

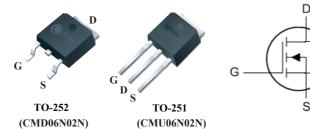
N-Ch 20V Fast Switching MOSFETs

General Description

The 06N02N is N-channel MOSFET device that features a low on-state resistance and excellent switching characteristics, and designed for low voltage high current applications such as DC/DC converter with synchronous rectifier.

Features

- Simple Drive Requirement
- Low Gate Charge
- Fast Switching
- Ultra-Low RDS(on)
- Green Device Available


Product Summary

BVDSS	RDSON	ID
20V	6mΩ	60A

Applications

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- DC/DC converter
- Motor drives

TO-252/251 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	20	V	
V_{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current ¹	60	А	
I _D @T _C =100°C	Continuous Drain Current ¹	50	А	
I _{DM}	Pulsed Drain Current ²	180	А	
EAS	Single Pulse Avalanche Energy ³	140	mJ	
I _{AS}	Avalanche Current	50	А	
P _D @T _C =25°C	Total Power Dissipation	60	W	
T _{STG}	Storage Temperature Range -55 to 175		°C	
TJ	Operating Junction Temperature Range -55 to 175		°C	

Thermal Data

Symbol	Parameter	Тур. Мах.		Unit	
$R_{ heta JA}$	Thermal Resistance Junction-ambient ¹		50	°C/W	
$R_{ heta JC}$	Thermal Resistance Junction -Case ¹		2.5	°C/W	

N-Ch 20V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	20			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25℃, I _D =250uA		0.015		V/°C
Rds(on)	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =15A		5.5	6	mΩ
RDS(ON)		V _{GS} =4.5V , I _D =12A		7.8	9	
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA			2	V
1	Drain-Source Leakage Current	V _{DS} =20V , V _{GS} =0V , T _J =25℃			1	uA
I _{DSS}		V_{DS} =20V , V_{GS} =0V , T_J =150 $^{\circ}$ C			10	
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10 V , I _D =15A		25		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7		Ω
Qg	Total Gate Charge	V _{DS} =10V , V _{GS} =4.5V , I _D =30A		22		
Q _{gs}	Gate-Source Charge			11		nC
Q_{gd}	Gate-Drain Charge			7.0		
T _{d(on)}	Turn-On Delay Time	V_{DD} =10V , V_{GS} =10V , R_{G} =3.3 Ω - I_{D} =30A		15		
Tr	Rise Time			35		ns
T _{d(off)}	Turn-Off Delay Time			28		115
T _f	Fall Time			20		
C _{iss}	Input Capacitance			1200		
C _{oss}	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		500		pF
C _{rss}	Reverse Transfer Capacitance			250		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous Source Current ¹	\/ =\/ =0\/ Force Current			60	Α
I _{SM}	Pulsed Source Current ²	V _G =V _D =0V , Force Current			180	Α
V_{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =20A , T _J =25℃			1.2	V

Note:

1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3.The EAS data shows Max. rating . The test condition is V_{DD} =20V, L=0.5mH , Ias=15A

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.