

dsPIC33CK64MP105 FAMILY

16-Bit Digital Signal Controllers with High-Speed ADC, Op Amps, Comparators and High-Resolution PWM

Operating Conditions

- 3.0V to 3.6V: -40°C to +125°C, DC to 100 MHz
- 3.0V to 3.6V: -40°C to +150°C, DC to 70 MHz

High-Performance 16-Bit DSP RISC CPU

- 16-Bit Wide Data Path
- Code Efficient (C and Assembly) Architecture
- 40-Bit Wide Accumulators
- · Single-Cycle (MAC/MPY) with Dual Data Fetch
- Single-Cycle, Mixed-Sign Multiply:
- 32-bit multiply support
- Fast 6-Cycle Divide
- Zero Overhead Looping

High-Speed PWM

- Four PWM Pairs
- Up to 250 ps PWM Resolution
- · Dead Time for Rising and Falling Edges
- Dead-Time Compensation
- Clock Chopping for High-Frequency Operation
- PWM Support for:
 - DC/DC, AC/DC, inverters, PFC, lighting
- BLDC, PMSM, ACIM, SRM motors
- · Fault and Current Limit Inputs
- Flexible Trigger Configuration for ADC Triggering

High-Speed Analog-to-Digital Converter

- 12-Bit Resolution
- Two Dedicated SAR ADC Cores and One Shared SAR ADC Core
- Up to 3.5 Msps Conversion Rate per Core
- Dedicated Result Buffer for Each Analog Channel
- Flexible and Independent ADC Trigger Sources
- Four Digital Comparators
- Four Oversampling Filters

Microcontroller Features

- Small Pin Count Packages Ranging from 28 to 48 Pins, Including UQFN as Small as 4x4 mm
- High-Current I/O Sink/Source
- Edge or Level Change Notification Interrupt on I/O Pins
- · Peripheral Pin Select (PPS) Remappable Pins
- Up to 64 Kbytes Flash Memory:
 - 10,000 erase/write cycle endurance
 - 20 years minimum data retention
 - Self-programmable under software control
 - Programmable code protection
 - Error Code Correction (ECC)
 - Flash OTP by ICSP™ Write Inhibit
- Eight Kbytes SRAM Memory:
 - SRAM Memory Built-In Self-Test (MBIST)
- Multiple Interrupt Vectors with Individually Programmable Priority
- Four Sets of Interrupt Context Saving Registers which Include Accumulator and STATUS for Fast Interrupt Handling
- · Four External Interrupt Pins
- Watchdog Timer (WDT)
- Windowed Deadman Timer (DMT)
- Fail-Safe Clock Monitor (FSCM) with Dedicated Oscillator for Backup
- Selectable Oscillator Options Including:
 - Low-Power 32 kHz RC (LPRC) Oscillator
 - High-precision, 8 MHz internal Fast RC (FRC) Oscillator
 - Primary high-speed, crystal/resonator oscillator or external clock
 - Primary PLL, which can be clocked from FRC or crystal oscillator
 - Secondary/Auxiliary PLL (APLL) for PWM and ADC
- Low-Power Management modes (Sleep and Idle)
- Power-on Reset and Brown-out Reset
- On-Board Capacitorless Regulator
- 256 Bytes of One-Time-Programmable (OTP) Memory

Peripheral Features

- Three 4-Wire SPI modules (up to 50 Mbps):
 - 16-byte FIFO
 - Variable width
 - I²S mode
- Two I²C Master and Slave w/Address Masking and IPMI Support
- Three Protocol UARTs with Automated Handling Support for:
 - LIN 2.2
 - DMX
 - Smart card (ISO 7816)
 - IrDA[®]
- Two SENT modules
- One Dedicated 16-Bit Timer/Counter
- Four Single Output Capture/Compare/PWM/ Timer (SCCP) modules:
 - Flexible configuration as PWM, input capture, output compare or timers
 - Two 16-bit timers or one 32-bit timer in each module
 - PWM resolution down to 4 ns
 - Single PWM output
- One Multiple Output Capture/Compare/PWM/ Timer (MCCP) module:
 - Flexible configuration as PWM, input capture, output compare or timers
 - Two 16-bit timers or one 32-bit timer in each module
 - PWM resolution down to 4 ns
 - Up to six PWM outputs
 - Programmable dead time
 - Auto-shutdown
- Two Quadrature Encoder Interfaces (QEI):
 - Four inputs: Phase A, Phase B, Home, Index
- Reference Clock Output (REFCLKO)
- Four Configurable Logic Cells (CLC) with Internal Connections to Select Peripherals and PPS
- 4-Channel Hardware DMA
- 32-Bit CRC Calculation module
- Peripheral Trigger Generator (PTG):
 - 16 possible trigger sources to other peripheral modules
 - CPU independent state machine-based instruction sequencer

Analog Features

- Three Fast Analog Comparators with Input Multiplexing
- Three Operational Amplifiers
- Three 12-Bit PDM DACs with Slope Compensation
- One Output DAC Buffer

Safety Features

- Clock Monitor System with Backup Oscillator
- DMT (Deadman Timer)
- ECC (Error Correcting Code)
- WDT (Watchdog Timer)
- CodeGuard[™] Security
- CRC (Cyclic Redundancy Check)
- Flash OTP by ICSP[™] Write Inhibit
- RAM Memory Built-In Self-Test (MBIST)
- Two-Speed Start-up
- Fail-Safe Clock Monitoring (FSCM)
- Backup FRC (BFRC)
- · Capless Internal Voltage Regulator
- · Virtual Pins for Redundancy and Monitoring

Functional Safety Collateral

- Class B Safety Library IEC 60730
- For ASIL B and Beyond Applications ISO 26262
- FMEDA Computation Spreadsheet (Evaluation of Random Hardware Failures Metric)
- Functional Safety Manual
- · Functional Safety Diagnostics Suite

Qualification Support

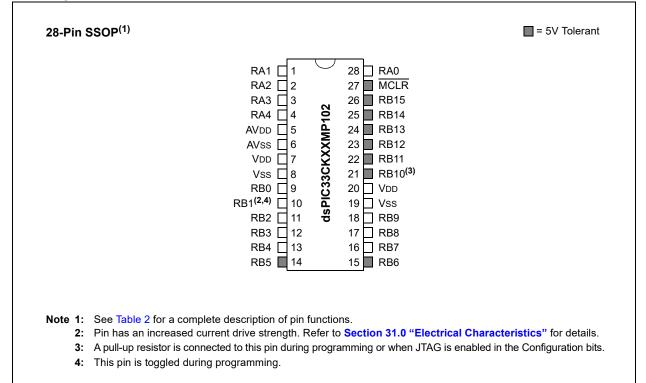
- AEC-Q100 REV-H (Grade 1: -40°C to +125°C) Compliant
- AEC-Q100 REV-H (Grade 0: -40°C to +150°C) Compliant

Debug Features

- Three Programming and Debugging Interfaces:
- Two-wire ICSP™ interface with non-intrusive access and real-time data exchange with application
- Three Complex, Five Simple Breakpoints
- IEEE Standard 1149.2 Compatible (JTAG) Boundary Scan

dsPIC33CK64MP105 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.


TABLE 1: dsPIC33CK64MP105 FAMILY

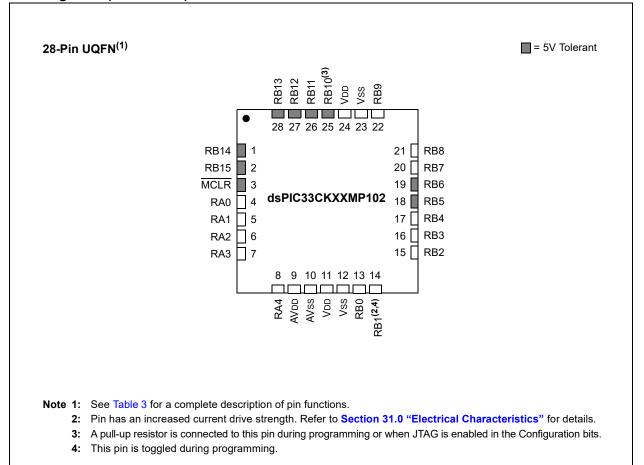
					ırs)	els)	R	lemap	pable	e Perip	ohera	s									
Product	Pins	Program Memory	Data Memory	General Purpose I/O/PPS	High-Speed PWM (Generators)	12-Bit ADC (External Channels)	Dedicated 16-Bit Timers	UARTs	MCCP ⁽¹⁾	SCCP ⁽²⁾	CLC	SPI/I ² S	Op Amplifiers	Comparators	12-Bit DACs	I ² C	QEI	SENT	32-Bit CRC	DMA (Channels)	Packages
dsPIC33CK32MP102	28	32K	8K	21/16	4	12	1	3	1	4	4	3	2	3	3	2	2	2	1	4	SSOP/UQFN
dsPIC33CK32MP103	36	32K	8K	27/22	4	16	1	3	1	4	4	3	3	3	3	2	2	2	1	4	UQFN
dsPIC33CK32MP105	48	32K	8K	39/34	4	18	1	3	1	4	4	3	3	3	3	2	2	2	1	4	UQFN/TQFP
dsPIC33CK64MP102	28	64K	8K	21/16	4	12	1	3	1	4	4	3	2	3	3	2	2	2	1	4	SSOP/UQFN
dsPIC33CK64MP103	36	64K	8K	27/22	4	16	1	3	1	4	4	3	3	3	3	2	2	2	1	4	UQFN
dsPIC33CK64MP105	48	64K	8K	39/34	4	18	1	3	1	4	4	3	3	3	3	2	2	2	1	4	UQFN/TQFP

Note 1: MCCP can be configured as a PWM with up to six outputs, input capture, output compare, 2 x 16-bit timers or 1 x 32-bit timer.

2: SCCP can be configured as a PWM with one output, input capture, output compare, 2 x 16-bit timers or 1 x 32-bit timer.

Pin Diagrams

TABLE 2: 28-PIN SSOP COMPLETE PIN FUNCTION DESCRIPTIONS


Pin #	Function ⁽¹⁾	Pin #	Function ⁽¹⁾
1	OA1IN-/ANA1/RA1	15	PGC3/ RP38 /SCL2/RB6
2	OA1IN+/AN9/RA2	16	TDO/AN2/CMP3A/ RP39 /RB7
3	DACOUT/AN3/CMP1C/RA3	17	PGD1/AN10/ RP40 /SCL1/RB8
4	AN4/CMP3B/IBIAS3/RA4	18	PGC1/AN11/ RP41 /SDA1/RB9
5	AVdd	19	Vss
6	AVss	20	VDD
7	VDD	21	TMS/ RP42 /PWM3H/RB10 ⁽³⁾
8	Vss	22	TCK/ RP43 /PWM3L/RB11
9	OSCI/CLKI/AN5/RP32/RB0	23	TDI/ RP44 /PWM2H/RB12
10	OSCO/CLKO/AN6/RP33/RB1 ^(2,4)	24	RP45/PWM2L/RB13
11	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2A/CMP3D/RP34/INT0/ RB2	25	RP46/PWM1H/RB14
12	PGD2/OA2IN-/AN8/ RP35 /RB3	26	RP47/PWM1L/RB15
13	PGC2/OA2IN+/RP36/RB4	27	MCLR
14	PGD3/ RP37 /SDA2/RB5	28	OA1OUT/AN0/CMP1A/IBIAS0/RA0

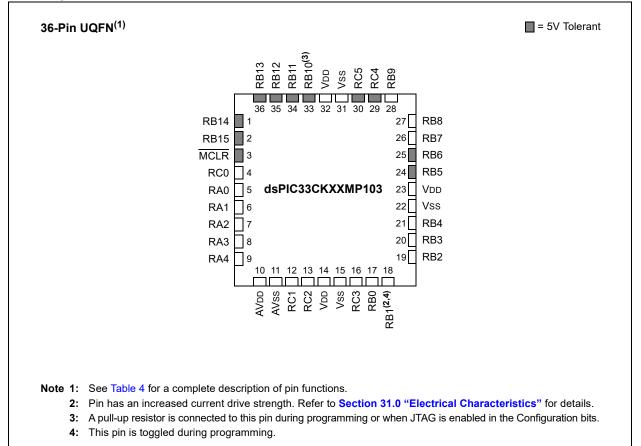
Note 1: RPn represents remappable peripheral functions.

2: Pin has an increased current drive strength. Refer to Section 31.0 "Electrical Characteristics" for details.

3: A pull-up resistor is connected to this pin during programming or when JTAG is enabled in the Configuration bits.

Pin Diagrams (Continued)

TABLE 3: 28-PIN UQFN COMPLETE PIN FUNCTION DESCRIPTIONS

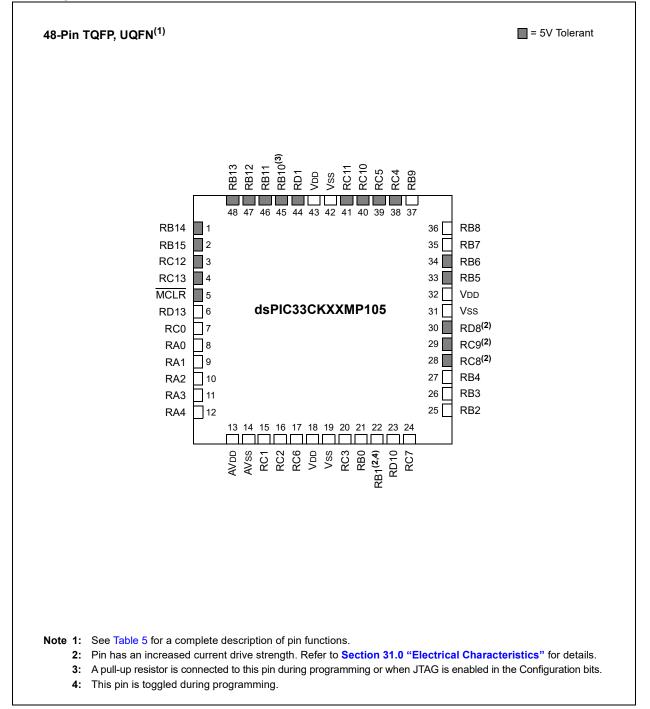

Pin #	Function ⁽¹⁾	Pin #	Function ⁽¹⁾
1	RP46 /PWM1H/RB14	15	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/INT0/RB2
2	RP47/PWM1L/RB15	16	PGD2/OA2IN-/AN8/ RP35 /RB3
3	MCLR	17	PGC2/OA2IN+/ RP36 /RB4
4	OA1OUT/AN0/CMP1A/IBIAS0/RA0	18	PGD3/ RP37 /SDA2/RB5
5	OA1IN-/ANA1/RA1	19	PGC3/ RP38 /SCL2/RB6
6	OA1IN+/AN9/RA2	20	TDO/AN2/CMP3A/ RP39 /RB7
7	DACOUT/AN3/CMP1C/RA3	21	PGD1/AN10/ RP40 /SCL1/RB8
8	AN4/CMP3B/IBIAS3/RA4	22	PGC1/AN11/ RP41 /SDA1/RB9
9	AVdd	23	Vss
10	AVss	24	Vdd
11	Vdd	25	TMS/ RP42 /PWM3H/RB10 ⁽³⁾
12	Vss	26	TCK/ RP43 /PWM3L/RB11
13	OSCI/CLKI/AN5/RP32/RB0	27	TDI/ RP44 /PWM2H/RB12
14	OSCO/CLKO/AN6/ RP33 /RB1 ^(2,4)	28	RP45/PWM2L/RB13

Note 1: RPn represents remappable peripheral functions.

2: Pin has an increased current drive strength. Refer to Section 31.0 "Electrical Characteristics" for details.

3: A pull-up resistor is connected to this pin during programming or when JTAG is enabled in the Configuration bits.

Pin Diagrams (Continued)


Pin #	Function ⁽¹⁾	Pin #	Function ⁽¹⁾
1	RP46 /PWM1H/RB14	19	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/INT0/RB2
2	RP47/PWM1L/RB15	20	PGD2/OA2IN-/AN8/ RP35 /RB3
3	MCLR	21	PGC2/OA2IN+/ RP36 /RB4
4	AN12/ANN0/RP48/RC0	22	Vss
5	OA1OUT/AN0/CMP1A/IBIAS0/RA0	23	VDD
6	OA1IN-/ANA1/RA1	24	PGD3/ RP37 /SDA2/RB5
7	OA1IN+/AN9/RA2	25	PGC3/ RP38 /SCL2/RB6
8	DACOUT/AN3/CMP1C/RA3	26	TDO/AN2/CMP3A/ RP39 /RB7
9	OA3OUT/AN4/CMP3B/IBIAS3/RA4	27	PGD1/AN10/ RP40 /SCL1/RB8
10	AVdd	28	PGC1/AN11/ RP41 /SDA1/RB9
11	AVss	29	RP52/ASDA2/RC4
12	OA3IN-/AN13/CMP1B/ISRC0/RP49/RC1	30	RP53/ASCL2/RC5
13	OA3IN+/AN14/CMP2B/ISRC1/RP50/RC2	31	Vss
14	Vdd	32	Vdd
15	Vss	33	TMS/ RP42 /PWM3H/RB10 ⁽³⁾
16	AN15/CMP2A/IBIAS2/RP51/RC3	34	TCK/ RP43 /PWM3L/RB11
17	OSCI/CLKI/AN5/RP32/RB0	35	TDI/ RP44 /PWM2H/RB12
18	OSCO/CLKO/AN6/RP33/RB1 ^(2,4)	36	RP45/PWM2L/RB13

Note 1: RPn represents remappable peripheral functions.

2: Pin has an increased current drive strength. Refer to Section 31.0 "Electrical Characteristics" for details.

3: A pull-up resistor is connected to this pin during programming or when JTAG is enabled in the Configuration bits.

Pin Diagrams (Continued)

Pin #	Function ⁽¹⁾	Pin #	Function ⁽¹⁾
1	RP46 /PWM1H/RB14	25	OA2OUT/AN1/AN7/ANA0/CMP1D/CMP2D/CMP3D/RP34/INT0/RB2
2	RP47/PWM1L/RB15	26	PGD2/OA2IN-/AN8/ RP35 /RB3
3	RP60/RC12	27	PGC2/OA2IN+/ RP36 /RB4
4	RP61/RC13	28	RP56/ASDA1/SCK2/RC8 ⁽²⁾
5	MCLR	29	RP57/ASCL1/SDI2/RC9 ⁽²⁾
6	ANN2/ RP77 /RD13	30	RP72/SDO2/PCI19/RD8 ⁽²⁾
7	AN12/ANN0/ RP48 /RC0	31	Vss
8	OA1OUT/AN0/CMP1A/IBIAS0/RA0	32	VDD
9	OA1IN-/ANA1/RA1	33	PGD3/ RP37 /SDA2/RB5
10	OA1IN+/AN9/RA2	34	PGC3/ RP38 /SCL2/RB6
11	DACOUT/AN3/CMP1C/RA3	35	TDO/AN2/CMP3A/ RP39 /RB7
12	OA3OUT/AN4/CMP3B/IBIAS3/RA4	36	PGD1/AN10/ RP40 /SCL1/RB8
13	AVdd	37	PGC1/AN11/ RP41 /SDA1/RB9
14	AVss	38	RP52/ASDA2/RC4
15	OA3IN-/AN13/CMP1B/ISRC0/RP49/RC1	39	RP53/ASCL2/RC5
16	OA3IN+/AN14/CMP2B/ISRC1/RP50/RC2	40	RP58/RC10
17	AN17/ANN1/IBIAS1/ RP54 /RC6	41	RP59/RC11
18	Vdd	42	Vss
19	Vss	43	VDD
20	AN15/CMP2A/IBIAS2/RP51/RC3	44	RP65/PWM4H/RD1
21	OSCI/CLKI/AN5/RP32/RB0	45	TMS/ RP42 /PWM3H/RB10 ⁽³⁾
22	OSCO/CLKO/AN6/RP33/RB1 ^(2,4)	46	TCK/ RP43 /PWM3L/RB11
23	AN18/CMP3C/ISRC3/RP74/RD10	47	TDI/ RP44 /PWM2H/RB12
24	AN16/ISRC2/ RP55 /RC7	48	RP45/PWM2L/RB13

TABLE 5: 48-PIN TQFP, UQFN COMPLETE PIN FUNCTION DESCRIPTIONS

Note 1: RPn represents remappable peripheral functions.

