

30V N-Channel MOSFET

General Description

The 04N03 is the highest performance trench N-ch MOSFETs with extreme high cell density , which provide excellent RDSON and gate charge for most of the synchronous buck converter applications .

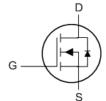
The 04N03L meet the RoHS and Green Product requirement , 100% EAS guaranteed with full function reliability approved.

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- 100% EAS Guaranteed
- Green Device Available

Product Summary

BVDSS	RDSON	ID
30V	4.1mΩ	80A


Applications

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- Networking DC-DC Power System
- Load Switch

TO-252/251 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current 1	80	А
I _D @T _C =100°C	Continuous Drain Current 1	55	А
I _{DM}	Pulsed Drain Current ²	180	А
EAS	Single Pulse Avalanche Energy ³	190	mJ
I _{AS}	Avalanche Current	48	А
P _D @T _C =25°C	Total Power Dissipation	70	W
T _{STG}	Storage Temperature Range	-55 to 175	°C
TJ	Operating Junction Temperature Range	-55 to 175	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction-ambient ¹		62	°C/W
R ₀ JC	Thermal Resistance Junction -Case ¹		2.8	°C/W

CMD04N03 / CMU04N03

30V N-Channel MOSFET

Electrical Characteristics (T_J=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	30			V
D	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =40A		3.5	4.1	· mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =20A		5.1	6.4	
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} ,I _D =250µA	1		3	V
L	Drain-Source Leakage Current	V_{DS} =24V , V_{GS} =0V , T_J =25 $^{\circ}\mathrm{C}$			1	- uA
I _{DSS}		V_{DS} =24V , V_{GS} =0V , T_J =125 $^{\circ}\mathrm{C}$			100	
I _{GSS}	Gate-Source Leakage Current	V_{GS} = $\pm 20V$, V_{DS} = $0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =25A		22		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.5		Ω
Qg	Total Gate Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =40A		24		
Q _{gs}	Gate-Source Charge			10		nC
Q_gd	Gate-Drain Charge			7.2		
$T_{d(on)}$	Turn-On Delay Time	V_{DD} =15V , V_{GS} =10V , R_{G} =3.3 Ω		9		
Tr	Rise Time			22		no
T _{d(off)}	Turn-Off Delay Time			28		ns
T _f	Fall Time			18		
C _{iss}	Input Capacitance			3500		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		650		pF
C _{rss}	Reverse Transfer Capacitance			300		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ¹	V _G =V _D =0V , Force Current			80	Α
I _{SM}	Pulsed Source Current ²	7 VG-VD-OV , FOICE CUITEIN			180	A
V_{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =40 A , T _J =25℃			1.2	V

Note:

1. The data tested by surface mounted on a 1 inch $^2\,\text{FR-4}$ board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH, I_{AS} =40A

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.