

Ultralow Noise, LDO, XFET, Voltage Reference with Current Sink and Source

Data Sheet ADR441ACHIPS

FEATURES

Ultralow voltage noise (0.1 Hz to 10 Hz): 1.2 µV p-p
Low temperature drift: 10 ppm/°C maximum
Low dropout operation (supply voltage headroom): 500 mV
Supply voltage operating range: 3 V to 18 V
Output sourcing and sinking current capacity: +10 mA typical
and -5 mA typical, respectively
Wide temperature range: -40°C to +125°C

APPLICATIONS

Precision data acquisition systems High resolution data converters Battery-powered instrumentation Portable medical instruments Industrial process control systems Precision instruments Optical control circuits

GENERAL DESCRIPTION

The ADR441ACHIPS¹ is an extra implanted junction FET (XFET*) voltage reference that features ultralow noise, high accuracy, and low temperature drift performance. Using Analog Devices, Inc., temperature drift curvature correction and XFET technology, voltage change vs. temperature nonlinearity in the ADR441ACHIPS is greatly minimized.

This XFET reference offers better noise performance (ultralow voltage noise of 1.2 μV p-p and voltage noise density at 1 kHz of 48 nV/ \sqrt{Hz}) than buried Zener references and operates off a low supply voltage headroom (500 mV). This combination of

METAL MASK DIE IMAGE

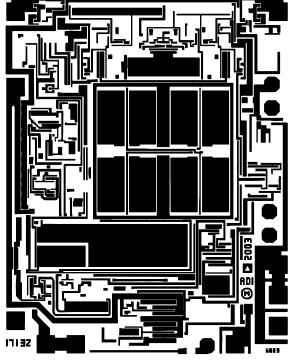


Figure 1.

features makes the ADR441ACHIPS ideally suited for precision signal conversion applications in high end data acquisition systems, optical networks, and medical applications.

The ADR441ACHIPS has the capability to source up to +10 mA of output current and sink up to -5 mA of output current. The device also comes with a TRIM terminal to adjust the output voltage over a 0.5% range without compromising performance.

Additional application and technical information can be found in the ADR441 data sheet.

¹ Protected by U.S. Patent Number 5,838,192.

ADR441ACHIPS Data Sheet

TABLE OF CONTENTS

Features	1
Applications	1
Metal Mask Die Image	1
General Description	
Revision History	
Specifications	

Absolute Maximum Ratings	.4
ESD Caution	.4
Pin Configuration and Function Descriptions	.5
Outline Dimensions	.6
Ordering Guide	.6

REVISION HISTORY

10/2020—Revision 0: Initial Version

Data Sheet ADR441ACHIPS

SPECIFICATIONS

 $V_{IN} = 3 \text{ V}$ to 18 V, $T_A = 25^{\circ}\text{C}$, input capacitance (C_{IN}) = 0.1 μF , and output capacitance (C_{OUT}) = 0.1 μF , unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT VOLTAGE	V _{OUT}		2.497	2.500	2.503	V
INITIAL ACCURACY	Voerr				±3	mV
					0.12	%
TEMPERATURE DRIFT	TCV _{OUT}			2	10	ppm/°C
LINE REGULATION	$\Delta V_{\text{OUT}}/\Delta V_{\text{IN}}$			10	20	ppm/V
LOAD REGULATION	$\Delta V_{\text{OUT}}/\Delta I_{\text{LOAD}}$					
Sourcing		Load current (I_{LOAD}) = 0 mA to 10 mA, V_{IN} = 4 V	-50		+50	ppm/mA
Sinking		$I_{LOAD} = 0$ mA to -5 mA, $V_{IN} = 4$ V	-50		+50	ppm/mA
OUTPUT CURRENT CAPACITY	I _{LOAD}					
Sourcing				10		mA
Sinking				-5		mA
QUIESCENT CURRENT	I _{IN}	No load		3	3.75	mA
VOLTAGE NOISE						
0.1 Hz to 10 Hz	ем р-р			1.2		μV р-р
Density	e _N	1 kHz		48		nV/√Hz
TURN-ON SETTLING TIME	t _R			10		μs
LONG-TERM STABILITY ¹	ΔV _{OUT}	1000 hours		50		ppm
OUTPUT VOLTAGE HYSTERESIS	V _{OUT_HYS}			70		ppm
RIPPLE REJECTION RATIO		Input frequency (f _{IN}) = 1 kHz		-80		dB
SHORT CIRCUIT TO GND	I _{sc}			27		mA
SUPPLY VOLTAGE						
Operating Range	V _{IN}		3		18	V
Headroom	$V_{\text{IN}} - V_{\text{OUT}}$		500			mV

