CMD75N68/CMU75N68

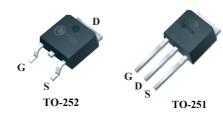
68V N-Channel MOSFET

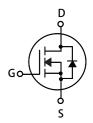
General Description

The 75N68 uses advanced technology and design to provide excellent R DS(ON) . This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Features

- Max $r_{DS(on)}$ =9.5m Ω at V_{GS} = 10V
- Fast Switching
- RoHS Compliant


Product Summary


BVDSS	RDSON	ID
68V	9.5mΩ	70A

Applications

- Inverters
- Power Supplies

TO-252/251 Pin Configuration

Туре	Package	Marking
CMD75N68	TO-252	CMD75N68
CMU75N68	TO-251	CMU75N68

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	70	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25℃	Continuous Drain Current	70	А	
I _D @T _C =100 [°] C	Continuous Drain Current	56	A	
I _{DM}	Pulsed Drain Current	280	A	
E _{AS}	Drain-Source Avalanche Energy ¹	310	mJ	
P _D @T _C =25℃	Total Power Dissipation	90	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
R _{θJA}	Thermal Resistance Junction-ambient		60	°C/W	
R _{θJC}	Thermal Resistance Junction-case		1.4	°C/W	

68V N-Channel MOSFET

Electrical Characteristics (T_J=25 $^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I _D =250uA	68			V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A			9.5	mΩ
V _{GS(th)}	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_{D}=250$ uA	2		4	V
I _{DSS}	Drain-Source Leakage Current	V_{DS} =68V, V_{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance ²	V _{DS} =10V, I _D =20A		16		S
Qg	Total Gate Charge	I _D =30A		67		
Q_gs	Gate-Source Charge	V _{DS} =54V		18		nC
Q_gd	Gate-Drain Charge	V _{GS} =10V		27		
T _{d(on)}	Turn-On Delay Time	V _{DS} =34V		21		
Tr	Rise Time	I _D =30A		59		
$T_{d(off)}$	Turn-Off Delay Time	R _{GEN} =4.7Ω		58		ns
T _f	Fall Time	V _{GS} =10V		26		
Ciss	Input Capacitance			3500		
Coss	Output Capacitance	V_{DS} =34V , V_{GS} =0V , f=1MHz		184		pF
C _{rss}	Reverse Transfer Capacitance			183		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current	$V_G = V_D = 0V$, Force Current			70	А
I _{SM}	Pulsed Source Current				280	А
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =20A			1.2	V

Notes:

 $\label{eq:starting TJ = 25\,^{\circ}C}, \ L=0.5mH, I \mbox{ As =35A}, \ V \mbox{ DD = 30 V}, \ V \mbox{ Vs = 10 V}. \\ 2.\ Pulse Test: \ Pulse \ Width < 300 \mbox{ µs}, \ Duty \ cycle < 2.0\%. \\ \end{tabular}$

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.