2: Pin has an increased current drive strength. Refer to Section 31.0 "Electrical Characteristics" for details.

3: A pull-up resistor is connected to this pin during programming or when JTAG is enabled in the Configuration bits.

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	I/O Ports	
9.0	Oscillator with High-Frequency PLL	
10.0	Direct Memory Access (DMA) Controller	
11.0	High-Resolution PWM with Fine Edge Placement	
12.0	High-Speed, 12-Bit Analog-to-Digital Converter (ADC)	
13.0	High-Speed Analog Comparator with Slope Compensation DAC	
14.0	Quadrature Encoder Interface (QEI)	
15.0	Universal Asynchronous Receiver Transmitter (UART)	
16.0		
17.0	Inter-Integrated Circuit (I ² C)	
18.0	Single-Edge Nibble Transmission (SENT)	
	Timer1	
20.0	Capture/Compare/PWM/Timer Modules (SCCP/MCCP)	
21.0	Configurable Logic Cell (CLC)	
22.0	Peripheral Trigger Generator (PTG)	
23.0	Current Bias Generator (CBG)	
24.0	Operational Amplifier	
25.0	Deadman Timer (DMT)	
26.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	411
27.0	Power-Saving Features	415
28.0	Special Features	
29.0	Instruction Set Summary	453
30.0	Development Support	
31.0	Electrical Characteristics	
32.0	High-Temperature Electrical Characteristics	
33.0	Packaging Information	501
Appe	endix A: Revision History	
Index	Χ	
The I	Microchip Website	
Cust	omer Change Notification Service	
Cust	omer Support	
Prod	uct Identification System	

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

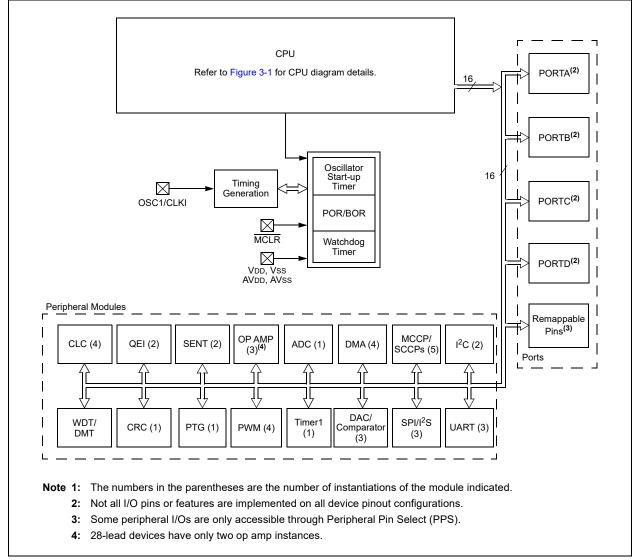
Note: To access the documents listed below, browse to the documentation section of the dsPIC33CK64MP105 product page of the Microchip website (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (www.microchip.com/DS70573)
- "Enhanced CPU" (www.microchip.com/DS70005158)
- "Data Memory" (www.microchip.com/DS70595)
- "dsPIC33/PIC24 Program Memory" (www.microchip.com/DS70000613)
- "Reset" (www.microchip.com/DS70602)
- "Interrupts" (www.microchip.com/DS70000600)
- "I/O Ports with Edge Detect" (www.microchip.com/DS70005322)
- "Oscillator Module with High-Speed PLL" (www.microchip.com/DS70005255)
- "Direct Memory Access Controller (DMA)" (www.microchip.com/DS30009742)
- "High-Resolution PWM with Fine Edge Placement" (www.microchip.com/DS70005320)
- "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (www.microchip.com/DS70005213)
- "High-Speed Analog Comparator Module" (www.microchip.com/DS70005280)
- "Quadrature Encoder Interface (QEI)" (www.microchip.com/DS70000601)
- "Multiprotocol Universal Asynchronous Receiver Transmitter (UART) Module" (www.microchip.com/DS70005288)
- "Serial Peripheral Interface (SPI) with Audio Codec Support" (www.microchip.com/DS70005136)
- "Inter-Integrated Circuit (I²C)" (www.microchip.com/DS70000195)
- "Single-Edge Nibble Transmission (SENT) Module" (www.microchip.com/DS70005145)
- "Timer1 Module" (www.microchip.com/DS70005279)
- "Capture/Compare/PWM/Timer (MCCP and SCCP)" (www.microchip.com/DS30003035)
- "Configurable Logic Cell (CLC)" (www.microchip.com/DS70005298)
- "Peripheral Trigger Generator (PTG)" (www.microchip.com/DS70000669)
- "Current Bias Generator (CBG)" (www.microchip.com/DS70005253)
- "Deadman Timer (DMT)" (www.microchip.com/DS70005155)
- "32-Bit Programmable Cyclic Redundancy Check (CRC)" (www.microchip.com/DS30009729)
- "Dual Watchdog Timer" (www.microchip.com/DS70005250)
- "Programming and Diagnostics" (www.microchip.com/DS70608)
- "CodeGuard™ Intermediate Security" (www.microchip.com/DS70005182)
- "Flash Programming" (www.microchip.com/DS70000609)

NOTES:

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33CK64MP105 Digital Signal Controller (DSC) devices.

dsPIC33CK64MP105 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules of the dsPIC33CK64MP105 family. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33CK64MP105 FAMILY BLOCK DIAGRAM⁽¹⁾

TABLE 1-1: PINOUT	ABLE 1-1: PINOUT I/O DESCRIPTIONS							
Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description				
AN0-AN18	I	Analog	No	Analog input channels.				
ANA0-ANA1	I	Analog	No	Analog alternate inputs.				
ANN0-ANN1	I	Analog	No	Analog negative inputs.				
CLKI	I	ST	No	External Clock (EC) source input. Always associated with OSCI pin function.				
CLKO	0	_	No	In Configuration bits, it can be set to output the CPU clock. Always associated with OSCO pin function.				
OSCI	I	CMOS	No	Oscillator crystal input. Connects to crystal or resonator in Crystal Oscillator mode.				
OSCO	I/O		No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.				
REFCLKI	I	ST	Yes	Reference clock input.				
REFCLKO	0	—	Yes	Reference clock output.				
INT0	Ι	ST	No	External Interrupt 0.				
INT1	I	ST	Yes	External Interrupt 1.				
INT2	I	ST	Yes	External Interrupt 2.				
INT3	I	ST	Yes	External Interrupt 3.				
IOCA[4:0]	I	ST	No	Interrupt-on-Change input for PORTA.				
IOCB[15:0]	I	ST	No	Interrupt-on-Change input for PORTB.				
IOCC[13:0]	I	ST	No	Interrupt-on-Change input for PORTC.				
IOCD1, IOCD8, IOCD10 IOCD13	I	ST	No	Interrupt-on-Change input for PORTD.				
QEIAx	I	ST	Yes	QEIx Input A.				
QEIBx	I	ST	Yes	QEIx Input B.				
QEINDXx	I	ST	Yes	QEIx Index input.				
QEIHOMx	I	ST	Yes	QEIx Home input.				
QEICMPx	0		Yes	QEIx comparator output.				
RP32-RP61, RP65, RP72, RP74, RP77	I/O	ST	Yes	Remappable I/O ports.				
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.				
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.				
RC0-RC13	I/O	ST	No	PORTC is a bidirectional I/O port.				
RD1, RD8, RD10, RD13	I/O	ST	No	PORTD is a bidirectional I/O port.				
T1CK	I	ST	Yes	Timer1 external clock input.				
U1CTS	I	ST	Yes	UART1 Clear-to-Send.				
U1RTS	0	—	Yes	UART1 Request-to-Send.				
U1RX	I	ST	Yes	UART1 receive.				
U1TX	0		Yes	UART1 transmit.				
U1DSR		ST	Yes	UART1 Data-Set-Ready.				

TABLE 1-1:PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog input O = Output

UART1 Data-Terminal-Ready.

P = Power I = Input

Note 1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

Yes

2: PWM4L and PWM4H pins are available on PPS.

Ο

3: SPI2 supports dedicated pins as well as PPS on 48-pin devices.

U1DTR

TABLE 1-1: PIN	TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)							
Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description				
U2CTS	I	ST	Yes	UART2 Clear-to-Send.				
U2RTS	0	_	Yes	UART2 Request-to-Send.				
U2RX	1	ST	Yes	UART2 receive.				
U2TX	0	—	Yes	UART2 transmit.				
U2DSR	1	ST	Yes	UART2 Data-Set-Ready.				
U2DTR	0	_	Yes	UART2 Data-Terminal-Ready.				
U3CTS	I	ST	Yes	UART3 Clear-to-Send.				
U3RTS	0	—	Yes	UART3 Request-to-Send.				
U3RX	1	ST	Yes	UART3 receive.				
U3TX	0	—	Yes	UART3 transmit.				
U3DSR	1	ST	Yes	UART3 Data-Set-Ready.				
U3DTR	0	_	Yes	UART3 Data-Terminal-Ready.				
SENT1	I	ST	Yes	SENT1 input.				
SENT1OUT	0	—	Yes	SENT1 output.				
SENT2	I	ST	Yes	SENT2 input.				
SENT2OUT	0	_	Yes	SENT2 output.				
PTGTRG24	0	_	Yes	PTG Trigger Output 24.				
PTGTRG25	0		Yes	PTG Trigger Output 25.				
TCKI1-TCKI5	I	ST	Yes	MCCP/SCCP timer inputs.				
ICM1-ICM5	1	ST	Yes	MCCP/SCCP capture inputs.				
OCFA-OCFB		ST	Yes	MCCP/SCCP Fault inputs.				
OCM1x-OCM5x	0	_	Yes	MCCP/SCCP compare outputs.				
SCK1	I/O	ST	Yes	Synchronous serial clock input/output for SPI1.				
SDI1	1	ST	Yes	SPI1 data in.				
SDO1	0	—	Yes	SPI1 data out.				
SS1	I/O	ST	Yes	SPI1 Slave synchronization or frame pulse I/O.				
SCK2	I/O	ST	Yes ⁽³⁾	Synchronous serial clock input/output for SPI2.				
SDI2	1	ST						
SDO2	0	_	Yes ⁽³⁾	SPI2 data out.				
SS2	I/O	ST	Yes ⁽³⁾	SPI2 Slave synchronization or frame pulse I/O.				
SCK3	I/O	ST	Yes	Synchronous serial clock input/output for SPI3.				
SDI3	1	ST	Yes	SPI3 data in.				
SDO3	0	—	Yes	SPI3 data out.				
SS3	I/O	ST	Yes	SPI3 Slave synchronization or frame pulse I/O.				
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.				
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.				
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.				
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.				
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.				
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.				
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.				
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.				
Legend: CMOS = C	MOS compa	tible inpu	it or ou	tput Analog = Analog input P = Power				
	nitt Trigger inp							

TARIE 1-1. PINOLIT I/O DESCRIPTIONS (CONTINUED)

O = OutputST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select

Note 1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

2: PWM4L and PWM4H pins are available on PPS.

3: SPI2 supports dedicated pins as well as PPS on 48-pin devices.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

TABLE T-T: PINOUT			(CONTINUED)				
Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description			
TMS	1	ST	No	JTAG Test mode select pin.			
ТСК	I.	ST	No	JTAG test clock input pin.			
TDI	I	ST	No	JTAG test data input pin.			
TDO	0	—	No	JTAG test data output pin.			
PCI8-PCI18		ST	Yes	PWM Inputs 8 through 18.			
PCI19	1	ST	No	PWM Input 19.			
PWMEA-PWMED	Ó	_		PWM Event Outputs A through D.			
PWM1L-PWM4L ⁽²⁾	Ō	_	No	PWM Low Outputs 1 through 4.			
PWM1H-PWM4H ⁽²⁾	Õ	_	No	PWM High Outputs 1 through 4.			
CLCINA-CLCIND	1	ST	Yes	CLC Inputs A through D.			
CLCXOUT	0	31					
			Yes	CLCx output.			
CMP1A-CMP3A		Analog	No	Comparator Channels 1A through 3A inputs.			
CMP1B-CMP3B		Analog	No	Comparator Channels 1B through 3B inputs.			
CMP1C-CMP3C	I	Analog	No	Comparator Channels 1C through 3C inputs.			
CMP1D-CMP3D	I	Analog	No	Comparator Channels 1D through 3D inputs.			
DACOUT	0	_	No	DAC output voltage.			
IBIAS0-IBIAS3	0	Analog	No	50 µA Constant-Current Outputs 0 through 3.			
ISRC0-ISRC3	0	Analog	No	10 µA Constant-Current Outputs 0 through 3.			
OA1IN+	1		No	Op Amp 1+ input.			
OA1IN-	1	_	No	Op Amp 1- input			
OA1OUT	0	_	No	Op Amp 1 output.			
OA2IN+	1	_	No	Op Amp 2+ input.			
OA2IN-	1	_	No	Op Amp 2- input.			
OA2OUT	Ó		No	Op Amp 2 output.			
OA3IN+	Ĩ		No	Op Amp 3+ input.			
OA3IN-	İ	_	No	Op Amp 3- input.			
OA3OUT	Ó		No	Op Amp 3 output.			
ADTRG31		ST	No	External ADC trigger source.			
PGD1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.			
PGC1	1/0	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.			
FGCT	'	31	INU	Channel 1.			
PGD2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.			
PGC2	1/0	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.			
F GC2	'	31	INU	Channel 2.			
PGD3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.			
PGC3		ST		Clock input pin for Programming/Debugging Communication Charmer S.			
FGC3		31	No	Channel 3.			
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the			
	1/1	51	INU	device.			
AVdd	Р	Р	No	Positive supply for analog modules. This pin must be connected at all			
AVDD		F	INO	times.			
A) (00	<u> </u>	-	NI.				
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.			
Vdd	Р	Р	No	Positive supply for peripheral logic and I/O pins.			
Vss	Р	Р	No	Ground reference for logic and I/O pins.			
Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power							

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Analog input
 P = Power

 ST = Schmitt Trigger input with CMOS levels
 O = Output
 I = Input

 PPS = Peripheral Pin Select
 O = Output
 I = Input

Note 1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.
2: PWM4L and PWM4H pins are available on PPS.

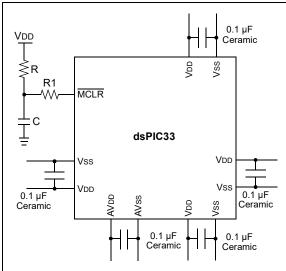
3: SPI2 supports dedicated pins as well as PPS on 48-pin devices.

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

2.1 Basic Connection Requirements

Getting started with the dsPIC33CK64MP105 family devices requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- PGCx/PGDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.4 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used (see Section 2.5 "External Oscillator Pins")


2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

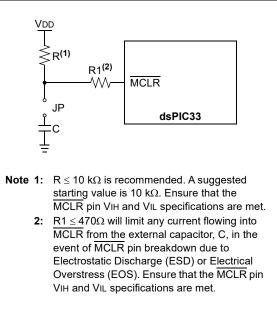
FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 BULK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a bulk capacitor for integrated circuits, including DSCs, to supply a local power source. The value of the bulk capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the bulk capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:


- Device Reset
- · Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components, as shown in Figure 2-2, within one-quarter inch (6 mm) from the MCLR pin.

2.4 ICSP Pins

The PGCx and PGDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

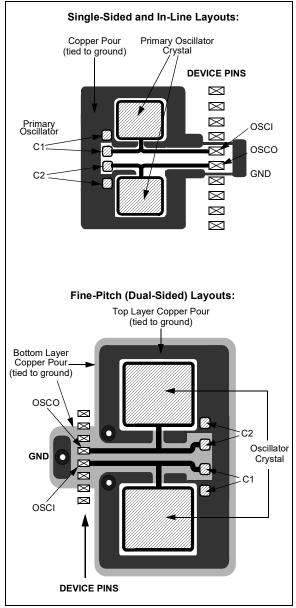
Pull-up resistors, series diodes and capacitors on the PGCx and PGDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] debugger tool.

For more information on the MPLAB programmer/ debugger connection requirements, refer to the Microchip website.

2.5 External Oscillator Pins

When the Primary Oscillator (POSC) circuit is used to connect a crystal oscillator, special care and consideration is needed to ensure proper operation. The POSC circuit should be tested across the environmental conditions that the end product is intended to be used. The load capacitors specified in the crystal oscillator data sheet can be used as a starting point; however, the parasitic capacitance from the PCB traces can affect the circuit and the values may need to be altered to ensure proper start-up and operation. Excessive trace length and other physical interaction can lead to poor signal quality. Poorly tuned oscillator circuits can have reduced amplitude, incorrect frequency (runt pulses), distorted waveforms and long start-up times that may result in unpredictable application behavior, such as instruction misexecution, illegal op code fetch, etc. Ensure that the crystal oscillator circuit is at full amplitude and correct frequency before the system begins to execute code. In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator do not have high frequencies, short rise and fall times, and other similar noise. For further information on the Primary Oscillator, see Section 9.4 "Primary Oscillator (POSC)".


