

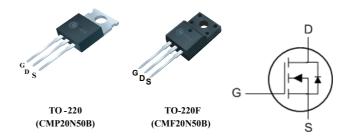
500V N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using advanced technology which has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies and active power factor correction.

Features

- 100% avalanche tested
- Fast Switching
- Improved dv/dt capability


Product Summary

BVDSS	RDSON	ID
500V	0.32 Ω	20A

Applications

- Switching regulators
- UPS (Uninterruptible Power Supply)
- DC-DC converters

TO-220/220F Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	CMP20N50B/CMF20N50B		Units		
V_{DS}	Drain-Source Voltage	50	V			
V_{GS}	Gate-Source Voltage	±;	±30		±30	
I _D @T _C =25°C	Continuous Drain Current	20	20 20*			
I _D @T _C =100°C	Continuous Drain Current	12	12*	Α		
I _{DM}	Pulsed Drain Current ¹	60	60*	Α		
EAS	Single Pulse Avalanche Energy ²	512		mJ		
I _{AS}	Avalanche Current	20		Α		
P _D @T _C =25°C	Total Power Dissipation	250	38.5	W		
T _{STG}	Storage Temperature Range	-55 to 150		°C		
TJ	Operating Junction Temperature Range -55 to 150		°C			

Thermal Data

Symbol	Parameter	CMP20N50B	CMF20N50B	Unit	
$R_{ heta JA}$	Thermal Resistance Junction-ambient	62.5	62.5	°C/W	
R _{eJC}	Thermal Resistance Junction-case	0.5	3.3	°C/W	

CMP20N50B/CMF20N50B

500V N-Channel MOSFET

Electrical Characteristics (T_J=25 ^oC, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250uA	500			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25℃, I _D =250uA		0.5		V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =10A			0.32	Ω
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2		4	V
L	Drain-Source Leakage Current	V _{DS} =500V, V _{GS} =0V			1	uA
I _{DSS}		V_{DS} =400V , V_{GS} =0V , TC=125 $^{\circ}$ C			10	
I _{GSS}	Gate-Source Leakage Current	V_{GS} = $\pm30V$, V_{DS} = $0V$			±100	nA
gfs	Forward Transconductance 3	V _{DS} =10V , I _D =20A		21		S
Qg	Total Gate Charge	I _D =20A		52	69	
Q_{gs}	Gate-Source Charge	V _{DS} =400V		18		nC
Q_{gd}	Gate-Drain Charge	V _{GS} = 10V (Note 3, 4)		26		
$T_{d(on)}$	Turn-On Delay Time	V _{DS} =250V		80		
T _r	Rise Time	I _D =20A		280		ns
$T_{d(off)}$	Turn-Off Delay Time	$R_G=25\Omega$		115		115
T _f	Fall Time	(Note 3, 4)		117		
C _{iss}	Input Capacitance			4500		
C _{oss}	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		420		pF
C _{rss}	Reverse Transfer Capacitance			35		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			20	Α
I _{SM}	Pulsed Source Current				60	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =20 A , T _J =25℃			1.4	V

Note

1.Repetitive Rating: Pulse width limited by maximum junction temperature

2.L = 1mH, IAS = 32A, VDD = 50V, RG = 25 Ω , Starting TJ = 25 $^{\circ}$ C

3.Pulse Test: Pulse width≤300µs, Duty Cycle≤2%

4. Essentially Independent of Operating Temperature Typical Characteristics

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.