

60V N-Channel MOSFET

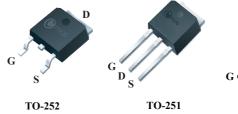
General Description

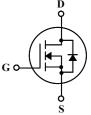
The 50N06K combines advanced trench MOSFET technology with a low resistance package to provide extremely low RDS(ON). This device is ideal for boost converters and s ynchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Features

- Low On-Resistance
- 100% Avalanche Tested
- RoHS Compliant

Absolute Maximum Ratings


Product Summary


BVDSS	RDSON	ID
60V	17mΩ	50A

Applications

- DC-DC & DC-AC Converters
- Motor Control, Audio Amplifiers
- High Current, High Speed Switching
- Primary Switch for 12V and 24V system

TO-252/251 Pin Configuration

TO-252
(CMD50N06K)

(CMU50N06K)

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	60	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25℃	Continuous Drain Current ¹ 50		А	
I _D @T _C =100℃	Continuous Drain Current ¹ 38		А	
I _{DM}	Pulsed Drain Current ² 150		А	
EAS	Single Pulse Avalanche Energy 210		mJ	
P₀@T₀=25℃	Total Power Dissipation 75		W	
T _{STG}	Storage Temperature Range -55 to 175		°C	
TJ	Operating Junction Temperature Range -55 to 175		°C	

Thermal Data

Symbol	Parameter	Тур. Мах.		Unit	
R _{θJA}	Thermal Resistance Junction-ambient		50	°C/W	
R _{θJC}	Thermal Resistance Junction -Case		2.1	°C/W	

60V N-Channel MOSFET

Electrical Characteristics (T_J=25 $^\circ\!\!\mathbb{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250µA	60			V
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V , I_{D} =25A		12	17	mΩ
VGS(th)	Gate Threshold Voltage	V_{GS} = V_{DS} , I_D =250 μ A	1		3	V
1	Drain-Source Leakage Current	V _{DS} =55V , V _{GS} =0V , T _J =25℃			1	- uA
I _{DSS}		V _{DS} =55V , V _{GS} =0V , T _J =125℃			100	
I _{GSS}	Gate-Source Leakage Current	V_{GS} = ±20V , V_{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =22A		15		S
R _g	Gate Resistance	V_{DS} =0V , V_{GS} =0V , f=1MHz		1.2		Ω
Qg	Total Gate Charge	V _{DS} =30V , V _{GS} =10V , I _D =55A		42		
Q _{gs}	Gate-Source Charge			11		nC
Q_gd	Gate-Drain Charge			8]
T _{d(on)}	Turn-On Delay Time	V _{DD} =30V , V _G =10V , R _G =9.6Ω I _D =55A		10.5		
Tr	Rise Time			83		
T _{d(off)}	Turn-Off Delay Time			36		ns
T _f	Fall Time			32		
Ciss	Input Capacitance	V _{DS} =30V , V _{GS} =0V , f=1MHz		3300		
Coss	Output Capacitance			700		pF
C _{rss}	Reverse Transfer Capacitance			400		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ¹	$V_G = V_D = 0V$, Force Current			50	А
I _{SM}	Pulsed Source Current ²				150	А
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =1.5A ,T _J =25℃			1.2	V

Note :

1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

 $\label{eq:cmost} Cmos\ reserver\ the\ right\ to\ improve\ product\ design\ , functions\ and\ reliability\ without\ notice.$