¹ The long-term stability specification is noncumulative. The drift in the subsequent 1000 hour period is significantly lower than in the first 1000 hour period.

ADR441ACHIPS Data Sheet

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	20 V
Output Short-Circuit Duration to GND	Indefinite
Temperature Range	−40°C to +125°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Data Sheet ADR441ACHIPS

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

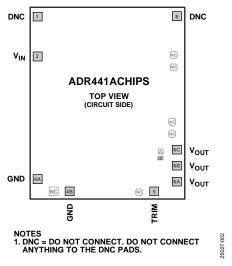


Figure 2. Pad Configuration

Table 3. Pad Function Descriptions

Pad No.	X-Axis (μm)	Y-Axis (μm)	Mnemonic	Description
1	-731	+905	DNC	Do Not Connect. Do not connect anything to the DNC pads.
2	-731	+489	V _{IN}	Input Voltage Connection.
4A	-731	-798	GND	Ground. Connect to other GND pad.
4B	-396	-926	GND	Ground. Connect to other GND pad.
5	+491	-926	TRIM	Output Voltage Trim. Use the TRIM pad to finely adjust the output voltage.
6A	+731	-825	V _{OUT}	Output Voltage. Connect to other Vout pads.
6B	+731	-657	V _{OUT}	Output Voltage. Connect to other Vout pads.
6C	+731	-489	V _{OUT}	Output Voltage. Connect to other Vout pads.
8	+731	+905	DNC	Do Not Connect. Do not connect anything to the DNC pads.

ADR441ACHIPS Data Sheet

OUTLINE DIMENSIONS

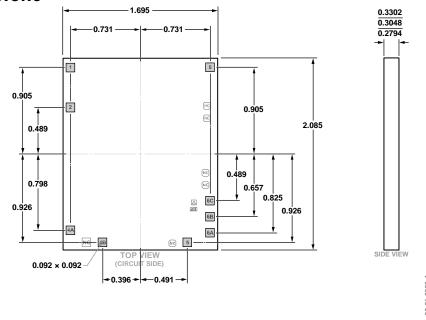


Figure 3. 9-Pad Bare Die [CHIP] (C-9-3) Dimensions shown in millimeters

Table 4. Die Specifications

Parameter	Value	Unit
Chip Size	1620 × 2010	μm
Scribe Line Width	75	μm
Die Size	1695 × 2085	μm
Thickness	12 ± 1	mils
Bond Pads (Minimum)	92×92	μm
Bond Pad Composition	Aluminum copper (AlCu), 0.5	%
Passivation	Doped-oxide/silicon nitride (SiN)	Not applicable
Polyimide	5	μm
Die Marker	1713	Not applicable
Backside	Not applicable (left floating)	Not applicable

Table 5. Assembly Recommendations

Assembly Component	Recommendation
Die Attach	LOCTITE® ABLESTIK 84-1LMISR4 conductive
Bonding Method	Forward bond
Bonding Sequence	Lead to bond first = 1

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADR441ACHIPS	-40°C to +125°C	9-Pad Bare Die [CHIP]	C-9-3

 $^{^{\}rm 1}$ The ADR441ACHIPS is a RoHS compliant part.