2.6 External Oscillator Layout Guidance

Use best practices during PCB layout to ensure robust start-up and operation. The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. If using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. Suggested layouts are shown in Figure 2-3. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the Microchip website (www.microchip.com):

- AN943, "Practical PICmicro® Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"
- AN1798, "Crystal Selection for Low-Power Secondary Oscillator

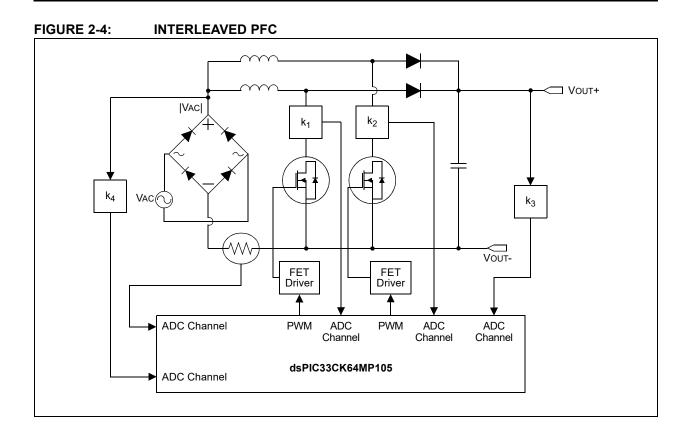
FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to a certain frequency (see Section 9.0 "Oscillator with High-Frequency PLL") to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

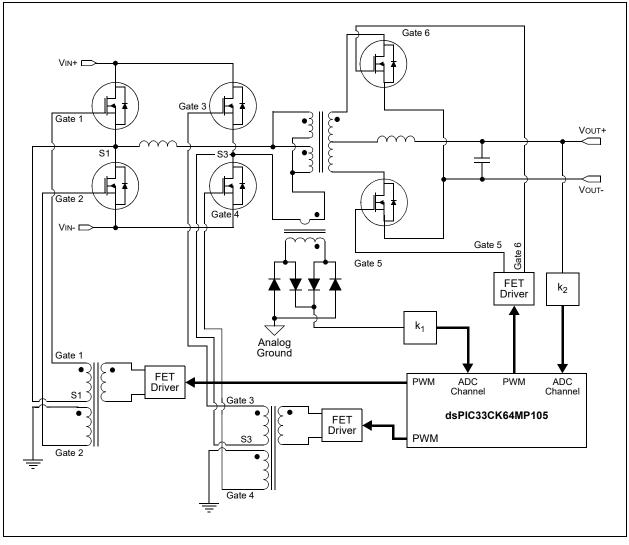
Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

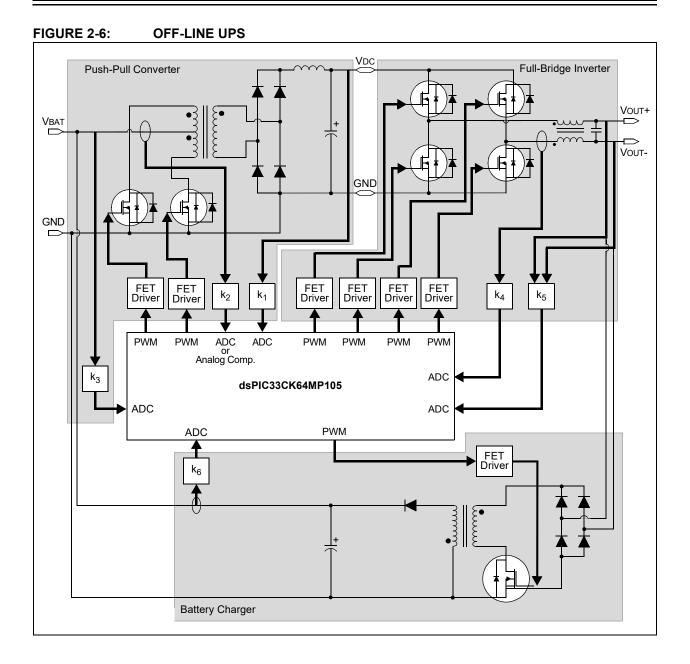

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Targeted Applications


- Power Factor Correction (PFC):
 - Interleaved PFC
 - Critical Conduction PFC
 - Bridgeless PFC
- DC/DC Converters:
 - Buck, Boost, Forward, Flyback, Push-Pull
 - Half/Full-Bridge
 - Phase-Shift Full-Bridge
 - Resonant Converters
- DC/AC:
 - Half/Full-Bridge Inverter
 - Resonant Inverter
- Motor Control
- BLDC
- PMSM
- SR
- ACIM

Examples of typical application connections are shown in Figure 2-4 through Figure 2-6.



dsPIC33CK64MP105 FAMILY

FIGURE 2-5: PHASE-SHIFTED FULL-BRIDGE CONVERTER

dsPIC33CK64MP105 FAMILY

NOTES:

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced CPU" (www.microchip.com/DS70005158) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33CK64MP105 family CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for Digital Signal Processing (DSP). The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33CK64MP105 devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

In addition, the dsPIC33CK64MP105 devices include four Alternate Working register sets, which consist of W0 through W14. The Alternate Working registers can be made persistent to help reduce the saving and restoring of register content during Interrupt Service Routines (ISRs). The Alternate Working registers can be assigned to a specific Interrupt Priority Level (IPL1 through IPL6) by configuring the CTXTx[2:0] bits in the FALTREG Configuration register. The Alternate Working registers can also be accessed manually by using the CTXTSWP instruction. The CCTXI[2:0] and MCTXI[2:0] bits in the CTXTSTAT register can be used to identify the current, and most recent, manually selected Working register sets.

3.2 Instruction Set

The instruction set for dsPIC33CK64MP105 devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

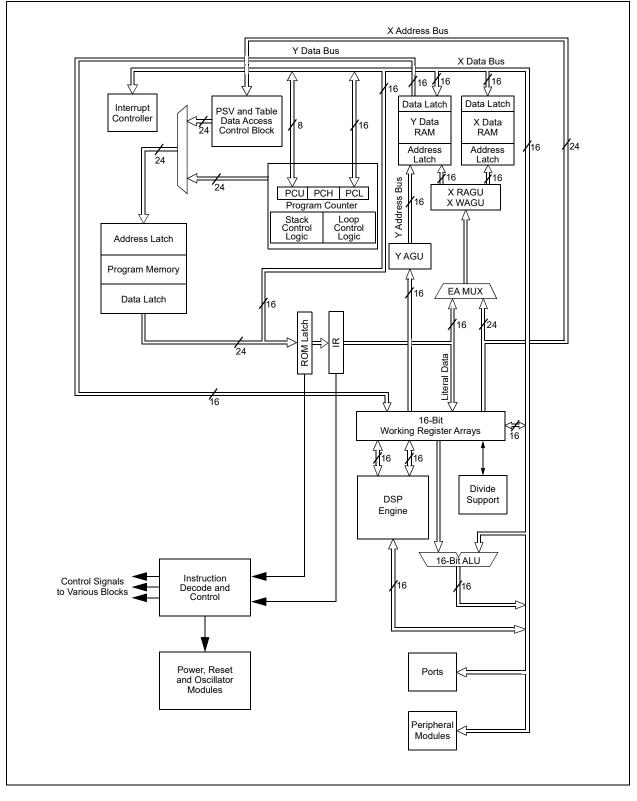
3.3 Data Space Addressing

The base Data Space can be addressed as up to 4K words or 8 Kbytes, and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Refer to "**Data Memory**" (www.microchip.com/DS70595) in the "*dsPIC33/PIC24 Family Reference Manual*" for more details on PSV and table accesses.

On dsPIC33CK64MP105 family devices, overheadfree circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms.

3.4 Addressing Modes


The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

dsPIC33CK64MP105 FAMILY

FIGURE 3-1: dsPIC33CK64MP105 FAMILY CPU BLOCK DIAGRAM

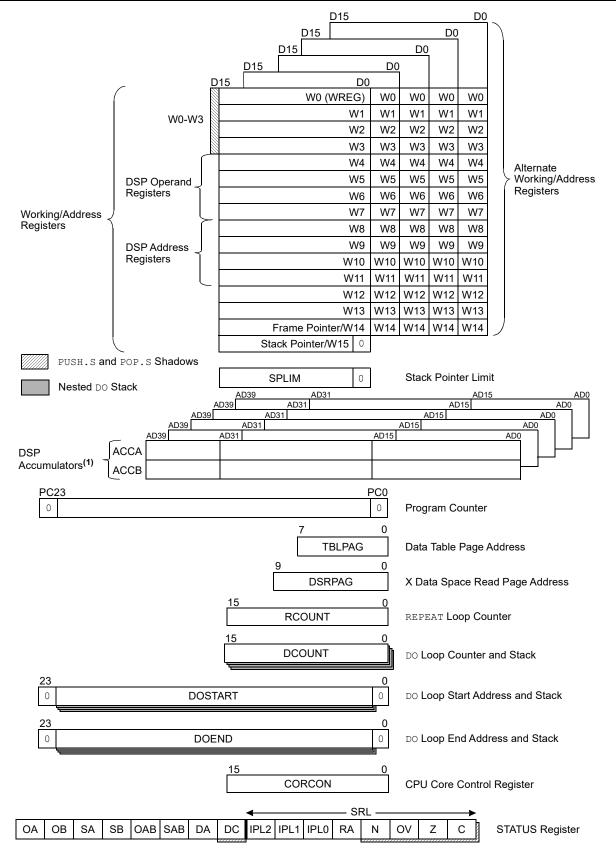
3.4.1 PROGRAMMER'S MODEL

The programmer's model for the dsPIC33CK64MP105 family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33CK64MP105 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Figure 3-2.

TABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS


Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2
W0 through W14 ⁽¹⁾	Alternate Working Register Array 3
W0 through W14 ⁽¹⁾	Alternate Working Register Array 4
ACCA, ACCB	40-Bit DSP Accumulators (Additional Four Alternate Accumulators)
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Counter Register
DOSTARTH, DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

dsPIC33CK64MP105 FAMILY

3.4.2 CPU RESOURCES

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

3.4.2.1 Key Resources

- "Enhanced CPU" (www.microchip.com/ DS70005158) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

3.4.3 CPU CONTROL REGISTERS

REGISTER 3-1: SR: CPU STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽¹⁾	IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	OA: Accumulator A Overflow Status bit
	1 = Accumulator A has overflowed 0 = Accumulator A has not overflowed
bit 14	OB: Accumulator B Overflow Status bit
	 1 = Accumulator B has overflowed 0 = Accumulator B has not overflowed
bit 13	SA: Accumulator A Saturation 'Sticky' Status bit ⁽³⁾
	 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated
bit 12	SB: Accumulator B Saturation 'Sticky' Status bit ⁽³⁾
	 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated
bit 11	OAB: OA OB Combined Accumulator Overflow Status bit
	 1 = Accumulator A or B has overflowed 0 = Neither Accumulator A or B has overflowed
bit 10	SAB: SA SB Combined Accumulator 'Sticky' Status bit
	 1 = Accumulator A or B is saturated or has been saturated at some time 0 = Neither Accumulator A or B is saturated
bit 9	DA: DO Loop Active bit
	1 = DO loop is in progress 0 = DO loop is not in progress
bit 8	DC: MCU ALU Half Carry/Borrow bit
	 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
	 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
Note	1: The IPL[2:0] bits are concatenated with the IPL[3] bit (CORCON[3]) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL[3] = 1. User interrupts are disabled when IPL[3] = 1.
	2^{-1} The IPI [2:0] Status hits are read only when the NSTDIS hit (INTCON1[15]) = 1

2: The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL[2:0]: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit 1 = REPEAT loop is in progress
bit 3	0 = REPEAT loop is not in progress N: MCU ALU Negative bit
	1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (two's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	 Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	The IPL[2:0] bits are concatenated with the IPL[3] bit (CORCON[3]) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL[3] = 1. User interrupts are disabled when

- Level. The value in parentheses indicates the IPL, if IPL[3] = 1. User interrupts are disabled IPL[3] = 1.
 - **2:** The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER	3-2: CORC	ON: CORE (JUNIRULR	EGISTER			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7	0,110	0,11211	71000711		017A	1410	bit
Legend:		C = Clearabl	o hit				
R = Readable	- hit	W = Writable		LI – Unimploy	monted hit rea	ud oo 'O'	
				-	mented bit, rea		
-n = Value at	PUR	'1' = Bit is set	['0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15		e Exception Pr	•	•			
		exception proc					
bit 14		ted: Read as					
bit 13-12	-	P Multiply Unsi		Control bits			
	11 = Reserve		g				
	10 = DSP engine multiplies are mixed sign 01 = DSP engine multiplies are unsigned						
		gine multiplies					
bit 11	EDT: Early DO Loop Termination Control bit ⁽¹⁾						
	1 = Terminate 0 = No effect	es executing D	o loop at the e	nd of the curre	nt loop iteratio	n	
bit 10-8	DL[2:0]: DO Loop Nesting Level Status bits						
	111 = Seven	DO loops are a	active				
	001 = One D	○ loop is active	;				
	000 = Zero D	oo loops are ac	tive				
bit 7	SATA: ACCA	Saturation En	able bit				
	 1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled 						
hit C							
bit 6	SATB: ACCB Saturation Enable bit						
	 1 = Accumulator B saturation is enabled 0 = Accumulator B saturation is disabled 						
bit 5	SATDW: Data Space Write from DSP Engine Saturation Enable bit						
	 1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled 						
bit 4	ACCSAT: Accumulator Saturation Mode Select bit						
	1 = 9.31 satu	ration (super s	aturation)				
	0 = 1.31 saturation (normal saturation)						
bit 3	IPL3: CPU In	nterrupt Priority	Level Status I	bit 3 ⁽²⁾			
		rrupt Priority Lorrupt Priority Lo					
Note 1: Th	iis bit is always i	read as '0'.					
2: Th	e IPL3 bit is cor	ncatenated with	n the IPL[2:0] b	oits (SR[7:5]) to	o form the CPL	J Interrupt Priorit	y Level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG 0 = Stack frame is not active; W14 and W15 address the base Data Space
bit 1	RND: Rounding Mode Select bit
	 1 = Biased (conventional) rounding is enabled 0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply
Note 1:	This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level.

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
—	—	—	—	—		CCTXI[2:0]	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_	_	_	_	_		MCTXI[2:0]	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	CCTXI[2:0]: Current (W Register) Context Identifier bits
	111 = Reserved
	 Alternate Working Register Set 4 is currently in use Alternate Working Register Set 3 is currently in use Alternate Working Register Set 2 is currently in use Alternate Working Register Set 1 is currently in use Default Working register set is currently in use
bit 7-3	Unimplemented: Read as '0'
bit 2-0	MCTXI[2:0]: Manual (W Register) Context Identifier bits
	111 = Reserved
	 Alternate Working Register Set 4 was most recently manually selected Alternate Working Register Set 3 was most recently manually selected Alternate Working Register Set 2 was most recently manually selected Alternate Working Register Set 1 was most recently manually selected Dot = Alternate Working Register Set 1 was most recently manually selected Dot = Default Working register set was most recently manually selected

bit 7

bit 0

3.4.4 ARITHMETIC LOGIC UNIT (ALU)

The dsPIC33CK64MP105 family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (www.microchip.com/DS70000157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.4.4.1 Multiplier

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.4.4.2 Divider

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/ 16-bit instructions take the same number of cycles to execute. There are additional instructions: DIV2 and DIVF2. Divide instructions will complete in six cycles.

3.4.5 DSP ENGINE

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are, ADD, SUB, NEG, MIN and MAX.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned or mixed-sign DSP multiply (USx)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

TABLE 3-2:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write-Back		
CLR	A = 0	Yes		
ED	$A = (x - y)^2$	No		
EDAC	$A = A + (x - y)^2$	No		
MAC	$A = A + (x \bullet y)$	Yes		
MAC	$A = A + x^2$	No		
MOVSAC	No change in A	Yes		
MPY	$A = x \bullet y$	No		
MPY	$A = x^2$	No		
MPY.N	$A = -x \bullet y$	No		
MSC	$A = A - x \bullet y$	Yes		

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "dsPIC33/PIC24 Program Memory" (www.microchip.com/DS70000613) in the "dsPIC33/PIC24 Family Reference Manual".

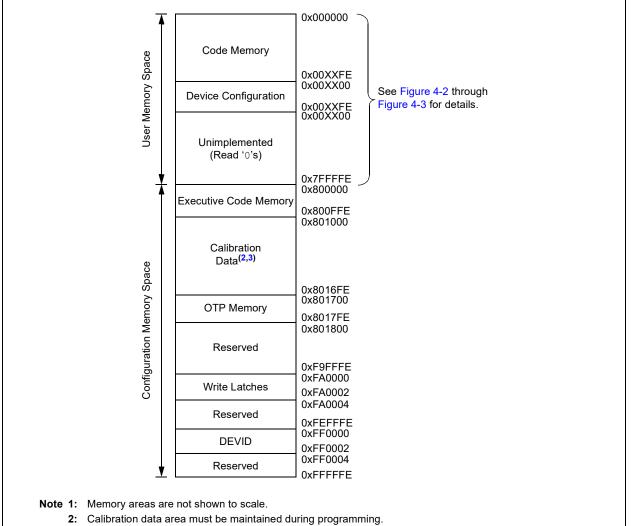
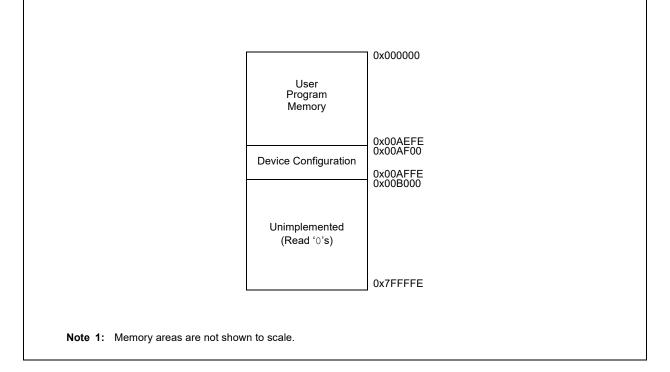
The dsPIC33CK64MP105 family architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

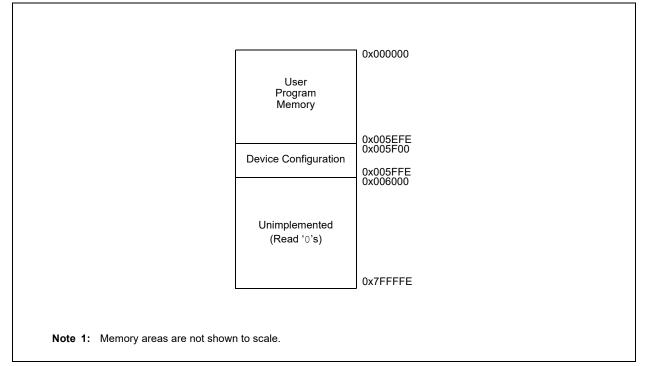
4.1 Program Address Space

The program address memory space of the dsPIC33CK64MP105 family devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 4.4.5 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD operations, which use TBLPAG[7] to permit access to calibration data and Device ID sections of the configuration memory space.

The program memory maps for dsPIC33CK64MP105 devices are shown in Figure 4-1 through Figure 4-3.

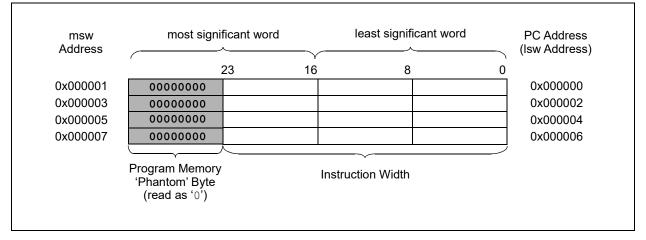

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33CK32MP10X DEVICES⁽¹⁾

3: Calibration data area includes UDID and ICSP[™] Write Inhibit registers locations.

