125 \ ^{\circ}\text{C}$		4.5	6.8]
9 FS	Forward Transconductance	V _{DS} = -5 V, I _D = -18 A		113		S

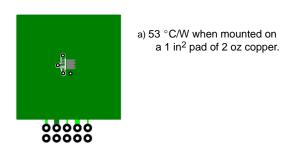
C _{iss}	Input Capacitance	$V_{\rm DS} = -10 \text{ V}, V_{\rm GS} = 0 \text{ V},$		7535	10550	pF
C _{oss}	Output Capacitance	f = 1 MHz		1100	1540	pF
C _{rss}	Reverse Transfer Capacitance			1040	1455	pF
R _g	Gate Resistance		0.1	4.5	10	Ω

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -18 \text{ A},$	13	23	ns
tr	Rise Time	$V_{\rm GS}$ = -4.5 V, R _G = 6 Ω	17	31	ns
t _{d(off)}	Turn-Off Delay Time		312	499	ns
t _f	Fall Time		176	282	ns
Qg	Total Gate Charge	V_{GS} = 0 V to -4.5 V, V_{DD} = -10 V, I_{D} = -18 A	78	109	nC
		V_{GS} = 0 V to -2.5 V, V_{DD} = -10 V, I_{D} = -18 A	50	70	nC
Q _{gs}	Gate to Source Charge	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -18 \text{ A}$	12		nC
Q _{gd}	Gate to Drain "Miller" Charge	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -18 \text{ A}$	24		nC

DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Source to Drain Diode Forward	$V_{GS} = 0 \text{ V}, I_{S} = -18 \text{ A} (\text{Note 2})$	-0.7	-1.2	V
	Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A} (\text{Note } 2)$	-0.6	-1.2	
t _{rr}	Reverse Recovery Time	$I_{\rm S} = -18$ A, di/dt = 100 A/ μs	41	66	ns
Q _{rr}	Reverse Recovery Charge		22	35	nC

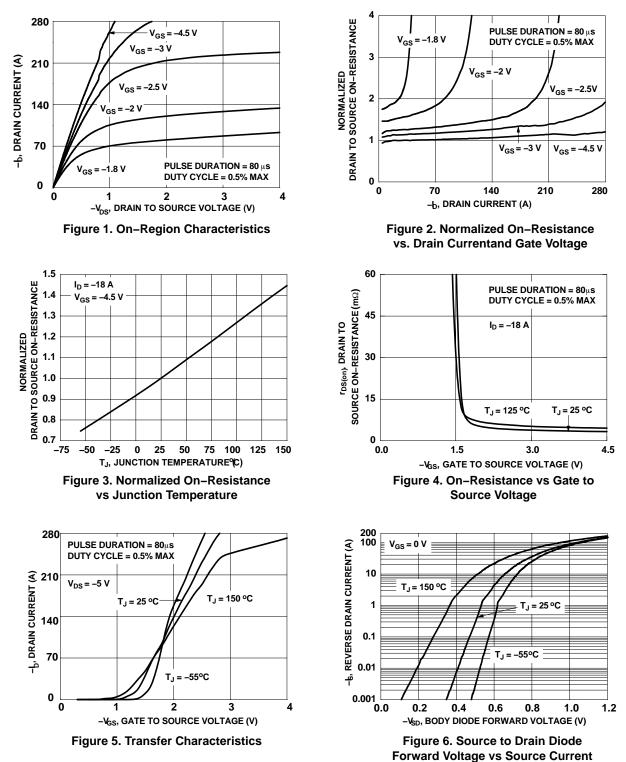

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0CA} is determined by the user's board design.

b) 125 $\,^{\circ}\text{C/W}$ when mounted on a

minimum pad of 2 oz copper.

NOTES:


- Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0 %
 E_{AS} of 54 mJ is based on starting T_J = 25 C, L = 3 mH, I_{AS} = -6 A, V_{DD} = 20 V, V_{GS} = -10 V.
 Pulsed ld please refer to Fig 11 SOA graph for more details.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & clearly provide the provided the provi electro-mechanical application board design.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC6696P	FDMC6696P	PQFN8 (Pb Free)	13"	12 mm	3000 Units

TYPICAL CHARACTERISTICS

(T_J = 25 °C unless otherwise noted)

TYPICAL CHARACTERISTICS

(T_J = 25 °C unless otherwise noted)

