

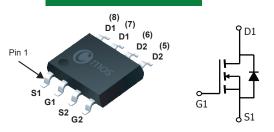
N- and P-Channel Enhancement Mode MOSFET

General Description

The CMS4611S uses advanced trench technology MOSFETs to provide excellent RDS(ON). The complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications.

Features

- Dual N and P Channel MOSFET
- Surface mount Package
- Reliable and Rugged
- Simple Drive Requirement
- Low On-resistance


Product Summary

	BVDSS	RDSON	ID
N-Channel	60V	50mΩ	6A
P-Channel	-60V	115mΩ	-4A

Applications

- Power Management
- DC/DC Converter
- Power Management in FAN, LCD Inverter Systems

SOP-8 Pin Configuration

SOP-8

n-channel

p-channel

Type Package		Marking
CMS4611S	SOP-8	CMS4611S

Absolute Maximum Ratings

Symbol	Parameter Max n-channel Max p-channel		Units	
V _{DS}	Drain-Source Voltage	60	-60	V
V_{GS}	Gate-Source Voltage ±20 ±20 C Continuous Drain Current 6 -4		±20	V
I _D @T _A =25℃			-4	Α
I _{DM}	Pulsed Drain Current ²	24	-12	А
P _D @T _A =25℃	Total Power Dissipation	Total Power Dissipation 2 2		W
T _{STG}	Storage Temperature Range	-55 to 150	-55 to 150	$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	$^{\circ}$

Thermal Characteristics: n-channel

Symbol	Symbol Parameter		Max.	Unit
R _{θJA}	Maximum Junction-to-Ambient (PCB Mount) 1		34	°C/W

N- and P-Channel Enhancement Mode MOSFET

Thermal Characteristics: p-channel

Symbol	Parameter		Max.	Unit
R _{θJA}	Maximum Junction-to-Ambient (PCB Mount) ¹		45	°C/W

N Channel Electrical Characteristics (TJ=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250 μ A	60			V
D	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =3.5A			50	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =4.5V , I _D =2A			60	11122
VGS(th)	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=250\mu A$			3	٧
I _{DSS}	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±20V , V _{DS} =0V			100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =2A		15		S
Qg	Total Gate Charge (10V)			8		
Q _{gs}	Gate-Source Charge	V _{DS} =30V , V _{GS} =4.5V , I _D =3.5A		2		nC
Q_gd	Gate-Drain Charge			3		
T _{d(on)}	Turn-On Delay Time			17		
Tr	Rise Time	V _{DS} =30V , V _{GS} =4.5V , I _D =3.5A		18		20
T _{d(off)}	Turn-Off Delay Time	R _{GEN} =6Ω		30		ns
T _f	Fall Time			6		
Ciss	Input Capacitance			1000		
Coss	Output Capacitance	V _{DS} =30V , V _{GS} =0V , f=1MHz		100		pF
C _{rss}	Reverse Transfer Capacitance			80		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{rr}	Body Diode Reverse Recovery Time	I _F =6A . di/dt=100A/us		33.2		ns
Q _{rr}	Body Diode Reverse Recovery Charge	-110A , αι/αι-100A/μ5		43		nC
V_{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =1A			1.2	V

Note

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.

^{1:} The value of ReJA is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

^{2:} Repetitive rating, pulse width limited by junction temperature.

^{3.} The Reja is the sum of the thermal impedence from junction to lead RejL and lead to ambient.

N- and P-Channel Enhancement Mode MOSFET

P Channel Electrical Characteristics (TJ=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =-250 μ A	-60			V
D	Static Drain-Source On-Resistance	V _{GS} =-10V , I _D =-2A			115	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =-4.5 V , I_D =-2 A			155	11122
VGS(th)	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =-250 μ A	-1.5		-3.5	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =-48V , V _{GS} =0V			-1	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-2A		17		S
Q_g	Total Gate Charge (10V)			10		
Q_{gs}	Gate-Source Charge	V _{DS} =-30V, V _{GS} =-4.5V , I _D =-4.9A		2.5		nC
Q_{gd}	Gate-Drain Charge			3		
$T_{d(on)}$	Turn-On Delay Time			30		
Tr	Rise Time	V_{DS} =-30V , V_{GS} =-4.5V , R_{G} =6 Ω		16		200
T _{d(off)}	Turn-Off Delay Time	I _D =1A		22		ns
T _f	Fall Time			10		
C _{iss}	Input Capacitance			700		
Coss	Output Capacitance	V_{DS} =-30V , V_{GS} =0V , f=1MHz		120		pF
C _{rss}	Reverse Transfer Capacitance			70		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{rr}	Body Diode Reverse Recovery Time	-I _F =-4.9A , di/dt=100A/μs		32		ns
Q _{rr}	Body Diode Reverse Recovery Charge			42		nC
V_{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =-1A			-1.2	V