

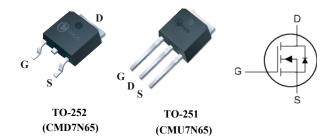
650V N-Channel MOSFET

General Description

The 7N65 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications.

Features

- 7.0A, 650V, RDS (on) = 1.45 Ω
 @VGS = 10 V
- 100% Avalanche Tested
- Improved dv/dt capability


Product Summary

BVDSS	RDSON	ID
650V	1.45Ω	7A

Applications

- Power Supply
- PFC
- Ballast

TO-252/251 Pin Configuration

Absolute Maximum Ratings

T_C = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{DSS}	Drain-Source Voltage	650	V
I_	Drain Current - Continuous (T _C = 25°C) 1	7	Α
ID	- Continuous (T _C = 100°C) ¹	4.3	Α
I _{DM}	Drain Current - Pulsed ²	28	Α
V _{GSS}	Gate-Source Voltage	± 30	V
I _{AR}	Avalanche Current	3.1	Α
P _D	Power Dissipation (T _C = 25°C) ³	180	W
E _{AS}	Avalanche energy ⁵	380	mJ
T _J , T _{STG}	Operating and Storage Temperature Range	-50 to +150	°C
T _L	Maximum lead temperature for soldering purposes, 1/8 from case for 5 seconds	300	°C

Thermal Characteristics

Symbol	Parameter	Value	Units
R _{ØJC}	Thermal Resistance, Junction-to-Case Max. ¹	0.7	°C/W
R _{ØJA}	Thermal Resistance, Junction-to-Ambient Max. (Steady State) 1	55	°C/W

650V N-Channel MOSFET

Electrical Characteristic

T_C = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	racteristics					
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	650			V
△BV _{DSS} /△T _J	Zero Gate Voltage Drain Current	I _D = 250μA , V _{GS} = 0 V		0.67		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V			1	μA
	Zoro Gato Voltago Brain Garront	$V_{DS} = 520 \text{ V}, T_J = 125 ^{\circ}\text{C}$			10	
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} =±30 V, V _{DS} = 0 V			±100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3		5	V

V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3		5	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 4A			1.45	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 15 V, I _D = 4 A		6		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 25 V	 1400	 pF
C _{oss}	Output Capacitance	V _{GS} = 0 V	 85	 pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz	 8	 pF

Switching Characteristics

t _{d(on)}	Turn-On Delay Time	V _{DS} = 325 V , V _{GS} =10V	 26	 ns
t _r	Turn-On Rise Time	I _D = 7A	 44	 ns
t _{d(off)}	Turn-Off Delay Time		 53	 ns
t _f	Turn-Off Fall Time	$R_G = 25\Omega$	 33	 ns
Qg	Total Gate Charge	V _{DS} = 520V	 20	 nC
Q _{gs}	Gate-Source Charge	I _D = 7A	 5	 nC
Q _{gd}	Gate-Drain Charge	V _{GS} = 10 V	 8.5	 nC

Drain-Source Diode Characteristics and Maximum Ratings

I _S	Maximum Continuous Drain-Source Diode Forward Current 1,4		 	7	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current ^{2,4}		 	28	Α
V_{SD}	Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V, } I_S = 7.5 \text{A}^2$		 -	1.2	V
t _{rr}	Reverse Recovery Time	I _F = 7A, V _{DS} = 100 V	 365		ns
Q _{rr}	Reverse Recovery Charge	dI / dt = 100 A/µs	 4.3		nC

Notes:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 4.The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.
- 5. The EAS data shows Max. rating . The test condition is VDD=50V,VGs=10V,L=5mH,ID=12.5A

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.