CMS4946

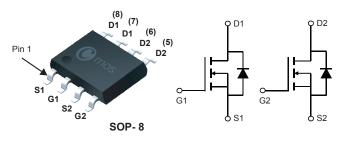
Dual N-Channel Enhancement Mode MOSFET

General Description

The CMS4946 uses advanced Technology, which provides low on-state resistance, high switching performance and excellent reliability.

Features

- RDS(ON)<45mΩ @ VGS=10V
- RDS(ON)<56mΩ @ VGS=4.5V
- Dual MOSFET in surface mount package.
- Super high density cell design for extremely low RDS(ON).


Product Summary

BVDSS	RDSON	ID
60V	45mΩ	5A

Applications

- Inverters
- Power Management
- DC/DC Converter
- LCD TV & Monitor Display inverter

SOP-8 Pin Configuration

Туре	be Package Mark	
CMS4946	SOP-8	CMS4946

Absolute Maximum Ratings

Symbol	Parameter Rating		Units	
V _{DS}	Drain-Source Voltage 60		V	
V _{GS}	Gate-Source Voltage ±20		V	
I _D @T _A =25℃	Continuous Drain Current ¹ 5		А	
I _{DM}	Pulsed Drain Current ²	15	А	
P _D @T _A =25°C	Total Power Dissipation ³ 2		W	
T _{STG}	Storage Temperature Range	Storage Temperature Range -55 to 150		
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance, Junction-to-Ambient (Steady-State) ⁴		62.5	°C/W
R _{θJC}	Thermal Resistance Junction -Case		34	°C/W

Dual N-Channel Enhancement Mode MOSFET

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250µA	60			V
D	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =5A			45	
R _{DS(ON)}		V _{GS} =4.5V , I _D =3.0A			56	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250 μ A	1		3	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =60V , V _{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm20V$, V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =3.3A		11		S
Qg	Total Gate Charge			13		
Q _{gs}	Gate-Source Charge			2.2		nC
Q_gd	Gate-Drain Charge			3.9		
T _{d(on)}	Turn-On Delay Time			6		
Tr	Rise Time	V_{DS} =30V , V_{GS} =10V , R_L =6.7 Ω		18		ns
T _{d(off)}	Turn-Off Delay Time	$R_{GEN} = 5\Omega$		20		115
T _f	Fall Time			8		
C _{iss}	Input Capacitance			450		
C _{oss}	Output Capacitance	V _{DS} =30V , V _{GS} =0V , f=1MHz		65		pF
C _{rss}	Reverse Transfer Capacitance			30		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{rr}	Body Diode Reverse Recovery Time	I⊧= 5A, V₀s=0V , di/dt=100A/µs		29		ns
Qrr	Body Diode Reverse Recovery Charge	$11 - 5A, VGS - 0V, U/UI - 100A/\mu S$		48		nC
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =1A			1.1	V

Note :

1. Static characteristics are obtained using <300 µs pulses, duty cycle 0.5% max.

Pulse test: pulse width≤300us, duty cycle≤2%, pulse width limited by junction temperature TJ(MAX) =150°C.
PD is based on TJ(MAX) =150°C, using RθJA,

4. Surface mounted RF4 board with 2oz. Copper. PDSM is based on R0JA and the maximum allowed junction temperature of 150 °C.

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.