CMD85N03A/CMU85N03A

General Description

The 85N03A uses advanced

trench technology to provide

excellent RDS(ON). This device

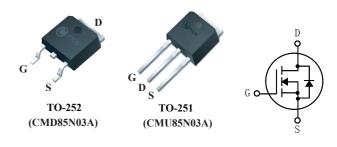
is suitable for use as a wide

variety of applications.

Features

- Low On-Resistance
- 100% avalanche tested
- High Current Capability
- RoHS Compliant

Absolute Maximum Ratings


Product Summary

BVDSS	RDSON	ID
30V	6mΩ	85A

Applications

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- Networking DC-DC Power System
- Load Switch

TO-252/251 Pin Configuration

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	30	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25℃	Continuous Drain Current, VGS @ 10V	85	А
I _D @T _C =100℃	Continuous Drain Current, VGS @ 10V	60	А
I _{DM}	Pulsed Drain Current ¹	255	А
EAS	Single Pulse Avalanche Energy ² 100		mJ
P₀@T₀=25℃	Total Power Dissipation	65	W
T _{STG}	Storage Temperature Range -55 to 175		°C
TJ	Operating Junction Temperature Range -55 to 175		°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-ambient (PCB Mount) ³		50	°C/W
R _{θJC}	Thermal Resistance Junction -Case ⁴		2	°C/W

N-Channel MOSFET

Electrical Characteristics (T_J=25 $^{\circ}$ C , unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I _D =250uA	30			V
D	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =12A			6	mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =10A			9	
V _{GS(th)}	Gate Threshold Voltage	V_{DS} =VGS , I _D =250uA	1		3	V
L	Drain-Source Leakage Current	$V_{\text{DS}}\text{=}24V$, $V_{\text{GS}}\text{=}0V$, $T_{\text{J}}\text{=}25^\circ\!\!\!\mathrm{C}$			1	– uA
I _{DSS}		$V_{\text{DS}}\text{=}24V$, $V_{\text{GS}}\text{=}0V$, $T_{\text{J}}\text{=}125^\circ\!\!\!\mathrm{C}$			150	
I _{GSS}	Gate-Source Leakage Current	V_{GS} = ±20V , V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =10A		15		S
R _g	Gate Resistance	V_{DS} =0V , V_{GS} =0V , f=1MHz		2.4		Ω
Qg	Total Gate Charge			15		
Q_gs	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =20A		4.2		nC
Q_gd	Gate-Drain Charge			7		
T _{d(on)}	Turn-On Delay Time	V _{DD} =15V , V _{GS} =10V , R _G =10Ω I _D =20A		12		
Tr	Rise Time			80		
T _{d(off)}	Turn-Off Delay Time			48		ns
T _f	Fall Time			35		
C _{iss}	Input Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		2000		
C _{oss}	Output Capacitance			450		pF
C _{rss}	Reverse Transfer Capacitance			100		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current				85	А
V _{SD}	Diode Forward Voltage	V_{GS} =0V , I_S =30A , TJ=25 $^\circ\!$			1.3	V

Note :

1. Single pulse width limited by junction temperature TJ(MAX)=150 $^\circ\!\mathbb{C}$.

2.Starting TJ=25 °C, L=0.5mH, VDD=20V, IAS=20A.

3. When mounted on 1" square PCB (FR-4 or G-10 Material).

4.R0 is measured at TJ approximately at 90 $^\circ\!\!\mathrm{C}.$

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications. Cmos reserver the right to improve product design ,functions and reliability wihtout notice.