FIGURE 4-2: CODE MEMORY MAP FOR dsPIC33CK64MP10X DEVICES⁽¹⁾

FIGURE 4-3: CODE MEMORY MAP FOR dsPIC33CK32MP10X DEVICES⁽¹⁾

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-4).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented, by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33CK64MP105 family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.0 "Interrupt Controller"**.

FIGURE 4-4: PROGRAM MEMORY ORGANIZATION

4.1.3 UNIQUE DEVICE IDENTIFIER (UDID)

All dsPIC33CK64MP105 family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. The UDID cannot be erased by a bulk erase command or any other user-accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- Tracking the device
- · Unique serial number
- · Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 0x801200 and 0x801208 in the device configuration space. Table 4-1 lists the addresses of the identifier words and shows their contents.

TABLE 4-1: UDID ADDRESSES

UDID	Address	Description		
UDID1	0x801200	UDID Word 1		
UDID2	0x801202	UDID Word 2		
UDID3	0x801204	UDID Word 3		
UDID4	0x801206	UDID Word 4		
UDID5	0x801208	UDID Word 5		

4.2 Data Address Space

The dsPIC33CK64MP105 family CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory map is shown in Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes or 32K words.

The lower half of the data memory space (i.e., when EA[15] = 0) is used for implemented memory addresses, while the upper half (EA[15] = 1) is reserved for the Program Space Visibility (PSV).

The dsPIC33CK64MP105 family devices implement up to 16 Kbytes of data memory. If an EA points to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data are aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33CK64MP105 family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33CK64MP105 family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33CK64MPX0X AND dsPIC33CK32MPX0X DEVICES

4.2.5 X AND Y DATA SPACES

The dsPIC33CK64MP105 family core has two Data Spaces: X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

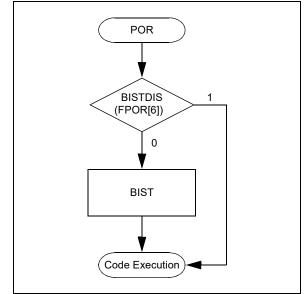
The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.2.6 DATA MEMORY TEST (BIST)


The dsPIC33CK64MP105 family features a data memory Built-In Self-Test (BIST) that has the option to be run at start-up or run time. The memory test checks that all memory locations are functional and provides a pass/fail status of the RAM that can be used by software to take action if needed. If a failure is reported, the specific location(s) are not identified.

The MBISTCON register (Register 4-1) contains control and status bits for BIST operation. The MBISTDONE bit (MBISTCON[7]) indicates if a BIST was run since the last Reset and the MBISTSTAT bit (MBISTCON[4]) provides the pass/fail result.

4.2.6.1 BIST at Start-up

The BIST can be configured to automatically run on a POR-type Reset, as shown in Figure 4-6. By default, when BISTDIS (FPOR[6]) = 1, the BIST is disabled and will not be part of device start-up. If the BISTDIS bit is cleared during device programming, the BIST will run after all Configuration registers have been loaded and before code execution begins. BIST will always run on FRC+PLL with PLL settings resulting in a 125 MHz clock rate.

FIGURE 4-6: BIST FLOWCHART

4.2.6.2 BIST at Run Time

A BIST test can be requested to run on subsequent device Resets at any time.

A BIST will corrupt all of the RAM contents, including the Stack Pointer, and requires a subsequent Reset. The system should be prepared for a Reset before a BIST is performed. The BIST is invoked by setting the MBISTEN bit (MBISTCON[0]) and executing a Reset. The MBISTCON register is protected against accidental writes and requires an unlock sequence prior to writing. Only one bit can be set per unlock sequence. The procedure for a run-time BIST is as follows:

- 1. Execute the unlock sequence by consecutively writing 0x55 and 0xAA to the NVMKEY register.
- 2. Write 0x0001 to the MBISTCON SFR.
- 3. Execute a software RESET command.
- 4. Verify a Software Reset has occurred by reading SWR (RCON[6]) (optional).
- 5. Verify that the MBISTDONE bit is set.
- 6. Take action depending on test result indicated by MBISTSTAT.

4.2.6.3 Fault Simulation

A mechanism is available to simulate a BIST failure to allow testing of Fault handling software. When the FLTINJ bit is set during a run-time BIST, the MBISTSTAT bit will be set regardless of the test result. The procedure for a BIST Fault simulation is as follows:

- 1. Execute the unlock sequence by consecutively writing 0x55 and 0xAA to the NVMKEY register.
- 2. Set the MBISTEN bit (MBISTCON[0]).
- 3. Execute 2nd unlock sequence by consecutively writing 0x55 and 0xAA to the NVMKEY register.
- 4. Set the FLTINJ bit (MBISTCON[8]).
- 5. Execute a software RESET command.
- 6. Verify the MBISTDONE, MBSITSTAT and FLTINJ bits are all set.

REGISTER 4-1: MBISTCON: MBIST CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾				
_	_		_		_	_	FLTINJ				
bit 15							bit 8				
R/W/HS-0 ⁽¹⁾	U-0	U-0	R-0	U-0	U-0	U-0	R/W/HC-0 ⁽²⁾				
MBISTDONE		—	MBISTSTAT		_		MBISTEN				
bit 7	·	bit									
Legend:		HS = Hardware	e Settable bit	HC = Hardw	vare Clearable	bit					
R = Readable	bit	W = Writable b	it	U = Unimple	emented bit, re	ad as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown											
bit 15-9	Unimplemen	ted: Read as '0'									
bit 8	FLTINJ: MBIS	ST Fault Inject C	ontrol bit ⁽¹⁾								
		ST test will comp		MBISTSTAT =	= 1, simulating	an SRAM tes	t failure				
		ST test will exec	•								
bit 7		: MBIST Done S									
		T operation has T operation has			sequence						
bit 6-5		ted: Read as '0'			Sequence						
bit 4	-	MBIST Status b									
bit 4			it.								
	 1 = The last MBIST failed 0 = The last MBIST passed; all memory may not have been tested 										
bit 3-1											
bit 0	MBISTEN: MBIST Enable bit ⁽²⁾										
		est is armed; an est is disarmed	MBIST test will	execute at th	ne next device	Reset					
	reacte only on	a true DOR Reg	a a t								

Note 1: HW resets only on a true POR Reset.

2: This bit will self-clear when the MBIST test is complete.

4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.3.1 KEY RESOURCES

- "dsPIC33/PIC24 Program Memory" (www.microchip.com/DS70000613) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes

- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

4.4 SFR Maps

The following tables show the dsPIC33CK64MP105 family SFR names, addresses and Reset values. These tables contain all registers applicable to the dsPIC33CK64MP105 family. Not all registers are present on all device variants. Refer to Table 1 and Table 2 for peripheral availability. Table 8-1 details port availability for all device variants.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Core			XMODSRT	048	****************	CRC		
WREG0	000	000000000000000000	XMODEND	04A	*******	CRCCONL	0B0	000000010000
WREG1	002	000000000000000000	YMODSRT	04C	****************	CRCCONH	0B2	0000000000
WREG2	004	000000000000000000	YMODEND	04E	******************	CRCXORL	0B4	0000000000000000-
WREG3	006	000000000000000000	XBREV	050	*****	CRCXORH	0B6	000000000000000000
WREG4	008	000000000000000000	DISICNT	052	-xxxxxxxxx00	CRCDATL	0B8	000000000000000000
WREG5	00A	000000000000000000	TBLPAG	054	00000000	CRCDATH	0BA	000000000000000000
WREG6	00C	0000000000000000000	YPAG	056	00000001	CRCWDATL	0BC	000000000000000000
WREG7	00E	00000000000000000	MSTRPR	058	000	CRCWDATH	0BE	000000000000000000
WREG8	010	0000000000000000000	CTXTSTAT	05A	000000	CLC		
WREG9	012	00000000000000000	DMTCON	05C		CLC1CONL	0C0	0-00000000
WREG10	014	00000000000000000	DMTPRECLR	060	xxxxxxxx	CLC1CONH	0C2	0000
WREG11	016	000000000000000000	DMTCLR	064	xxxxxxxx	CLC1SEL	0C4	0000-000-000-000
WREG12	018	0000000000000000000	DMTSTAT	068	xxxx	CLC1GLSL	0C8	000000000000000000
WREG13	01A	000000000000000000	DMTCNTL	06C	*****	CLC1GLSH	0CA	000000000000000000
WREG14	01C	0000000000000000000	DMTCNTH	06E	*****	CLC2CONL	0CC	0-00000000
WREG15	01E	0001000000000000	DMTHOLDREG	070	*****	CLC2CONH	0CE	0000
SPLIM	020	*****	DMTPSCNTL	074	*****	CLC2SELL	0D0	0000-000-000-000
ACCAL	022	*****	DMTPSCNTH	076	*****	CLC2GLSL	0D4	000000000000000000000000000000000000000
ACCAH	024	*****	DMTPSINTVL	078	*****	CLC2GLSH	0D6	000000000000000000000000000000000000000
ACCAU	026	*****	DMTPSINTVH	07A	*****	CLC3CONL	0D8	0-00000000
ACCBL	028	*****	SENT			CLC3CONH	0DA	0000
ACCBH	02A	*****	SENT1CON1	080	0-000000-0-000	CLC3SELL	0DC	0000-000-000-000
ACCBU	02C	*****	SENT1CON2	084	00000000000000000	CLC3GLSL	0E0	000000000000000000
PCL	02E	00000000000000000	SENT1CON3	088	00000000000000000	CLC3GLSH	0E2	000000000000000000000000000000000000000
PCH	030	00000000	SENT1STAT	08C	00000000	CLC4CONL	0E4	0-00000000
DSRPAG	032	0000000001	SENT1SYNC	090	00000000000000000	CLC4CONH	0E6	0000
DSWPAG	034	000000001	SENT1DATL	094	00000000000000000	CLC4SELL	0E8	0000-000-000-000
RCOUNT	036	*****	SENT1DATH	096	00000000000000000	CLC4GLSL	0EC	000000000000000000000000000000000000000
DCOUNT	038	*****	SENT2CON1	098	0-000000-0-000	CLC4GLSH	0EE	000000000000000000000000000000000000000
DOSTARTL	03A	******************	SENT2CON2	09C	000000000000000000000000000000000000000	ECC		
DOSTARTH	03C	xxxxxxx	SENT2CON3	0A0	00000000000000000	ECCCONL	0F0	0
DOENDL	03E	******************	SENT2STAT	0A4	00000000	ECCCONH	0F2	000000000000000000000000000000000000000
DOENDH	040	xxxxxxx	SENT2SYNC	0A8	00000000000000000	ECCADDRL	0F4	000000000000000000000000000000000000000
SR	042	000000000000000000	SENT2DATL	0AC	00000000000000000	ECCADDRH	0F6	0000000000000000000
CORCON	044	xx000000100000	SENT2DATH	0AE	000000000000000000000000000000000000000	ECCSTATL	0F8	000000000000000000000000000000000000000
MODCON	046	00000000000000				ECCSTATH	0FA	0000000000

TABLE 4-2: SFR BLOCK 000h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Timers			INT1TMRH	15E	000000000000000000	POS2HLD	186	000000000000000000000000000000000000000
T1CON	100	0000000-00-00-	INT1HLDL	160	000000000000000000	VEL2CNT	188	000000000000000000000000000000000000000
TMR1	104	000000000000000000	INT1HLDH	162	000000000000000000	VEL2CNTH	18A	000000000000000000000000000000000000000
PR1	108	000000000000000000	INDX1CNTL	164	000000000000000000	VEL2HLD	18E	000000000000000000000000000000000000000
QEI			INDX1CNTH	166	000000000000000000	INT2TMRL	190	000000000000000000000000000000000000000
QEI1CON	140	000000-0000000	INDX1HLD	16A	000000000000000000	INT2TMRH	192	000000000000000000000000000000000000000
QEI1IOC	144	000000000000xxxx	QEI1GECL/ QEI1ICL	16C	000000000000000000000000000000000000000	INT2HLDL	194	000000000000000000000000000000000000000
QEI1IOCH	146	0	QEI1GECH/ QEI1ICH	16E	000000000000000000000000000000000000000	INT2HLDH	196	000000000000000000000000000000000000000
QEI1STAT	148	000000000000000	QEI1LECL	170	000000000000000000000000000000000000000	INDX2CNTL	198	000000000000000000000000000000000000000
POS1CNTL	14C	000000000000000000	QEI1LECH	172	000000000000000000	INDX2CNTH	19A	000000000000000000000000000000000000000
POS1CNTH	14E	000000000000000000	QEI2CON	174	000000-0000000	INDX2HLD	19E	000000000000000000000000000000000000000
POS1HLD	152	000000000000000000000000000000000000000	QEI2IOC	178	0000000000000xxxx	QEI2GECL/ QEI2ICL	1A0	000000000000000000000000000000000000000
VEL1CNT	154	000000000000000000000000000000000000000	QEI2IOCH	17A	0	QEI2GECH/ QEI2ICH	1A2	000000000000000000000000000000000000000
VEL1CNTH	156	00000000000000000	QEI2STAT	17C	000000000000000	QEI2LECL	1A4	000000000000000000000000000000000000000
VEL1HLD	15A	000000000000000000	POS2CNTL	180	000000000000000000	QEI2LECH	1A6	000000000000000000000000000000000000000
INT1TMRL	15C	000000000000000000000000000000000000000	POS2CNTH	182	00000000000000000		•	

TABLE 4-3:SFR BLOCK 100h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
I2C1 and I2C2			U1SCCON	258	00000-	SPI1IMSKH	2C2	0000000-000000
I2C1CONL	200	01000000000000	U1SCINT	25A	00-00000-000	SPI1URDTL	2C4	000000000000000000000000000000000000000
I2C1CONH	202	0000000	U1INT	25C	000	SPI1URDTH	2C6	000000000000000000000000000000000000000
I2C1STAT	204	0000000000000	U2MODE	260	000-0000000000	SPI2CON1L	2C8	0000000000000000000000000000000000000
I2C1ADD	208	0000000000	U2MODEH	262	0000000000000	SPI2CON1H	2CA	000000000000000000000000000000000000000
I2C1MSK	20C	0000000000	U2STA	264	00000001000000	SPI2CON2L	2CC	00000
I2C1BRG	210	000000000000000000	U2STAH	266	0000-00000101110	SPI2CON2H	2CE	
I2C1TRN	214	111111111	U2BRG	268	000000000000000000000000000000000000000	SPI2STATL	2D0	000001-1-00
I2C1RCV	218	00000000	U2BRGH	26A	0000	SPI2STATH	2D2	000000000000
I2C2CONL	21C	01000000000000	U2RXREG	26C	xxxxxxxx	SPI2BUFL	2D4	000000000000000000000000000000000000000
I2C2CONH	21E	0000000	U2TXREG	270	xxxxxxxx	SPI2BUFH	2D6	000000000000000000000000000000000000000
I2C2STAT	220	00000000000000	U2P1	274	000000000	SPI2BRGL	2D8	xxxxxxxxxxxxxx
I2C2ADD	224	0000000000	U2P2	276	000000000	SPI2BRGH	2DA	
I2C2MSK	228	0000000000	U2P3	278	000000000000000000000000000000000000000	SPI2IMSKL	2DC	000000-0-00
I2C2BRG	22C	000000000000000000000000000000000000000	U2P3H	27A	00000000	SPI2IMSKH	2DE	0000000-000000
I2C2TRN	230	111111111	U2TXCHK	27C	00000000	SPI2URDTL	2E0	000000000000000000000000000000000000000
I2C2RCV	234	00000000	U2RXCHK	27E	00000000	SPI2URDTH	2E2	000000000000000000000000000000000000000
UART1 and UA	ART2		U2SCCON	280	00000-	SPI3CON1L	2E4	0000000000000000000000000000000000000
U1MODE	238	000-0000000000	U2SCINT	282	00-00000-000	SPI3CON1H	2E6	000000000000000000000000000000000000000
U1MODEH	23A	0000000000000	U2INT	284	000	SPI3CON2L	2E8	00000
U1STA	23C	00000001000000	SPI			SPI3CON2H	2EA	
U1STAH	23E	0000-00000101110	SPI1CON1L	2AC	000000000000000	SPI3STATL	2EC	000001-1-00
U1BRG	240	000000000000000000000000000000000000000	SPI1CON1H	2AE	000000000000000000000000000000000000000	SPI3STATH	2EE	000000000000
U1BRGH	242	0000	SPI1CON2L	2B0	00000	SPI3BUFL	2F0	000000000000000000000000000000000000000
U1RXREG	244	xxxxxxxx	SPI1CON2H	2B2		SPI3BUFH	2F2	000000000000000000000000000000000000000
U1TXREG	248	xxxxxxxx	SPI1STATL	2B4	000001-1-00	SPI3BRGL	2F4	xxxxxxxxxxxxx
U1P1	24C	000000000	SPI1STATH	2B6	000000000000	SPI3BRGH	2F6	
U1P2	24E	000000000	SPI1BUFL	2B8	000000000000000000000000000000000000000	SPI3IMSKL	2F8	000000-0-00
U1P3	250	000000000000000000000000000000000000000	SPI1BUFH	2BA	000000000000000000000000000000000000000	SPI3IMSKH	2FA	0000000-000000
U1P3H	252	00000000	SPI1BRGL	2BC	xxxxxxxxxxxxxx	SPI3URDTL	2FC	000000000000000000000000000000000000000
U1TXCHK	254	00000000	SPI1BRGH	2BE		SPI3URDTH	2F3	000000000000000000000000000000000000000
U1RXCHK	256	00000000	SPI1IMSKL	2C0	000000-0-00			