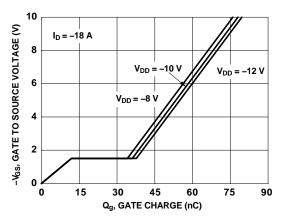
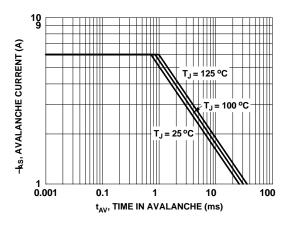
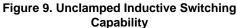
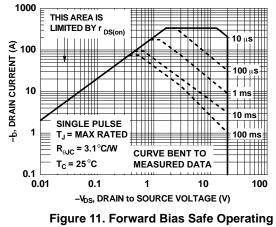





Figure 7. Gate Charge Characteristics

Area

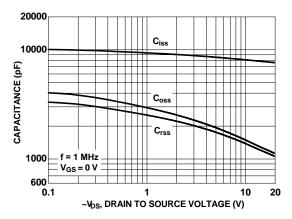


Figure 8. Capacitance vs Drain to Source Voltage

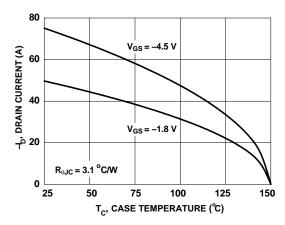


Figure 10. Maximum Continuous Drain Current vs Case Temperature

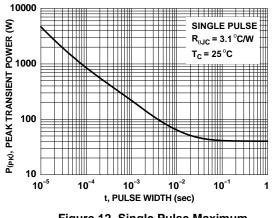


Figure 12. Single Pulse Maximum Power Dissipation

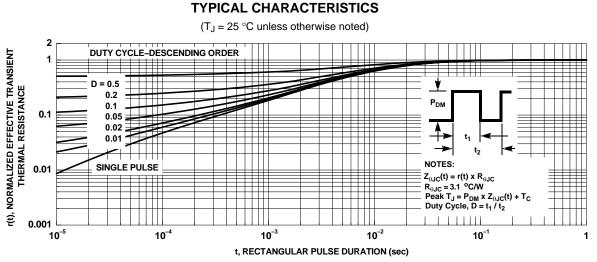
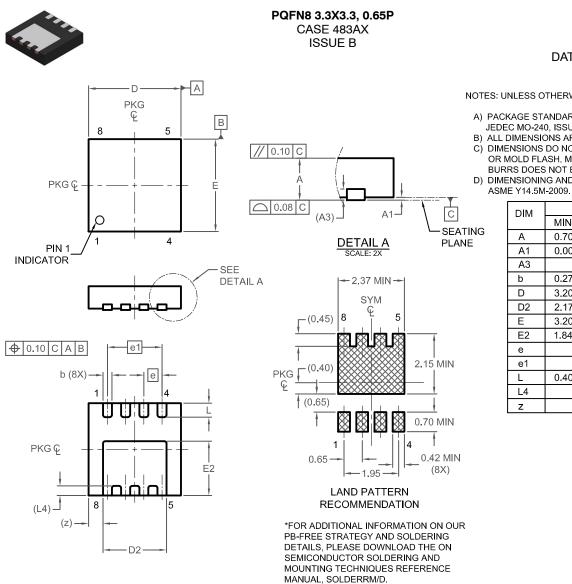



Figure 13. Junction-to-Case Transient Thermal Response Curve

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DATE 24 JUN 2022

NOTES: UNLESS OTHERWISE SPECIFIED

A) PACKAGE STANDARD REFERENCE: JEDEC MO-240, ISSUE A, VAR. BA,

B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR

BURRS DOES NOT EXCEED 0.10MM. D) DIMENSIONING AND TOLERANCING PER

DIM	MILLIMETERS			
Bill	MIN.	NOM.	MAX.	
А	0.70	0.75	0.80	
A1	0.00	-	0.05	
A3	(0.20 REF		
b	0.27	0.32	0.37	
D	3.20	3.30	3.40	
D2	2,17	2.27	2,37	
Е	3.20	3.30	3.40	
E2	1.84	1.94	2.04	
е	(0.65 BSC	,	
e1		1.95 BSC		
L	0.40	0.50	0.60	
L4	0.34 REF			
z		0.52 REF		

DOCUMENT NUMBER:	98AON13673G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	ON: PQFN8 3.3X3.3, 0.65P PAGE 1 O				
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative