CMD70N03/CMU70N03

30V N-Channel MOSFET

General Description

The 70N03 is the highest performance trench N-ch MOSFETs with extreme high cell density ,which provide excellent RDSON and gate charge for most of the synchronous buck converter applications . The 70N03 meet the RoHS requirement , 100% EAS guaranteed with full function reliability approved.

Product Summary

BVDSS	RDSON	ID
30V	7mΩ	70A

Applications

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- Networking DC-DC Power System

TO-252/251 Pin Configuration

Load Switch

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- 100% avalanche tested
- RoHS Compliant

Absolute Maximum Ratings

G S	G D S	
TO-252 (CMD70N03)	TO-251 (CMU70N03)	S

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage 30		V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current 70		А
I _D @T _C =100°C	I _D @T _C =100°C Continuous Drain Current		А
I _{DM}	Pulsed Drain Current ¹ 170		А
EAS	Single Pulse Avalanche Energy ²	85	mJ
P _D @T _C =25°C	Total Power Dissipation	65	W
T _{STG}	Storage Temperature Range -55 to 175		°C
TJ	Operating Junction Temperature Range	-55 to 175	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
R _{0JA}	Thermal Resistance Junction-ambient		70	°C/W	
$R_{\theta JC}$	Thermal Resistance Junction -Case		2	°C/W	

30V N-Channel MOSFET

Electrical Characteristics (T_J=25 $^{\circ}$ C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30			V
R _{DS(ON)}	Static Drain-Source On-Resistance ¹	V _{GS} =10V , I _D =28A		4	7	mΩ
		V _{GS} =4.5V , I _D =25A		7.5	11.5	
V _{GS(th)}	Gate Threshold Voltage	Vps= Vgs, Id = 250µA	1	1.7	3	V
	Drain-Source Leakage Current	V_{DS} =20V , V_{GS} =0V , T_{J} =25 $^{\circ}$ C			1	uA
IDSS		$V_{\text{DS}}\text{=}20V$, $V_{\text{GS}}\text{=}0V$, $T_{\text{J}}\text{=}150^\circ\!\mathrm{C}$			10	
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =10V, I _D =28A		30		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7	3.4	Ω
Qg	Total Gate Charge	V _{DS} =15V , V _{GS} =5V , I _D =30A		15		
Q _{gs}	Gate-Source Charge			8.1		nC
Q _{gd}	Gate-Drain Charge			4.7		
T _{d(on)}	Turn-On Delay Time			13		
Tr	Rise Time	V_{DD} =15V , V_{GS} =10V , R_{G} =3.3 Ω		6.7		20
T _{d(off)}	Turn-Off Delay Time	I _D =30A		22.5		115
T _f	Fall Time			10.1		
Ciss	Input Capacitance			3200		
Coss	Output Capacitance	V _{DS} =20V , V _{GS} =0V , f=1MHz		510		pF
C _{rss}	Reverse Transfer Capacitance			180		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	$V_G = V_D = 0V$, Force Current			70	А
I _{SM}	Pulsed Source Current ¹				170	А
V _{SD}	Diode Forward Voltage ¹	V _{GS} =0V , I _S =10A , TJ=25℃			1.3	V

Note :

1.The data tested by pulsed , pulse width $\,\leq\,$ 300us , duty cycle $\,\leq\,$ 2% 2.The test condition is VDD=30V,VGS=10V,L=0.1mH,IL=12A

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.