TABLE 4-4: SFR BLOCK 200h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
High-Speed I	PWM		PG1TRIGB	356	000000000000000000	PG3FFPCIH	3AE	0000-00000000000
PCLKCON	300	0000000	PG1TRIGC	358	00000000000000000	PG3SPCIL	3B0	000000000000000000000000000000000000000
FSCL	302	000000000000000000000000000000000000000	PG1DTL	35A	000000000000000	PG3SPCIH	3B2	0000-00000000000
FSMINPER	304	000000000000000000000000000000000000000	PG1DTH	35C	0000000000000000	PG3LEBL	3B4	000000000000000000000000000000000000000
MPHASE	306	000000000000000000000000000000000000000	PG1CAP	35E	000000000000000000	PG3LEBH	3B6	0000000
MDC	308	000000000000000000000000000000000000000	PG2CONL	360	000000000	PG3PHASE	3B8	000000000000000000000000000000000000000
MPER	30A	000000000000000000000000000000000000000	PG2CONH	362	000-0000000000	PG3DC	3BA	000000000000000000000000000000000000000
LFSR	30C	000000000000000000000000000000000000000	PG2STAT	364	000000000000000000	PG3DCA	3BC	00000000
CMBTRIGL	30E	00000000	PG2IOCONL	366	000000000000000000	PG3PER	3BE	000000000000000000000000000000000000000
CMBTRIGH	310	00000000	PG2IOCONH	368	00000-000000	PG3TRIGA	3C0	000000000000000000000000000000000000000
LOGCONA	312	000000000000000000000000000000000000000	PG2EVTL	36A	000000000000	PG3TRIGB	3C2	000000000000000000000000000000000000000
LOGCONB	314	000000000000-000	PG2EVTH	36C	00000000000000	PG3TRIGC	3C4	000000000000000000000000000000000000000
LOGCONC	316	000000000000000000000000000000000000000	PG2FPCIL	36E	000000000000000000000000000000000000000	PG3DTL	3C6	0000000000000000000000000000000000000
LOGCOND	318	000000000000000000000000000000000000000	PG2FPCIH	370	0000-00000000000	PG3DTH	3C8	0000000000000000000000000000000000000
LOGCONE	31A	000000000000-000	PG2CLPCIL	372	000000000000000000000000000000000000000	PG3CAP	3CA	000000000000000000000000000000000000000
LOGCONF	31C	000000000000-000	PG2CLPCIH	374	0000-00000000000	PG4CONL	3CC	000000000
PWMEVTA	31E	00000000-000	PG2FFPCIL	376	000000000000000000000000000000000000000	PG4CONH	3CE	000-0000000000
PWMEVTB	320	00000000-000	PG2FFPCIH	378	0000-0000000000000000000000000000000000	PG4STAT	3D0	000000000000000000000000000000000000000
PWMEVTC	322	00000000-000	PG2SPCIL	37A	000000000000000000000000000000000000000	PG4IOCONL	3D2	000000000000000000000000000000000000000
PWMEVTD	324	00000000-000	PG2SPCIH	37C	0000-0000000000000000000000000000000000	PG4IOCONH	3D4	00000000000
PWMEVTE	326	00000000-000	PG2LEBL	37E	000000000000000000000000000000000000000	PG4EVTL	3D6	000000000000
PWMEVTE	328	00000000-000	PG2LEBH	380	0000000	PG4EVTH	3D8	00000000000000
PG1CONL	32A	000000000	PG2PHASE	382	000000000000000000000000000000000000000	PG4FPCIL	3DA	000000000000000000000000000000000000000
PG1CONH	32A	000-0000000000	PG2DC	384	000000000000000000000000000000000000000	PG4FPCIH	3DC	0000-0000000000000000000000000000000000
PG1STAT	320 32E	000000000000000000000000000000000000000	PG2DCA	386	00000000	PG4CLPCIL	3DE	000000000000000000000000000000000000000
PG1IOCONL	330	000000000000000000000000000000000000000	PG2DCA PG2PER	388	000000000000000000000000000000000000000	PG4CLPCIL PG4CLPCIH	3E0	0000-0000000000000000000000000000000000
PG1IOCONH	332	00000000000	PG2TRIGA	38A		PG4FFPCIL	3E0	
PG1EVTL	334		PG2TRIGA PG2TRIGB	38C	000000000000000000000000000000000000000	PG4FFPCIH	3E2	000000000000000000000000000000000000000
		000000000000		38E	000000000000000000000000000000000000000		3E4 3E6	0000-00000000000
PG1EVTH	336	00000000000000	PG2TRIGC		000000000000000000000000000000000000000	PG4SPCIL		000000000000000000000000000000000000000
PG1FPCIL PG1FPCIH	338	000000000000000000	PG2DTL	390	000000000000000	PG4SPCIH	3E8	0000-00000000000
PGIFPCIH	33A	0000-00000000000	PG2DTH	392	000000000000000	PG4LEBL	3EA	000000000000000000000000000000000000000
	33C 33E	00000000000000000	PG2CAP PG3CONL	394 396	000000000000000000000000000000000000000	PG4LEBH	3EC 3EE	0000000
PG1CLPCIH	340	0000-00000000000	PG3CONL	398	000000000	PG4PHASE	3EE 3F0	000000000000000000000000000000000000000
PG1FFPCIL PG1FFPCIH	340	000000000000000000000000000000000000000	PG3CONH	398 39A	000-0000000000	PG4DC PG4DCA	3F0 3F2	0000000000000000000000000000000000
PG1SPCIL	344	00000000000000000	PG3IOCONL	39C	000000000000000000000000000000000000000	PG4PER	3F4	000000000000000000000000000000000000000
PG1SPCIH	346	0000-00000000000	PG3IOCONH	39E	00000000000	PG4TRIGA	3F6	000000000000000000000000000000000000000
PG1LEBL	348	000000000000000000000000000000000000000	PG3EVTL	3A0	000000000000	PG4TRIGB	3F8	000000000000000000000000000000000000000
PG1LEBH	34A	0000000	PG3EVTH	3A2	00000000000000	PG4TRIGC	3FA	000000000000000000000000000000000000000
PG1PHASE	34C	00000000000000000	PG3FPCIL	3A4	000000000000000000000000000000000000000	PG4DTL	3FC	0000000000000000
PG1DC	34E	00000000000000000	PG3FPCIH	3A6	0000-00000000000	PG4DTH	3FE	0000000000000000
PG1DCA	350	00000000	PG3CLPCIL	3A8	00000000000000000	PG4CAP	400	000000000000000000000000000000000000000
PG1PER	352	000000000000000000000000000000000000000	PG3CLPCIH	3AA	0000-00000000000			
PG1TRIGA	354	000000000000000000000000000000000000000	PG3FFPCIL	3AC	000000000000000000000000000000000000000			

TABLE 4-5: SFR BLOCK 300h-400h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Interrupts			IPC4	848	-100-100-100-100	IPC32	880	100
IFS0	800	0000000000-00000	IPC5	84A	-100100	IPC42	894	-100-100-100
IFS1	802	-00000-00-000000	IPC6	84C	-100-100100	IPC43	896	-100-100-100-100
IFS2	804	000-00-0000	IPC7	84E	100-100-100	IPC44	898	-100-100-100-100
IFS3	806	000000-00000	IPC8	850	-100	IPC45	89A	100
IFS4	808	000-00000-00	IPC9	852	100-100-100	IPC47	89E	-100-100-100
IFS5	80A	0000000000000000-	IPC10	854	-100100-100	INTCON1	8C0	0000000000-0000-
IFS6	80C	000000000000000000000000000000000000000	IPC11	856	100-100	INTCON2	8C2	10000000
IFS7	80E	000000000000	IPC12	858	-100-100-100-100	INTCON3	8C4	000
IFS8	810	0	IPC13	85A	100	INTCON4	8C6	00
IFS10	814	000000	IPC14	85C	-100-100-100-100	INTTREG	8C8	000-0000-0000000
IFS11	816	00000000	IPC15	85E	-100100	Flash		
IEC0	820	000000000-00000	IPC16	860	-100100-100	NVMCON	8D0	0000-0000000
IEC1	822	-00000-00-000000	IPC17	862	100-100-100	NVMADR	8D2	000000000000000000000000000000000000000
IEC2	824	000-00-0000	IPC18	864	-100	NVMADRU	8D4	00000000
IEC3	826	000000-00000	IPC19	866	-100-100-100	NVMKEY	8D6	00000000
IEC4	828	000-00000-00	IPC20	868	-100-100-100	NVMSRCADRL	8D8	000000000000000000000000000000000000000
IEC5	82A	00000000000000000-	IPC21	86A	-100-100-100-100	NVMSRCADRH	8DA	00000000
IEC6	82C	000000000000000000000000000000000000000	IPC22	86C	-100-100-100-100	CBG		
IEC7	82E	000000000000	IPC23	86E	-100-100-100-100	AMPCON1L	8DC	000
IEC8	830	0	IPC24	870	-100-100-100-100	AMPCON1H	8DE	000
IEC10	834	000000	IPC25	872	-100-100-100-100	BIASCON	8F0	0000
IEC11	836	00000000	IPC26	874	-100-100-100-100	IBIASCONL	8F4	000000000000
IPC0	840	-100-100-100-100	IPC27	876	-100-100-100-100	IBIASCONH	8F6	000000000000
IPC1	842	-100-100100	IPC29	87A	-100-100-100-100		•	•
IPC2	844	-100-100-100-100	IPC30	87C	-100-100-100-100			
IPC3	846	-100-100-100-100	IPC31	87E	-100-100-100-100			

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PTG			CCP1CON3H	95A	00000-00	CCP3PRL	9AC	111111111111111111
PTGCST	900	00-00000x00	CCP1STATL	95C	000xx0000	CCP3PRH	9AE	111111111111111111
PTGCON	902	000000000000-000	CCP1STATH	95E	00000	CCP3RA	9B0	000000000000000000000000000000000000000
PTGBTE	904	*****	CCP1TMRL	960	00000000000000000	CCP3RB	9B4	000000000000000000000000000000000000000
PTGBTEH	906	000000000000000000	CCP1TMRH	962	00000000000000000	CCP3BUFL	9B8	000000000000000000000000000000000000000
PTGHOLD	908	000000000000000000	CCP1PRL	964	11111111111111111	CCP3BUFH	9BA	000000000000000000000000000000000000000
PTGT0LIM	90C	000000000000000000	CCP1PRH	966	11111111111111111	CCP4CON1L	9BC	0000000000000000000000000000000000000
PTGT1LIM	910	000000000000000000	CCP1RA	968	000000000000000000	CCP4CON1H	9BE	00000000000000
PTGSDLIM	914	000000000000000000	CCP1RB	96C	000000000000000000	CCP4CON2L	9C0	00-000000000
PTGC0LIM	918	000000000000000000	CCP1BUFL	970	000000000000000000	CCP4CON2H	9C2	100-00000
PTGC1LIM	91C	000000000000000000	CCP1BUFH	972	000000000000000000	CCP4CON3H	9C6	00000-00
PTGADJ	920	000000000000000000	CCP2CON1L	974	000000000000000	CCP4STATL	9C8	000xx0000
PTGL0	924	000000000000000000	CCP2CON1H	976	00000000000000	CCP4STATH	9CA	00000
PTGQPTR	928	00000	CCP2CON2L	978	00-000000000	CCP4TMRL	9CC	000000000000000000000000000000000000000
PTGQUE0	930	*****	CCP2CON2H	97A	0100-00000	CCP4TMRH	9CE	000000000000000000000000000000000000000
PTGQUE1	932	*****	CCP2CON3H	97E	00000-00	CCP4PRL	9D0	111111111111111111
PTGQUE2	934	*****	CCP2STATL	980	000xx0000	CCP4PRH	9D2	111111111111111111
PTGQUE3	936	*****	CCP2STATH	982	00000	CCP4RA	9D4	000000000000000000000000000000000000000
PTGQUE4	938	*****	CCP2TMRL	984	000000000000000000	CCP4RB	9D8	000000000000000000000000000000000000000
PTGQUE5	93A	*****	CCP2TMRH	986	000000000000000000	CCP4BUFL	9DC	000000000000000000000000000000000000000
PTGQUE6	93C	*****	CCP2PRL	988	11111111111111111	CCP4BUFH	9DE	000000000000000000000000000000000000000
PTGQUE7	93E	*****	CCP2PRH	98A	11111111111111111	CCP5CON1L	9E0	0000000000000000000000000000000000000
PTGQUE8	940	*****	CCP2RA	98C	000000000000000000	CCP5CON1H	9E2	00000000000000
PTGQUE9	942	*****	CCP2RB	990	000000000000000000	CCP5CON2L	9E4	00-000000000
PTGQUE10	944	*****	CCP2BUFL	994	000000000000000000	CCP5CON2H	9E6	100-00000
PTGQUE11	946	*****	CCP2BUFH	996	000000000000000000	CCP5CON3H	9EA	00000-00
PTGQUE12	948	*****	CCP3CON1L	998	000000000000000	CCP5STATL	9EC	000xx0000
PTGQUE13	94A	*****	CCP3CON1H	99A	00000000000000	CCP5STATH	9EE	00000
PTGQUE14	94C	*****	CCP3CON2L	99C	00-000000000	CCP5TMRL	9F0	000000000000000000000000000000000000000
PTGQUE15	94E	*****	CCP3CON2H	99E	100-00000	CCP5TMRH	9F2	000000000000000000000000000000000000000
CCP	•		CCP3CON3H	9A2	00000-00	CCP5PRL	9F4	111111111111111111
CCP1CON1L	950	000000000000000	CCP3STATL	9A4	000xx0000	CCP5PRH	9F6	111111111111111111
CCP1CON1H	952	00000000000000	CCP3STATH	9A6	00000	CCP5RA	9F8	000000000000000000000000000000000000000
CCP1CON2L	954	00-000000000	CCP3TMRL	9A8	00000000000000000	CCP5RB	9FC	000000000000000000000000000000000000000
CCP1CON2H	956	100-00000	CCP3TMRH	9AA	000000000000000000000000000000000000000			

TABLE 4-7:SFR BLOCK 900h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
CCP (Continu	CCP (Continued)			AC8	000000000000000000	DMASRC2	ADC	000000000000000000000000000000000000000
CCP5BUFL	A00	000000000000000000000000000000000000000	DMADST0	ACA	000000000000000000000000000000000000000	DMADST2	ADE	000000000000000000000000000000000000000
CCP5BUFH	A02	000000000000000000000000000000000000000	DMACNT0	ACC	000000000000000000000000000000000000000	DMACNT2	AE0	00000000000000001
DMA			DMACH1	ACE	00000000000	DMACH3	AE2	00000000000
DMACON	ABC	00	DMAINT1	AD0	000000000000	DMAINT3	AE4	00000000000
DMABUF	ABE	000000000000000000000000000000000000000	DMASRC1	AD2	000000000000000000000000000000000000000	DMASRC3	AE6	000000000000000000000000000000000000000
DMAL	AC0	000000000000000000000000000000000000000	DMADST1	AD4	000000000000000000000000000000000000000	DMADST3	AE8	000000000000000000
DMAH	AC2	000000000000000000000000000000000000000	DMACNT1	AD6	000000000000000000000000000000000000000	DMACNT3	AEA	00000000000000001
DMACH0	AC4	00000000000	DMACH2	AD8	00000000000			
DMAINT0	AC6	000000000000	DMAINT2	ADA	000000000000			

TABLE 4-8: SFR BLOCK A00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits. Address values are in hexadecimal. Reset values are in binary.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
ADC			ADCMP1LO	B44	000000000000000000	ADTRIG2H	B8A	000000000000000000
ADCON1L	B00	000-00000000	ADCMP1HI	B46	000000000000000000000000000000000000000	ADTRIG3L	B8C	000000000000000000
ADCON1H	B02	011	ADCMP2ENL	B48	000000000000000000000000000000000000000	ADTRIG3H	B8E	000000000000000000000000000000000000000
ADCON2L	B04	00-0000000000000	ADCMP2ENH	B4A	0000000000	ADTRIG4L	B90	00000000000000000
ADCON2H	B06	00-0000000000000	ADCMP2LO	B4C	000000000000000000000000000000000000000	ADTRIG4H	B92	00000000000000000
ADCON3L	B08	00000000000000000	ADCMP2HI	B4E	000000000000000000000000000000000000000	ADTRIG5L	B94	00000000000000000
ADCON3H	B0A	00000000xx	ADCMP3ENL	B50	000000000000000000000000000000000000000	ADTRIG5H	B96	000000000000000000000000000000000000000
ADCON4L	B0C	xx	ADCMP3ENH	B52	0000000000	ADTRIG6L	B98	00000000000000000
ADCON4H	B0E	000000	ADCMP3LO	B54	000000000000000000000000000000000000000	ADCMP0CON	BA0	00000000000000000
ADMOD0L	B10	000000000000000000000000000000000000000	ADCMP3HI	B56	000000000000000000000000000000000000000	ADCMP1CON	BA4	00000000000000000
ADMOD0H	B12	000000000000000000000000000000000000000	ADFL0DAT	B68	000000000000000000000000000000000000000	ADCMP2CON	BA8	00000000000000000
ADMOD1L	B14	000000000000000000000000000000000000000	ADFL0CON	B6A	xxx000000000000000	ADCMP3CON	BAC	00000000000000000
ADMOD1H	B16	0000	ADFL1DAT	B6C	000000000000000000000000000000000000000	ADLVLTRGL	BD0	000000000000000000000000000000000000000
ADIEL	B20	*****	ADFL1CON	B6E	xxx000000000000000	ADLVLTRGH	BD2	xxxxxxxxxxx
ADIEH	B22	xxxxxxxxxx	ADFL2DAT	B70	000000000000000000000000000000000000000	ADCORE0L	BD4	000000000000000000000000000000000000000
ADSTATL	B30	000000000000000000000000000000000000000	ADFL2CON	B72	xxx00000000000000000000000000000000000	ADCORE0H	BD6	0000001100000000
ADSTATH	B32	0000000000	ADFL3DAT	B74	000000000000000000000000000000000000000	ADCORE1L	BD8	000000000000000000000000000000000000000
ADCMP0ENL	B38	000000000000000000000000000000000000000	ADFL3CON	B76	xxx000000000000000	ADCORE1H	BDA	0000001100000000
ADCMP0ENH	B3A	0000000000	ADTRIG0L	B80	000000000000000000000000000000000000000	ADEIEL	BF0	*****
ADCMP0LO	B3C	000000000000000000000000000000000000000	ADTRIG0H	B82	000000000000000000000000000000000000000	ADEIEH	BF2	xxxxxxxxxxx
ADCMP0HI	B3E	000000000000000000000000000000000000000	ADTRIG1L	B84	000000000000000000000000000000000000000	ADEISTATL	BF8	*****
ADCMP1ENL	B40	000000000000000000000000000000000000000	ADTRIG1H	B86	000000000000000000000000000000000000000	ADEISTATH	BFA	xxxxxxxxxx
ADCMP1ENH	B42	0000000000	ADTRIG2L	B88	000000000000000000000000000000000000000			

TABLE 4-9: SFR BLOCK B00h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
ADC (Contin	ued)		ADCBUF14	C28	000000000000000000000000000000000000000	SLP1DAT	C94	000000000000000000000000000000000000000
ADCON5L	C00	0	ADCBUF15	C2A	000000000000000000	DAC2CONL	C98	0000000x0000000
ADCON5H	C02	xxxx0	ADCBUF16	C2C	000000000000000000	DAC2CONH	C9A	0000000000
ADCBUF0	C0C	00000000000000000	ADCBUF17	C2E	000000000000000000	DAC2DATL	C9C	000000000000000000000000000000000000000
ADCBUF1	C0E	00000000000000000	ADCBUF18	C30	000000000000000000	DAC2DATH	C9E	000000000000000000000000000000000000000
ADCBUF2	C10	00000000000000000	ADCBUF19	C32	000000000000000000	SLP2CONL	CA0	000000000000000000000000000000000000000
ADCBUF3	C12	00000000000000000	ADCBUF20	C34	000000000000000000	SLP2CONH	CA2	000
ADCBUF4	C14	00000000000000000	DAC			SLP2DAT	CA4	000000000000000000000000000000000000000
ADCBUF5	C16	00000000000000000	DACCTRL1L	C80	00000-000	DAC3CONL	CA8	0000000x0000000
ADCBUF6	C18	00000000000000000	DACCTRL2L	C84	0001010101	DAC3CONH	CAA	0000000000
ADCBUF7	C1A	00000000000000000	DACCTRL2H	C86	0010001010	DAC3DATL	CAC	000000000000000000000000000000000000000
ADCBUF8	C1C	00000000000000000	DAC1CONL	C88	000000x0000000	DAC3DATH	CAE	000000000000000000000000000000000000000
ADCBUF9	C1E	00000000000000000	DAC1CONH	C8A	0000000000	SLP3CONL	CB0	000000000000000000000000000000000000000
ADCBUF10	C20	00000000000000000	DAC1DATL	C8C	000000000000000000	SLP3CONH	CB2	000
ADCBUF11	C22	000000000000000000000000000000000000000	DAC1DATH	C8E	000000000000000000000000000000000000000	SLP3DAT	CB4	000000000000000000000000000000000000000
ADCBUF12	C24	000000000000000000000000000000000000000	SLP1CONL	C90	000000000000000000000000000000000000000	VREGCON	CFC	0000000
ADCBUF13	C26	00000000000000000	SLP1CONH	C92	000			

