

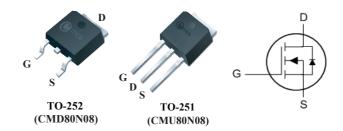
N-Channel Enhancement Mode Field Effect Transistor

General Description

The 80N08 uses advanced trench technology and design to provide excellent RDS(ON). This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Features

- N-channel-Enhancement mode
- Lower On-resistance
- 100% Avalanche Tested
- RoHS Compliant


Product Summary

BVDSS	RDSON	ID
80V	7mΩ	80A

Applications

- DC-DC converters
- Power switching application
- Ideal for high-frequency switching and synchronous rectification

TO-252/251 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Value	Units	
V_{DS}	Drain-Source Voltage	80	V	
V_{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25℃	Continuous Drain Current	80	Α	
I _D @T _C =100℃	Continuous Drain Current	56	А	
I _{DM}	Pulsed Drain Current	240	А	
EAS	Single Pulse Avalanche Energy ¹	850	mJ	
P _D @T _C =25℃	Total Power Dissipation	130	W	
T _{STG}	Storage Temperature Range -55 to 175		$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 175	$^{\circ}$	

Thermal Data

Symbol	Parameter	Value	Unit	
R _{0JA}	Thermal Resistance Junction-ambient	50	°C/W	
R _{0JC}	Thermal Resistance Junction-case	1.2	°C/W	

CMD80N08/CMU80N08

N-Channel Enhancement Mode Field Effect Transistor

Electrical Characteristics ($T_J=25^{\circ}$ C), unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250 μ A	80			V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =20A		6	7	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2		4	V
L	Drain-Source Leakage Current	V _{DS} =80V, V _{GS} =0V, T _J =25°C			1	
I _{DSS}		V _{DS} =80V , V _{GS} =0V , T _J =100°C			100	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =20A		18		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.2		Ω
Qg	Total Gate Charge	I _D =20A		40		
Q_gs	Gate-Source Charge	V _{DD} =40V		4.5		nC
Q_{gd}	Gate-Drain Charge	V _{GS} =10V		8		
T _{d(on)}	Turn-On Delay Time	V _{DD} =40V		10		
Tr	Rise Time	R _G =10Ω		6.5		20
T _{d(off)}	Turn-Off Delay Time	V _{GS} =10V		30		ns
T _f	Fall Time	I _D =20A		10		
C _{iss}	Input Capacitance			7000		
Coss	Output Capacitance	V _{DS} =40V , V _{GS} =0V , f=1MHz		250		pF
C _{rss}	Reverse Transfer Capacitance			13		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			80	Α
I _{SM}	Pulsed Source Current	VG-VD-UV, FOICE Culterit			240	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =20A ,T _J =25℃			1.2	V

Note:

1.The EAS data shows Max. rating . The test condition is V_{DD} =20V, V_{GS} =10V,L=1mH, I_{AS} =41A.

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.