

N- and P-Channel Enhancement Mode MOSFET

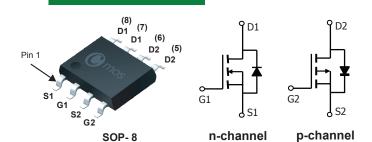
General Description

The CMS4606B uses advanced trench technology to provide excellent RDS(ON) and low gate charge.

The complementary MOSFETs may be used in inverter and other applications.

Features

- Dual N and P Channel MOSFET
- Surface mount Package
- Reliable and Rugged
- Simple Drive Requirement
- Low On-resistance


Product Summary

	BVDSS	RDSON	ID
N-Channel	30V	22mΩ	6A
P-Channel	-30V	40mΩ	-6.5A

Applications

- Power Management
- DC/DC Converter
- Power Management in FAN, LCD Inverter Systems

SOP-8 Pin Configuration

Туре	vpe Package Markin	
CMS4606B	SOP-8	CMS4606B

Absolute Maximum Ratings

Symbol	Parameter	Max n-channel	Units	
V_{DS}	Drain-Source Voltage	30	-30	V
V _{GS}	Gate-Source Voltage	±	20	V
I _D @T _A =25℃	Continuous Drain Current	6	-6.5	Α
I _D @T _C =70°C	Continuous Drain Current	5	-5.3	Α
I _{DM}	Pulsed Drain Current ¹	18	-20	Α
EAS	Single Pulse Avalanche Energy ^{2 3}	20	35	mJ
P _D @T _C =25℃	Total Power Dissipation	2	W	
T _{STG}	Storage Temperature Range	-55 t	$^{\circ}$	
T _J	Operating Junction Temperature Range	-55 t	$^{\circ}$	

Thermal Characteristics: n-channel

Symbol	Parameter		Max.	Unit
R _{θJA}	Maximum Junction-to-Ambient (Steady-State) 4		62.5	°C/W

N- and P-Channel Enhancement Mode MOSFET

Thermal Characteristics: p-channel

Symbol	Parameter		Max.	Unit
R _{θJA}	Maximum Junction-to-Ambient (Steady-State) ⁴		62.5	°C/W

N Channel Electrical Characteristics (TJ=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250 μ A	30			V
D	Static Drain-Source On-Resistance	V_{GS} =10V , I_D =6A			22	0
R _{DS(ON)}		V _{GS} =4.5V , I _D =5A			34	mΩ
V _{GS(th)}	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250 μ A	1		2.5	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V			1	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =5A		7		S
Q_g	Total Gate Charge			5.2		
Q_{gs}	Gate-Source Charge	V_{DS} =15V , V_{GS} =10V , I_{D} =6A		0.9		nC
Q_{gd}	Gate-Drain Charge			1.5		
T _{d(on)}	Turn-On Delay Time			4.5		
Tr	Rise Time	V_{DS} =15V , V_{GS} =10V , R_L =2.2 Ω		2.5		20
$T_{d(off)}$	Turn-Off Delay Time	R_{GEN} =3 Ω		15		ns
T _f	Fall Time			3.5		
Ciss	Input Capacitance			700		
C _{oss}	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		45		pF
C _{rss}	Reverse Transfer Capacitance			35		

Diode Characteristics

Sy	/mbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Is	Continuous Source Current	V _G =V _D =0V , Force Current			6	Α
	I _{SM}	Pulsed Source Current	v _G -v _D -ov , roice Current			18	Α
	trr	Reverse Recovery Time	I _S =6A, T _i =25℃		8.5		ns
	Qrr	Reverse Recovery Charge	dl/dt=100A/µs		2.2		μC
,	V_{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =1A			1	V

This product has been designed and qualified for the counsumer market. Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.

N- and P-Channel Enhancement Mode MOSFET

P Channel Electrical Characteristics (TJ=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =-250 μ A	-30			V
D	Static Drain-Source On-Resistance	V _{GS} =-10V , I _D =-4A			40	0
R _{DS(ON)}		V_{GS} =-4.5 V , I_D =-3 A			60	mΩ
VGS(th)	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =-250 μ A	-1		-2.5	V
I _{DSS}	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V			-1	uA
I _{GSS}	Gate-Source Leakage Current	V_{GS} =±20V , V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-2A		6		S
Q_g	Total Gate Charge (10V)			14		
Q_{gs}	Gate-Source Charge	V _{DS} =-15V, V _{GS} =-10V, I _D =-6.5A		2.5		nC
Q_{gd}	Gate-Drain Charge			3.5		
$T_{d(on)}$	Turn-On Delay Time			8		
Tr	Rise Time	V_{DS} =-15V , V_{GS} =-10V, R_{L} =2.3 Ω		6		no
T _{d(off)}	Turn-Off Delay Time	R_{GEN} =3 Ω		18		ns
T _f	Fall Time			5		
C _{iss}	Input Capacitance			1200		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		140		pF
C _{rss}	Reverse Transfer Capacitance			95		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			6.5	Α
I _{SM}	Pulsed Source Current				20	Α
trr	Reverse Recovery Time	I _S =-6.5A,T _i =25℃		15		ns
Qrr	Reverse Recovery Charge	dl/dt=100A/µs		9.7		μC
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =-1A			-1	V

Note:

- 1.Pulse test: pulse width ≤300µs, duty cycle≤2%.
- 2.The EAS data shows Max. rating . The test condition is V_{DD} =20V, L=0.5 mH,I_{AS}=9A.
- 3.The EAS data shows Max. rating . The test condition is $V_{\text{DD}}\text{=-}20\,\text{V}, L\text{=}0.5\,\text{mH}, I_{\text{AS}}\text{=-}11\text{A}.$
- 4.The value of ReJA is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.