TABLE 4-10: SFR BLOCK C00h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PPS	PPS		RPINR21	D2E	000000000000000000000000000000000000000	RPOR4	D88	000000000000
RPCON	D00	0	RPINR22	D30	000000000000000000000000000000000000000	RPOR5	D8A	000000000000
RPINR0	D04	0000000	RPINR23	D32	00000000	RPOR6	D8C	000000000000
RPINR1	D06	000000000000000000	RPINR27	D3A	000000000000000000000000000000000000000	RPOR7	D8E	000000000000
RPINR2	D08	0000000	RPINR29	D3E	000000000000000000000000000000000000000	RPOR8	D90	000000000000
RPINR3	D0A	000000000000000000	RPINR30	D40	00000000	RPOR9	D92	000000000000
RPINR4	D0C	000000000000000000	RPINR37	D4E	000000000000000000000000000000000000000	RPOR10	D94	000000000000
RPINR5	D0E	000000000000000000	RPINR38	D50	00000000	RPOR11	D96	000000000000
RPINR6	D10	000000000000000000	RPINR42	D58	000000000000000000000000000000000000000	RPOR12	D98	000000000000
RPINR7	D12	000000000000000000	RPINR43	D5A	000000000000000000000000000000000000000	RPOR13	D9A	000000000000
RPINR11	D1A	000000000000000000	RPINR44	D5C	000000000000000000000000000000000000000	RPOR14	D9C	000000000000
RPINR12	D1C	000000000000000000000000000000000000000	RPINR45	D5E	000000000000000000000000000000000000000	RPOR16	DA0	000000
RPINR13	D1E	000000000000000000	RPINR46	D60	000000000000000000000000000000000000000	RPOR20	DA8	000000
RPINR14	D20	000000000000000000000000000000000000000	RPINR47	D62	000000000000000000000000000000000000000	RPOR21	DAA	000000
RPINR15	D22	000000000000000000	RPINR48	D64	000000000000000000000000000000000000000	RPOR22	DAC	000000
RPINR16	D24	000000000000000000000000000000000000000	RPINR49	D66	000000000000000000000000000000000000000	RPOR24	DB0	000000000000
RPINR17	D26	000000000000000000	RPOR0	D80	000000000000	RPOR25	DB2	000000000000
RPINR18	D28	000000000000000000	RPOR1	D82	000000000000	RPOR26	DB4	000000000000
RPINR19	D2A	000000000000000000	RPOR2	D84	000000000000		•	
RPINR20	D2C	000000000000000000	RPOR3	D86	000000000000			

TABLE 4-11: SFR BLOCK D00h

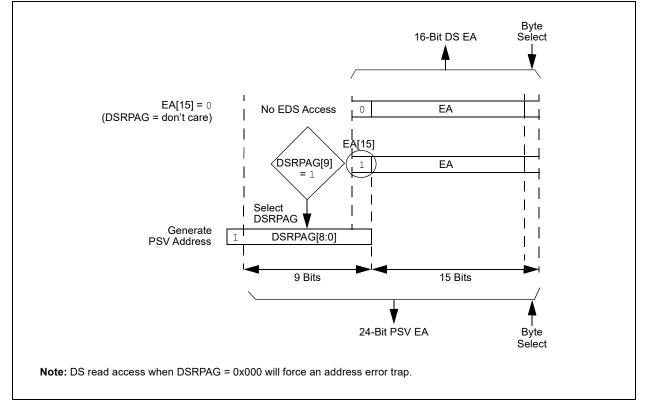
Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
I/O Ports			ODCB	E24	000000000000000000	CNSTATC	E4A	000000000000000000
ANSELA	E00	11111	CNPUB	E26	000000000000000000	CNEN1C	E4C	000000000000000000
TRISA	E02	11111	CNPDB	E28	000000000000000000	CNFC	E4E	000000000000000000
PORTA	E04	xxxxx	CNCONB	E2A	0	ANSELD	E54	1-11
LATA	E06	xxxxx	CNEN0B	E2C	000000000000000000	TRISD	E56	111111111111111111
ODCA	E08	00000	CNSTATB	E2E	000000000000000000	PORTD	E58	*****
CNPUA	E0A	00000	CNEN1B	E30	000000000000000000	LATD	E5A	*****
CNPDA	E0C	00000	CNFB	E32	000000000000000000	ODCD	E5C	000000000000000000
CNCONA	E0E	0	ANSELC	E38	111111	CNPUD	E5E	000000000000000000
CNEN0A	E10	00000	TRISC	E3A	11111111111111111	CNPDD	E60	000000000000000000
CNSTATA	E12	00000	PORTC	E3C	*****	CNCOND	E62	0
CNEN1A	E14	00000	LATC	E3E	*****	CNEN0D	E64	000000000000000000
CNFA	E16	00000	ODCC	E40	000000000000000000000000000000000000000	CNSTATD	E66	000000000000000000000000000000000000000
ANSELB	E1C	11111111	CNPUC	E42	000000000000000000	CNEN1D	E68	000000000000000000
TRISB	E1E	111111111111111111	CNPDC	E44	000000000000000000	CNFD	E6A	000000000000000000
PORTB	E20	*****	CNCONC	E46	0	Memory BIST		
LATB	E22	*****	CNEN0C	E48	000000000000000000	MBISTCON	EFC	1

TABLE 4-12: SFR BLOCK E00h

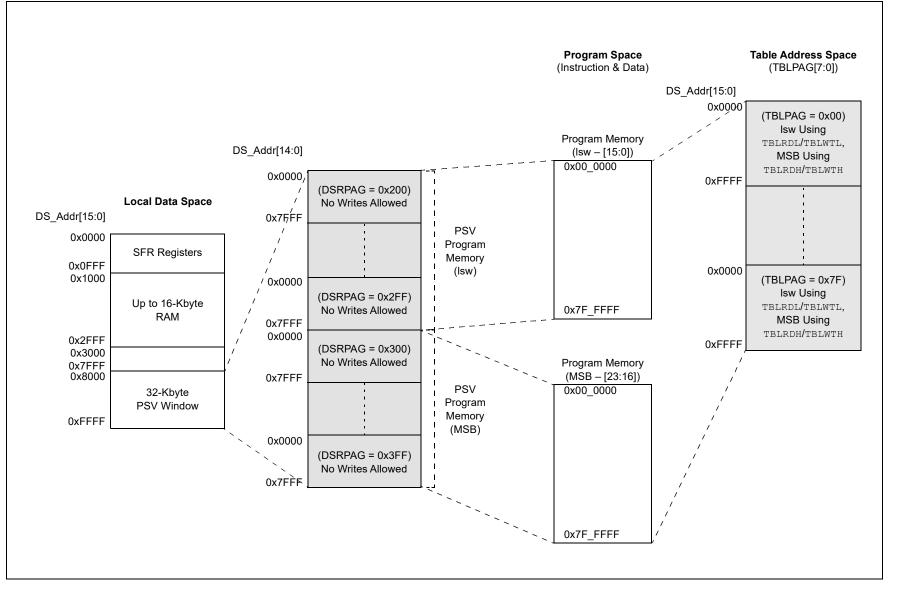
Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
UART3			U3INT	F24	000	PMD3	FA8	00-0-000-
U3MODE	F00	000-000000000	Reset and Osc	cillator		PMD4	FAA	0
U3MODEH	F02	0000000000000	RCON	F80	xxx01x0xxxxx	PMD6	FAE	0000
U3STA	F04	00000001000000	OSCCON	F84	0000-ууу0-0-00	PMD7	FB0	0000
U3STAH	F06	0000-00000101110	CLKDIV	F86	00110000000001	PMD8	FB2	000000000-
U3BRG	F08	000000000000000000	PLLFBD	F88	000010010110	WDT		
U3BRGH	F0A	0000	PLLDIV	F8A	00-011-001	WDTCONL	FB4	00000000000000
U3RXREG	F0C	xxxxxxxx	OSCTUN	F8C	000000	WDTCONH	FB6	000000000000000000
U3TXREG	F10	xxxxxxxx	ACLKCON1	F8E	000000001	Reference Close	ck Output	
U3P1	F14	000000000	APLLFBD1	F90	000010010110	REFOCONL	FB8	000-000000
U3P2	F16	000000000	APLLDIV1	F92	00-011-001	REFOCONH	FBA	0000000000000000000
U3P3	F18	000000000000000000	CANCLKCON	F9A	xxxx-xxxxxxx	REFOTRIMH	FBE	00000000
U3P3H	F1A	00000000	DCOTUN	F9C	000000000000	Programmer/D	ebugger	
U3TXCHK	F1C	00000000	DCOCON	F9E	0-xxxx	VISI	FCC	*****
U3RXCHK	F1E	00000000	PMD		APPO	FD2	*****	
U3SCCON	F20	00000-	PMD1	FA4	000-00000-00	APPI	FD4	*****
U3SCINT	F22	00-00000-000	PMD2	FA6	000000000	APPS	FD6	xxxxx

TABLE 4-13: SFR BLOCK F00h

Legend: x = unknown or indeterminate value; "-" = unimplemented bits; y = value set by Configuration bits. Address values are in hexadecimal. Reset values are in binary.


4.4.1 PAGED MEMORY SCHEME

The dsPIC33CK64MP105 architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the base Data Space address is used in conjunction with the Data Space Read Page (DSRPAG) register to form the Program Space Visibility (PSV) address.


The Data Space Read Page (DSRPAG) register is located in the SFR space. Construction of the PSV address is shown in Figure 4-7. When DSRPAG[9] = 1 and the base address bit, EA[15] = 1, the DSRPAG[8:0] bits are concatenated onto EA[14:0] to form the 24-bit PSV read address. The paged memory scheme provides access to multiple 32-Kbyte windows in the PSV memory. The Data Space Read Page (DSRPAG) register, in combination with the upper half of the Data Space address, can provide up to 8 Mbytes of PSV address space. The paged data memory space is shown in Figure 4-8.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG.

dsPIC33CK64MP105 FAMILY

When a PSV page overflow or underflow occurs, EA[15] is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses the PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSRPAG register is incremented and the EA[15] bit is set to keep the base address within the PSV window. When an underflow is detected, the DSRPAG register is decremented and the EA[15] bit is set to keep the base

address within the PSV window. This creates a linear PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0 and PSV spaces. Table 4-14 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA[15] bit is set and the DSRPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- Bit-Reversed Addressing

TABLE 4-14:	OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0 AND
	PSV SPACE BOUNDARIES ^(2,3,4)

O/U,			Before		After			
0/0, R/W	Operation	DSRPAG	DS Page EA[15] Description		DSRPAG	DS EA[15]	Page Description	
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page	
O, Read	or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1	
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1	
U, Read	[Wn] or [Wn]	DSRPAG = 0x200	1	PSV: First lsw page	DSRPAG = 0x200	0	See Note 1	
U, Read		DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page	

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

2: An EDS access, with DSRPAG = 0x000, will generate an address error trap.

3: Only reads from PS are supported using DSRPAG.

4: Pseudolinear Addressing is not supported for large offsets.

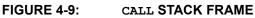
4.4.1.1 Extended X Data Space

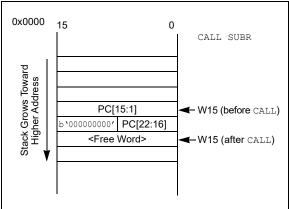
The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible, regardless of the contents of the Data Space Read Page register. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA[15] = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in combination with DSRPAG = 0x000. Consequently, DSRPAG is initialized to 0x001 at Reset.

- Note 1: DSRPAG should not be used to access Page 0. An EDS access with DSRPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSRPAG in software has no effect.

The remaining PSV pages are only accessible using the DSRPAG register in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where the base address bit, EA[15] = 1.

4.4.1.2 Software Stack


The W15 register serves as a dedicated Software Stack Pointer (SSP), and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the Stack Pointer (for example, creating stack frames).


Note:	To protect against misaligned stack
	accesses, W15[0] is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33CK64MP105 devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-9 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes). When the PC is pushed onto the stack, PC[15:0] are pushed onto the first available stack word, then PC[22:16] are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-9. During exception processing, the MSB of the PC is concatenated with the lower eight bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

4.4.2 INSTRUCTION ADDRESSING MODES

The addressing modes shown in Table 4-15 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.4.2.1 File Register Instructions

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.4.2.2 MCU Instructions

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-15: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

4.4.2.3 Move and Accumulator Instructions

Move instructions, and the DSP accumulator class of instructions, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.4.2.4 MAC Instructions

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.4.2.5 Other Instructions

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

4.4.3 MODULO ADDRESSING

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.3.1 Start and End Address

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-2).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.3.2 W Address Register Selection

The Modulo and Bit-Reversed Addressing Control register, MODCON[15:0], contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W (XWM) register, to which Modulo Addressing is to be applied, is stored in MODCON[3:0] (see Table 4-2). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON[15]).

The Y Address Space Pointer W (YWM) register, to which Modulo Addressing is to be applied, is stored in MODCON[7:4]. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit (MODCON[14]) is set.

FIGURE 4-10: MODULO ADDRESSING OPERATION EXAMPLE

Byte Address	MOV MOV	#0x1100, W0 W0, XMODSRT	;set modulo start address	
0x1100	MOV MOV MOV	#0x1163, W0 W0, MODEND #0x8001, W0	;set modulo end address	
	MOV	W0, MODCON	;enable W1, X AGU for modulo	
		#0x0000, W0 #0x1110, W1	;WO holds buffer fill value ;point W1 to buffer	
0x1163	DO MOV	AGAIN, #0x31 W0, [W1++]		
Start Addr End Addr = Length = 0		N: INC WO, WO	;increment the fill value	

4.4.3.3 Modulo Addressing Applicability

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.4.4 BIT-REVERSED ADDRESSING

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

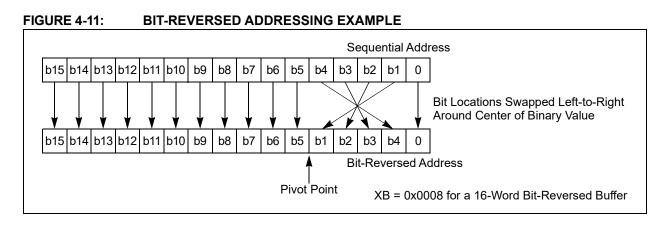
The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.4.4.1 Bit-Reversed Addressing Implementation

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^{N}$ bytes, the last 'N' bits of the data buffer start address must be zeros.


XB[14:0] is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.
	auuresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data are a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed								
	Addressing can be enabled simultaneously								
	using the same W register, but Bit-								
	Reversed Addressing operation will always								
	take precedence for data writes when								
	enabled.								

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV[15]) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

TABLE 4-16: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		al Addres	SS			Bit-Rev	ersed Ad	Idress	
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

4.4.5 INTERFACING PROGRAM AND DATA MEMORY SPACES

The dsPIC33CK64MP105 family architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use these data successfully, they must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33CK64MP105 family devices provides two methods by which Program Space can be accessed during operation:

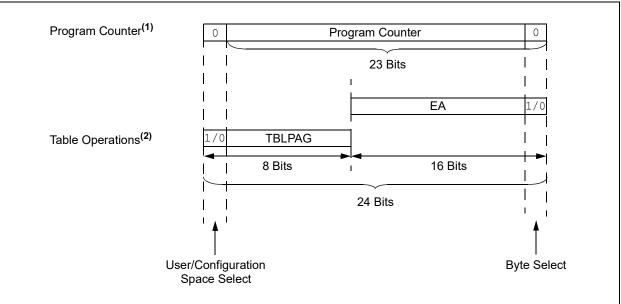

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-17: PROGRAM SPACE ADDRESS CONSTRUCTION

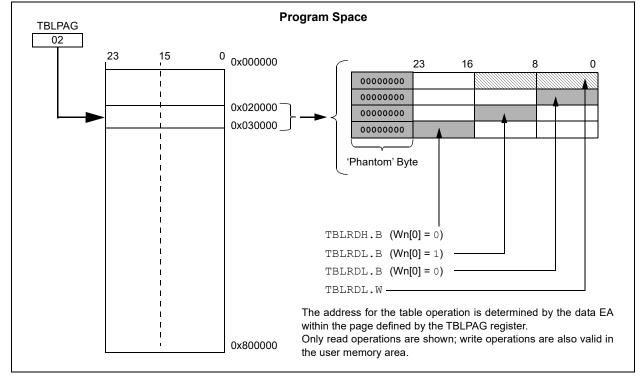
	Access	Program Space Address							
Access Type	Space	[23]	[22:16]	[15] [14:1]		[0]			
Instruction Access	User	0 PC[22:1]				0			
(Code Execution)		0xxx xxxx xxxx xxxx xxxx xxx0							
TBLRD	User	TE	BLPAG[7:0]	Data EA[15:0]					
(Byte/Word Read)			0xxx xxxx	XXXX XXXX XXXX XXXX					
	Configuration	TE	BLPAG[7:0]						
			1xxx xxxx	****					

FIGURE 4-12: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

Note 1: The Least Significant bit (LSb) of Program Space addresses is always fixed as '0' to maintain word alignment of data in the Program and Data Spaces.

2: Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

4.4.5.1 Data Access from Program Memory Using Table Instructions


The TBLRDL instruction offers a direct method of reading the lower word of any address within the Program Space without going through Data Space. The TBLRDH instruction is the only method to read the upper eight bits of a Program Space word as data.

This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL accesses the space that contains the least significant data word. TBLRDH accesses the space that contains the upper data byte.

Two table instructions are provided to read byte or word-sized (16-bit) data from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P[15:0]) to a data address (D[15:0])
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P[23:16]) to a data address. The 'phantom' byte (D[15:8]) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D[7:0] of the data address in the TBLRDL instruction. The data are always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

FIGURE 4-13: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

NOTES:

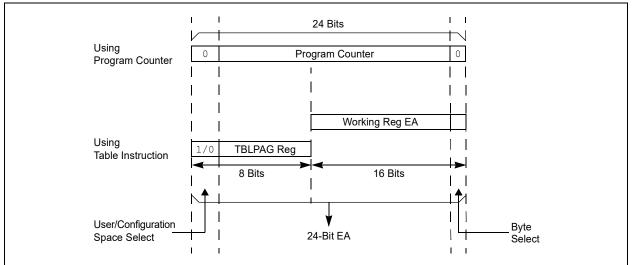
5.0 FLASH PROGRAM MEMORY

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programing" (www.microchip.com/DS70000609) in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33CK64MP105 family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)
- Run-Time Self-Programming (RTSP)


ICSP allows for a dsPIC33CK64MP105 family device to be serially programmed while in the end application circuit. This is done with a Programming Clock and Programming Data (PGCx/PGDx) line, and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the Programming Executive, to manage the programming process. Using an SPI data frame format, the Programming Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data by double program memory words or by blocks ('rows') of 128 instructions (256 addressable bytes). RTSP can erase program memory in blocks or 'pages' of 1024 instructions (2048 addressable bytes) at a time.

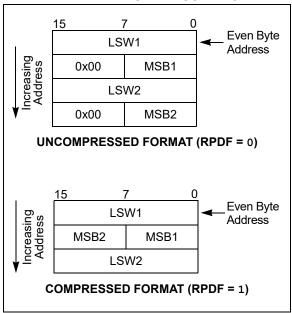
5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits[7:0] of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1. The TBLRDL and TBLWTL instructions are used to read or write to bits[15:0] of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes. The TBLRDH and TBLWTH instructions are used to read or write to bits[23:16] of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

5.2 RTSP Operation

The dsPIC33CK64MP105 family Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user application to erase a single page (eight rows or 1024 instructions) of memory at a time and to program one row at a time. It is possible to program two instructions at a time as well.


The page erase and single row write blocks are edgealigned, from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively. Table 31-18 in Section 31.0 "Electrical Characteristics" lists the typical erase and programming times. To write into the Flash memory, it is necessary to erase the page that contains the desired address of the location the user wants to change.

Row programming is performed by loading 384 bytes into data memory and then loading the address of the first byte in that row into the NVMSRCADRL/H register pair. Once the write has been initiated, the device will automatically load the write latches, and increment the NVMSRCADRL/H and the NVMADR/U registers until all bytes have been programmed. The RPDF bit (NVMCON[9]) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 5-2 for data formatting. Compressed data help to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.

The basic sequence for RTSP word programming is to use the TBLWTL and TBLWTH instructions to load two of the 24-bit instructions into the write latches found in configuration memory space. Refer to Figure 4-1 through Figure 4-3 for write latch addresses. Programming is performed by unlocking and setting the control bits in the NVMCON register.

All erase and program operations may optionally use the NVM interrupt to signal the successful completion of the operation.

FIGURE 5-2: UNCOMPRESSED/ COMPRESSED FORMAT

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. Setting the WR bit (NVMCON[15]) starts the operation and the WR bit is automatically cleared when the operation is finished. The WR bit is protected against an accidental write. To set this bit, 0x55 and 0xAA values must be written sequentially into the NVMKEY register. After the programming command (WR bit = 1) has been executed, the user application must wait until programming is complete (WR bit = 0). The two instructions following the start of the programming sequence should be NOPS.

Note:	MPLAB [®] XC16 provides a built-in C language function, including the unlocking sequence to set the WR bit in the NVMCON
	register:
	builtin_write_NVM()

5.3 Program Flash Memory Control Registers

Six SFRs are used to write and erase the Program Flash Memory: NVMCON, NVMKEY, NVMADR/U and NVMSRCADRL/H.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program, Inactive Partition erase) and initiates the program or erase cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations, or the selected page for erase operations. The NVMADRU register is used to hold the upper eight bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

For row programming operation, data to be written to Program Flash Memory are written into data memory space (RAM) at an address defined by the NVMSRCADRL/H register pair (location of first element in row programming data).

R/SO-0 ^(1,6)	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	R/W-0	R/C-0			
WR	WREN	WRERR	NVMSIDL ⁽²⁾	—	—	RPDF	URERR			
bit 15							bit 8			
				(4)	(4)	(4)	(4)			
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾			
-		—	—	NVMOP[3:0] ^(3,4)						
bit 7							bit C			
Legend:		C = Clearab	le bit	SO = Settable	Only bit					
R = Readable	e bit	W = Writabl	e bit	U = Unimplem	ented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is clea	red	x = Bit is unkn	own			
bit 15	WR: Write C									
					on; the operation	on is self-timed	and the bit is			
				tion is complete ete and inactive						
bit 14	-	e Enable bit ⁽¹⁾			-					
	1 = Enables	Flash progra	m/erase operat	ions						
			n/erase operation							
bit 13			Error Flag bit ⁽¹							
		per program o et attempt of t		ce attempt, or te	ermination has o	ccurred (bit is se	et automatically			
	•		,	pleted normally	/					
bit 12			lle Control bit ⁽²							
				andby mode dur	ing Idle mode					
		• •	or is active duri	ng Idle mode						
bit 11-10		nted: Read as								
bit 9			Data Format b							
				compressed fo uncompressed						
bit 8			ng Data Underr	•	TIOTTIAL					
		-	-	n has been term	ninated					
		underrun erro								
bit 7-4	Unimplemer	nted: Read as	; '0'							
Note 1: Th	nese bits can or	nlv be reset or	a POR.							
		•		ivings (lidle), ai	nd upon exitina	Idle mode, ther	re is a delav			
/ T .	If this bit is set, there will be minimal power savings (IIDLE), and upon exiting Idle mode, there is a delay									

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

- (TVREG) before Flash memory becomes operational.**3:** All other combinations of NVMOP[3:0] are unimplemented.
 - Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
 - Execution of the FWASAV instruction is gnored while any of the fWWM operations are in progress
 Two adjacent words on a 4-word boundary are programmed during execution of this operation.
 - 6: An unlock sequence is required to write to this bit (see Section 5.2 "RTSP Operation").

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER (CONTINUED)

- bit 3-0 **NVMOP[3:0]:** NVM Operation Select bits^(1,3,4)
 - 1111 = Reserved
 - 1110 = User memory bulk erase operation
 - 1101 = Reserved
 - 1100 = Reserved
 - 1011 = Reserved
 - 1010 = Reserved
 - 1001 = Reserved
 - 1000 = Reserved
 - 0111 = Reserved 0101 = Reserved
 - 0100 = Reserved

 - 0011 = Memory page erase operation
 - 0010 = Memory row program operation 0001 = Memory double-word operation⁽⁵⁾
 - 0000 = Reserved
- **Note 1:** These bits can only be reset on a POR.
 - **2:** If this bit is set, there will be minimal power savings (IIDLE), and upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes operational.
 - 3: All other combinations of NVMOP[3:0] are unimplemented.
 - 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
 - 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.
 - 6: An unlock sequence is required to write to this bit (see Section 5.2 "RTSP Operation").

REGISTER 5-2: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVM	ADR[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unl				nown			

bit 15-0 **NVMADR[15:0]:** Nonvolatile Memory Lower Write Address bits Selects the lower 16 bits of the location to program or erase in Program Flash Memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15						• •	bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAD	RU[23:16]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit			x = Bit is unkr	nown			

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMADRU[23:16]: Nonvolatile Memory Upper Write Address bits

Selects the upper eight bits of the location to program or erase in Program Flash Memory. This register may be read or written to by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	—	—	—	_		
bit 15							bit 8		
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
			NVM	KEY[7:0]					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY[7:0]: NVM Key Register bits (write-only)

REGISTER 5-5: NVMSRCADRL: NVM SOURCE DATA ADDRESS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC	CADR[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSR	CADR[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				ad as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr				nown			

bit 15-0 **NVMSRCADR[15:0]:** NVM Source Data Address bits The RAM address of the data to be programmed into Flash when the NVMOP[3:0] bits are set to row programming.

REGISTER 5-6: NVMSRCADRH: NVM SOURCE DATA ADDRESS REGISTER HIGH

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
bit 7 bit 0										
			NVMSRCA	DR[23:16]						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
bit 15 bi										
—	_	—	—	—	_	—	_			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMSRCADR[23:16]: NVM Source Data Address bits

'1' = Bit is set

The RAM address of the data to be programmed into Flash when the NVMOP[3:0] bits are set to row programming.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

5.4 Error Correcting Code (ECC)

In order to improve program memory performance and durability, these devices include Error Correcting Code (ECC) functionality as an integral part of the Flash memory controller. ECC can determine the presence of single-bit errors in program data, including which bit is in error, and correct the data automatically without user intervention. ECC cannot be disabled.

When data are written to program memory, ECC generates a 7-bit Hamming code parity value for every two (24-bit) instruction words. The data are stored in blocks of 48 data bits and seven parity bits; parity data are not memory-mapped and are inaccessible. When the data are read back, the ECC calculates the parity on them and compares them to the previously stored parity value. If a parity mismatch occurs, there are two possible outcomes:

- Single-bit error has occurred and has been automatically corrected on readback.
- Double-bit error has occurred and the read data are not changed.

Single-bit error occurrence can be identified by the state of the ECCSBEIF (IFS0[13]) bit. An interrupt can be generated when the corresponding interrupt enable bit is set, ECCSBEIE (IEC0[13]). The ECCSTATL register contains the parity information for single-bit errors. The SECOUT[7:0] bit field contains the expected calculated SEC parity and the SECIN[7:0] bits contain the actual value from a Flash read operation. The SECSYNDx bits (ECCSTATH[7:0]) indicate the bit position of the single-bit error within the 48-bit pair of instruction words. When no error is present, SECINx equals SECOUTx and SECSYNDx is zero.

Double-bit errors result in a generic hard trap. The ECCDBE bit (INTCON4[1]) bit will be set to identify the source of the hard trap. If no Interrupt Service Routine is implemented for the hard trap, a device Reset will also occur. The ECCSTATH register contains double-bit error status information. The DEDOUT bit is the expected calculated DED parity and DEDIN is the actual value from a Flash read operation. When no error is present, DEDIN equals DEDOUT.

5.4.1 ECC FAULT INJECTION

To test Fault handling, an EEC error can be generated. Both single and double-bit errors can be generated in both the read and write data paths. Read path Fault injection first reads the Flash data and then modifies them prior to entering the ECC logic. Write path Fault injection modifies the actual data prior to them being written into the target Flash and will cause an EEC error on a subsequent Flash read. The following procedure is used to inject a Fault:

- 1. Load the Flash target address into the ECCADDR register.
- Select 1st Fault bit determined by FLT1PTRx (ECCCONH[7:0]). The target bit is inverted to create the Fault.
- If a double Fault is desired, select the 2nd Fault bit determined by FLT2PTRx (ECCCONH[15:8]), otherwise set to all '1's.
- Write the NVMKEY unlock sequence (see Section 5.3 "Program Flash Memory Control Registers").
- 5. Enable the ECC Fault injection logic by setting the FLTINJ bit (ECCCONL[0]).
- 6. Perform a read or write to the Flash target address.

5.4.2 ECC CONTROL REGISTERS

REGISTER 5-7: ECCCONL: ECC FAULT INJECTION CONFIGURATION REGISTER LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	FLTINJ
bit 7	•		•	•			bit 0
							b

Legend:

bit 0

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

FLTINJ: Fault Injection Sequence Enable bit

1 = Enabled

0 = Disabled

REGISTER 5-8: ECCCONH: ECC FAULT INJECTION CONFIGURATION REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FLT2P	TR[7:0]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FLT1P	TR[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 7-0	00110111 = 00000001 = 00000000 = FLT1PTR[7:0 11111111-0 00110111 =	0111000 = No Fault injection Fault injection 0]: ECC Fault In 0111000 = No Fault injection	(bit inversion) (bit inversion) (bit inversion) njection Bit Po Fault injectior occurs on bit) occurs on bit) occurs on bit) occurs on bit inter 1 bits n occurs 55 of ECC bit o	1 of ECC bit or 0 of ECC bit or order	der	
		Fault injection Fault injection					

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCADI	DR[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCAD	DR[7:0]			
bit 7							bit (

REGISTER 5-9: ECCADDRL: ECC FAULT INJECT ADDRESS COMPARE REGISTER LOW

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 ECCADDR[15:0]: ECC Fault Injection NVM Address Match Compare bits

REGISTER 5-10: ECCADDRH: ECC FAULT INJECT ADDRESS COMPARE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ECCADE	PR[23:16]			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 ECCADDR[23:16]: ECC Fault Injection NVM Address Match Compare bits

REGISTER 5-11: ECCSTATL: ECC SYSTEM STATUS DISPLAY REGISTER LOW

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SECO	UT[7:0]			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			SECI	N[7:0]			
bit 7							bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 SECOUT[7:0]: Calculated Single Error Correction Parity Value bits

bit 7-0 SECIN[7:0]: Read Single Error Correction Parity Value bits

SECIN[7:0] bits are the actual parity value of a Flash read operation.

REGISTER 5-12: ECCSTATH: ECC SYSTEM STATUS DISPLAY REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	_	—	—	DEDOUT	DEDIN
						bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0
		SECS	YND[7:0]			
						bit 0
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
ue at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown
	R-0	R-0 R-0	- - R-0 R-0 SECS it W = Writable bit	— — — — R-0 R-0 R-0 R-0 SECSYND[7:0]	— Image: Missing is a straining is a strain straining is a strain straining is a straining is a s	— — — — DEDOUT R-0 R-0 R-0 R-0 R-0 SECSYND[7:0] SECSYND[7:0] U = Unimplemented bit, read as '0'

bit 15-10	Unimplemented: Read as '0'
bit 9	DEDOUT: Calculated Dual Bit Error Detection Parity bit
bit 8	DEDIN: Read Dual Bit Error Detection Parity bit
	DEDIN is the actual parity value of a Flash read operation.
bit 7-0	SECSYND[7:0]: Calculated ECC Syndrome Value bits
	Indicates the bit location that contains the error.

5.5 Flash OTP by ICSP™ Write Inhibit

ICSP Write Inhibit is an access restriction feature, that when activated, restricts all of Flash memory. Once activated, ICSP Write Inhibit permanently prevents ICSP Flash programming and erase operations, and cannot be deactivated. This feature is intended to prevent alteration of Flash memory contents, with behavior similar to One-Time-Programmable (OTP) devices.

RTSP, including erase and programming operations, is not restricted when ICSP Write Inhibit is activated; however, code to perform these actions must be programmed into the device before ICSP Write Inhibit is activated. This allows for a bootloader-type application to alter Flash contents with ICSP Write Inhibit activated.

Entry into ICSP and Enhanced ICSP modes is not affected by ICSP Write Inhibit. In these modes, it will continue to be possible to read configuration memory space and any user memory space regions which are not code-protected. With ICSP writes inhibited, an attempt to set WR (NVMCON[15]) = 1 will maintain WR = 0, and instead, set WRERR (NVMCON[13]) = 1. All Enhanced ICSP erase and programming commands will have no effect with self-checked programming commands returning a FAIL response opcode (PASS if the destination already exactly matched the requested programming data).

Once ICSP Write Inhibit is activated, it is not possible for a device executing in Debug mode to erase/write Flash, nor can a debug tool switch the device to Production mode. ICSP Write Inhibit should therefore only be activated on devices programmed for production.

5.5.1 ACTIVATING ICSP WRITE INHIBIT

Caution: It is not possible to deactivate ICSP Write Inhibit.

ICSP Write Inhibit is activated by executing a pair of NVMCON double-word programming commands to save two 16-bit activation values in the configuration memory space. The target NVM addresses and values required for activation are shown in Table 5-1. Once both addresses contain their activation values, ICSP Write Inhibit will take permanent effect on the next device Reset. Neither address can be reset, erased or otherwise modified, through any means, after being successfully programmed, even if one of the addresses has not been programmed.

Only the lower 16 data bits stored at the activation addresses are evaluated; the upper eight bits and second 24-bit word written by the double-word programming (NVMOP[3:0]) should be written as '0's. The addresses can be programmed in any order and also during separate ICSP/Enhanced ICSP/RTSP sessions, but any attempt to program an incorrect 16-bit value or use a row programming operation to program the values will be aborted without altering the existing data.

TABLE 5-1: ICSP[™] WRITE INHIBIT ACTIVATION ADDRESSES AND DATA

	Configuration Memory Address	ICSP™ Write Inhibit Activation Value
Write Lock 1	0x801030	0x006D63
Write Lock 2	0x801034	0x006870

NOTES:

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (www.microchip.com/ DS70602) in the "dsPIC33/PIC24 Family Reference Manual".
 - **2:** Some registers and associated bits described in this section may not be available on all devices.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

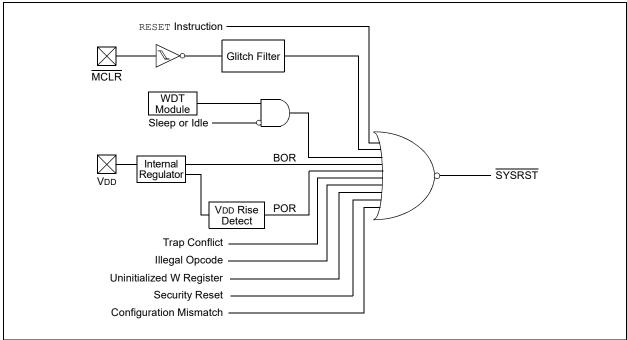
- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.


All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the BOR and POR bits (RCON[1:0]) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC[2:0] bits in the FOSCSEL Configuration register. The value of the FNOSCx bits is loaded into the NOSC[2:0] (OSCCON[10:8]) bits on Reset, which in turn, initializes the system clock.

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

6.1.1 KEY RESOURCES

- "Reset" (www.microchip.com/DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

bit 15 RW-1 RW-0 r-0 RW-0 RW-0 RW-0 RW-1 R/ EXTR SWR - WDTO SLEEP IDLE BOR P bit 7 - WDTO SLEEP IDLE BOR P bit 7 - - WDTO SLEEP IDLE BOR P bit 7 - - - WDTO SLEEP IDLE BOR P - - WDTO SLEEP IDLE BOR P bit 7 - - - WDTO SLEEP IDLE BOR P - - - - - WDTO SLEEP IDLE BOR P -	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
R/W-1 R/W-0 r-0 R/W-0 R/W-0 R/W-0 R/W-1 R/ EXTR SWR	TRAPR	IOPUWR		—	—	_	CM	VREGS
EXTR SWR - WDTO SLEEP IDLE BOR PP bit 7 - - WDTO SLEEP IDLE BOR PP bit 7 - - - - - Bit is cleared P -	pit 15							bit 8
EXTR SWR - WDTO SLEEP IDLE BOR PP bit 7 - - WDTO SLEEP IDLE BOR PP bit 7 - - - - - Bit is cleared P -	R/W-1	R/W-0	r-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
bit 7 Legend: r = Reserved bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TRAPR: Trap Reset Flag bit 1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred bit 14 IOPUWR: Illegal Opcode or Uninitialized W Register Access Reset Flag bit 1 = An Tiap Conflict Reset has not occurred bit 14 IOPUWR: Illegal opcode or Uninitialized W Register Reset has not occurred Address Pointer caused a Reset 0 = A nillegal opcode or Uninitialized W Register Reset has not occurred bit 13-10 Unimplemented: Read as '0' bit 1 bit 9 CM: Configuration Mismatch Reset has not occurred. 0 = A Configuration Mismatch Reset has not occurred 0 = A Configuration Mismatch Reset has not occurred bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator goes into Standby mode during Sleep bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software RESET (Instruction) Flag bit 1 = A RESET instruction has not been executed 0 = A RESET instruction has not been executed 0 = A RESET instruction has no		T			1		-	POR
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TRAPR: Trap Reset Flag bit 1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred bit 14 IOPUWR: Illegal Opcode or Uninitialized W Register Access Reset Flag bit 1 = An illegal opcode detection, an illegal address mode or Uninitialized W register used Address Pointer caused a Reset 0 = An illegal opcode or Uninitialized W Register Reset has not occurred bit 13-10 Unimplemented: Read as '0' 0' bit 13-10 Unimplemented: Read as '0' bit 9 CM: Configuration Mismatch Reset has not occurred bit 9 CM: Configuration Mismatch Reset has not occurred bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = A Naster Clear (pin) Reset has not occurred 0 = A Voltage regulator is active during Sleep 0 = Voltage regulator is active during Sleep 0 = Voltage regulator is active during Sleep 1 = A Master Clear (pin) Reset has not occurred 0 = A Amster Clear (pin) Reset has not occurred 0 = A RESET instruction has been executed 0 = A RESET instruction has been executed 0 = A RESET instruction has been execu								bit (
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 TRAPR: Trap Reset Flag bit 1 A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred 0' = Bit is get a comparison of the set of the	Legend:		r = Reserved	l bit				
bit 15 TRAPR: Trap Reset Flag bit 1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred bit 14 IOPUWR: Illegal Opcode or Uninitialized W Register Access Reset Flag bit 1 = An illegal opcode detection, an illegal address mode or Uninitialized W register used Address Pointer caused a Reset 0 = An illegal opcode or Uninitialized W Register Reset has not occurred bit 13-10 Unimplemented: Read as '0' bit 9 CM: Configuration Mismatch Flag bit 1 = A Configuration Mismatch Reset has occurred. 0 = A Configuration Mismatch Reset has not occurred bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator goes into Standby mode during Sleep 0 = Voltage regulator goes into Standby mode during Sleep 0 = A Master Clear (pin) Reset has not occurred 0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software RESET (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not occurred 0 = A RESET instruction has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = WDT time-out has occurred 0 = Device has not been in Sleep mode 0 = Device has not been in Idle mode 1 = Device has not been in Idle mode 0 =	R = Readable	e bit	W = Writable	e bit	U = Unimpler	mented bit, read	d as '0'	
1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred bit 14 IOPUWR: Illegal Opcode or Uninitialized W Register Access Reset Flag bit 1 = An illegal opcode detection, an illegal address mode or Uninitialized W register used Address Pointer caused a Reset 0 = An illegal opcode or Uninitialized W Register Reset has not occurred bit 13-10 Unimplemented: Read as '0' bit 9 CM: Configuration Mismatch Reset has occurred. 0 = A Configuration Mismatch Reset has not occurred bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep 0 = Voltage regulator goes into Standby mode during Sleep bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed 0 = A RESET instruction has not been executed bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = Mester Clear (pin) Reset Flag bit 1 = Device has been in Sleep mode 0 = WDT time-out has occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode 0 = Device has not been in Idle mode <t< td=""><td>n = Value at I</td><td>POR</td><td>'1' = Bit is se</td><td>t</td><td>'0' = Bit is cle</td><td>ared</td><td>x = Bit is unk</td><td>nown</td></t<>	n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unk	nown
1 = An illegal opcode detection, an illegal address mode or Uninitialized W register used Address Pointer caused a Reset 0 = An illegal opcode or Uninitialized W Register Reset has not occurred bit 13-10 Unimplemented: Read as '0' bit 9 CM: Configuration Mismatch Flag bit 1 = A Configuration Mismatch Reset has occurred. 0 = A Configuration Mismatch Reset has not occurred bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep 0 = Voltage regulator goes into Standby mode during Sleep bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software RESET (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode 0 = Device has not been in Sleep mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = ABrown-out Reset Flag bit	bit 15	1 = A Trap Co	onflict Reset h	as occurred	d			
bit 9 CM: Configuration Mismatch Flag bit 1 = A Configuration Mismatch Reset has occurred. 0 = A Configuration Mismatch Reset has not occurred bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep 0 = Voltage regulator standby mode during Sleep bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software RESET (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed 0 = A RESET instruction has not been executed 0 = A WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not occurred bit 4 IDLE: Wake-up from Idle Flag bit 1 = Device has not been in Sleep mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = ABrown-out Reset Has occurred 0 = A Brown-out Reset Has not occurred bit 0 POR: Power-on Reset Flag bit	bit 14	1 = An illega Address	al opcode dete Pointer cause	ection, an illeç d a Reset	gal address mo	ode or Uninitia	lized W registe	er used as a
1 = A Configuration Mismatch Reset has occurred. 0 = A Configuration Mismatch Reset has not occurred bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep 0 = V Voltage regulator goes into Standby mode during Sleep bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software RESET (Instruction) Flag bit 1 = WDT clear (pin) Reset has not occurred 0 = A RESET instruction has been executed 0 = A RESET instruction has not been executed 0 = A RESET instruction has not occurred bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = Device has not occurred 0 = WDT time-out has occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode 0 = Device has not been in Sleep mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred 0 = A Brown-out Reset has not occurred	oit 13-10	Unimplemen	ted: Read as	'O'				
0 = A Configuration Mismatch Reset has not occurred bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep 0 = Voltage regulator goes into Standby mode during Sleep bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software RESET (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed 0 = WDT time-out has occurred 0 = WDT time-out has occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred	oit 9	CM: Configur	ration Mismato	h Flag bit				
bit 8 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator goes into Standby mode during Sleep bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software RESET (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed 0 = A RESET instruction has not been executed 0 = A RESET instruction has not been executed 0 = A RESET instruction has not been executed 0 = A RESET instruction has not been executed 0 = A RESET instruction has not been executed 0 = A RESET instruction has not occurred bit 5 Reserved: Read as '0' bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = A Brown-out Reset Flag bit 1 = A Brown-out Reset has n								
0 = Voltage regulator goes into Standby mode during Sleep bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software RESET (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed 0 = A RESET instruction has not been executed bit 5 Reserved: Read as '0' bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit	oit 8	VREGS: Volta	age Regulator	Standby Duri	ng Sleep bit			
bit 7 EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software RESET (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed bit 5 Reserved: Read as '0' bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit						еер		
0 = A Master Clear (pin) Reset has not occurred bit 6 SWR: Software RESET (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed bit 5 Reserved: Read as '0' bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not peen in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit	oit 7	-			Ũ	·		
bit 6SWR: Software RESET (Instruction) Flag bit1 = A RESET instruction has been executed0 = A RESET instruction has not been executedbit 5Reserved: Read as '0'bit 4WDTO: Watchdog Timer Time-out Flag bit1 = WDT time-out has occurred0 = WDT time-out has not occurredbit 3SLEEP: Wake-up from Sleep Flag bit1 = Device has been in Sleep mode0 = Device has not been in Sleep mode0 = Device has been in Sleep mode0 = Device has been in Idle mode0 = Device has been in Idle mode0 = Device has not been in Idle mode0 = Device has not been in Idle mode0 = A BOR: Brown-out Reset Flag bit1 = A Brown-out Reset Flag bit								
0 = A RESET instruction has not been executedbit 5Reserved: Read as '0'bit 4WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurredbit 3SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode 0 = Device has not been in Sleep mode 0 = Device has not been in Idle mode 	oit 6							
bit 5Reserved: Read as '0'bit 4WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurredbit 3SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep modebit 2IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not ccurred 0 = A Brown-out Reset Flag bit 1 = A Brown-out Reset has not occurredbit 0POR: Power-on Reset Flag bit		-						
1 = WDT time-out has occurred 0 = WDT time-out has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = A Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit	oit 5	Reserved: R	ead as '0'					
0 = WDT time-out has not occurred bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = A Brown-out Reset Flag bit 1 = A Brown-out Reset has not occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit	oit 4	WDTO: Watc	hdog Timer Ti	me-out Flag bi	t			
1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit								
0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode 0 = Device has not been in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit	oit 3	SLEEP: Wak	e-up from Sle	ep Flag bit				
1 = Device has been in Idle mode 0 = Device has not been in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit								
0 = Device has not been in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit	oit 2	IDLE: Wake-	up from Idle F	lag bit				
bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit		1 = Device ha	as been in Idle	mode				
1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit		0 = Device ha	as not been in	Idle mode				
0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit	pit 1			0				
5								
	oit 0		-					
1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred								

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

NOTES:

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (www.microchip.com/DS70000600) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices.

The dsPIC33CK64MP105 family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33CK64MP105 family CPU.

The interrupt controller has the following features:

- Six Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for each Interrupt or Exception Source
- · Fixed Priority within a Specified User Priority Level
- · Fixed Interrupt Entry and Return Latencies
- Alternate Interrupt Vector Table (AIVT) for Debug Support

7.1 Interrupt Vector Table

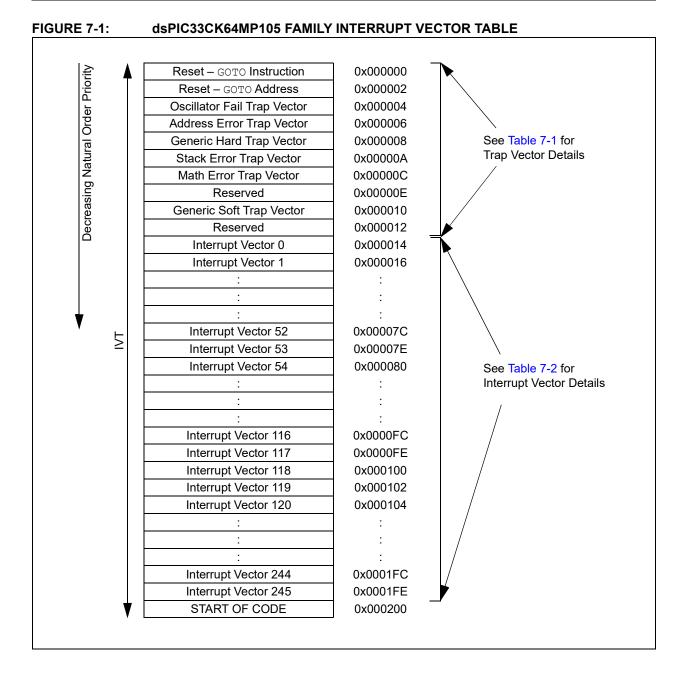
The dsPIC33CK64MP105 family Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains six non-maskable trap vectors and up to 246 sources of interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

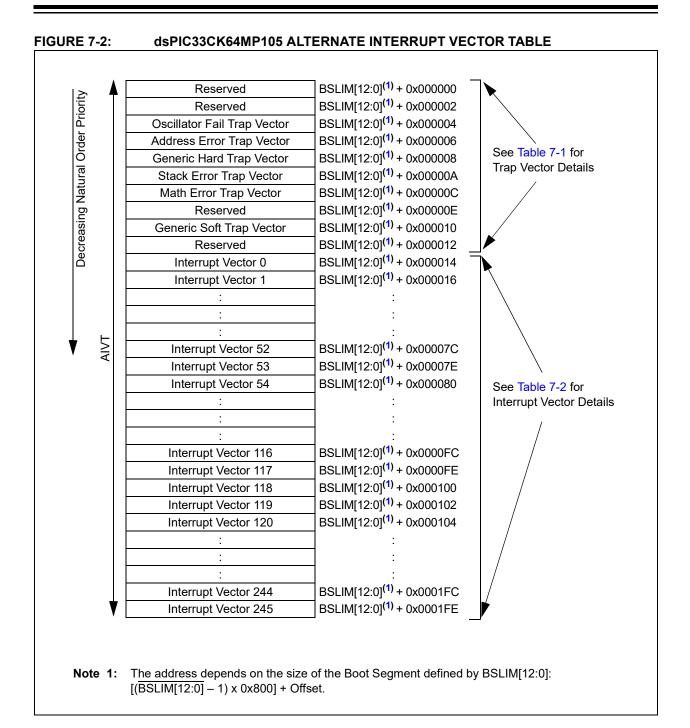
Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-2, is available only when the Boot Segment (BS) is defined and the AIVT has been enabled. To enable the Alternate Interrupt Vector Table, the Configuration bits, BSEN and AIVTDIS in the FSEC register, must be programmed, and the AIVTEN bit must be set (INTCON2[8] = 1). When the AIVT is enabled, all interrupt and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment, defined by BSLIM[12:0]. The second half of the page is no longer usable space. The Boot Segment must be at least two pages to enable the AIVT.

Note: Although the Boot Segment must be enabled in order to enable the AIVT, application code does not need to be present inside of the Boot Segment. The AIVT (and IVT) will inherit the Boot Segment code protection.


The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.


7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33CK64MP105 family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

dsPIC33CK64MP105 FAMILY

	MPLAB [®] XC16	IVT		Trap Bit Locatio	n	
Trap Description	Trap ISR Name	Address	Interrupt Flag	Туре	Enable	Priority
Oscillator Failure	_OscillatorFail	0x000004	INTCON1[1]	_		15
Address Error	_AddressError	0x000006	INTCON1[3]	_	—	14
ECC Double-Bit Error	_HardTrapError	0x000008	INTCON4[1]	—	—	13
Software Generated Trap	_HardTrapError	0x000008	INTCON4[0]	_	INTCON2[13]	13
Stack Error	_StackError	0x00000A	INTCON1[2]	_	—	12
Overflow Accumulator A	_MathError	0x00000C	INTCON1[4]	INTCON1[14]	INTCON1[10]	11
Overflow Accumulator B	_MathError	0x00000C	INTCON1[4]	INTCON1[13]	INTCON1[9]	11
Catastrophic Overflow Accumulator A	_MathError	0x00000C	INTCON1[4]	INTCON1[12]	INTCON1[8]	11
Catastrophic Overflow Accumulator B	_MathError	0x00000C	INTCON1[4]	INTCON1[11]	INTCON1[8]	11
Shift Accumulator Error	_MathError	0x00000C	INTCON1[4]	INTCON1[7]	INTCON1[8]	11
Divide-by-Zero Error	_MathError	0x00000C	INTCON1[4]	INTCON1[6]	INTCON1[8]	11
Reserved	Reserved	0x00000E	_	_	—	_
NVM Address Error	_SoftTrapError	0x000010	INTCON3[8]	_	—	9
DMA Address Error	_SoftTrapError	0x000010	INTCON3[5]			9
DO Stack Overflow	_SoftTrapError	0x000010	INTCON3[4]	—	—	9
APLL Loss of Lock	_SoftTrapError	0x000010	INTCON3[0]	—	—	9
Reserved	Reserved	0x000012	_	_	—	_

TABLE 7-1: TRAP VECTOR DETAILS

	MPLAB [®] XC16	Vector	IRQ		Int	errupt Bit L	ocation
Interrupt Source	ISR Name	#	#	IVT Address	Flag	Enable	Priority
External Interrupt 0	_INT0Interrupt	8	0	0x000014	IFS0[0]	IEC0[0]	IPC0[2:0]
Timer1	_T1Interrupt	9	1	0x000016	IFS0[1]	IEC0[1]	IPC0[6:4]
Change Notice Interrupt A	_CNAInterrupt	10	2	0x000018	IFS0[2]	IEC0[2]	IPC0[10:8]
Change Notice Interrupt B	_CNBInterrupt	11	3	0x00001A	IFS0[3]	IEC0[3]	IPC0[14:12]
DMA Channel 0	DMA0Interrupt	12	4	0x00001C	IFS0[4]	IEC0[4]	IPC1[2:0]
Reserved	Reserved	13	5	0x00001E	_	—	
Input Capture/Output Compare 1	_CCP1Interrupt	14	6	0x000020	IFS0[6]	IEC0[6]	IPC1[10:8]
CCP1 Timer	_CCT1Interrupt	15	7	0x000022	IFS0[7]	IEC0[7]	IPC1[14:12]
DMA Channel 1	_DMA1Interrupt	16	8	0x000024	IFS0[8]	IEC0[8]	IPC2[2:0]
SPI1 Receiver	_SPI1RXInterrupt	17	9	0x000026	IFS0[9]	IEC0[9]	IPC2[6:4]
SPI1 Transmitter	_SPI1TXInterrupt	18	10	0x000028	IFS0[10]	IEC0[10]	IPC2[10:8]
UART1 Receiver	_U1RXInterrupt	19	11	0x00002A	IFS0[11]	IEC0[11]	IPC2[14:12]
UART1 Transmitter	_U1TXInterrupt	20	12	0x00002C	IFS0[12]	IEC0[12]	IPC3[2:0]
ECC Single-Bit Error	_ECCSBEInterrupt	21	13	0x00002E	IFS0[13]	IEC0[13]	IPC3[6:4]
NVM Write Complete	_NVMInterrupt	22	14	0x000030	IFS0[14]	IEC0[14]	IPC3[10:8]
External Interrupt 1	_INT1Interrupt	23	15	0x000032	IFS0[15]	IEC0[15]	IPC3[14:12]
I2C1 Slave Event	_SI2C1Interrupt	24	16	0x000034	IFS1[0]	IEC1[0]	IPC4[2:0]
I2C1 Master Event	_MI2C1Interrupt	25	17	0x000036	IFS1[1]	IEC1[1]	IPC4[6:4]
DMA Channel 2	_DMA2Interrupt	26	18	0x000038	IFS1[2]	IEC1[2]	IPC4[10:8]
Change Notice Interrupt C	_CNCInterrupt	27	19	0x00003A	IFS1[3]	IEC1[3]	IPC4[14:12]
External Interrupt 2	_INT2Interrupt	28	20	0x00003C	IFS1[4]	IEC1[4]	IPC5[2:0]
DMA Channel 3	_DMA3Interrupt	29	21	0x00003E	IFS1[5]	IEC1[5]	IPC5[6:4]
Reserved	Reserved	30	22	0x000040		_	_
Input Capture/Output Compare 2	_CCP2Interrupt	31	23	0x000042	IFS1[7]	IEC1[7]	IPC5[14:12]
CCP2 Timer	_CCT2Interrupt	32	24	0x000044	IFS1[8]	IEC1[8]	IPC6[2:0]
Reserved	Reserved	33	25	0x000046	_	—	—
External Interrupt 3	_INT3Interrupt	34	26	0x000048	IFS1[10]	IEC1[10]	IPC6[10:8]
U2RX – UART2 Receiver	_U2RXInterrupt	35	27	0x00004A	IFS1[11]	IEC1[11]	IPC6[14:12]
U2TX – UART2 Transmitter	_U2TXInterrupt	36	28	0x00004C	IFS1[12]	IEC1[12]	IPC7[2:0]
SPI2 Receiver	_SPI2RXInterrupt	37	29	0x00004E	IFS1[13]	IEC1[13]	IPC7[6:4]
SPI2 Transmitter	_SPI2TXInterrupt	38	30	0x000050	IFS1[14]	IEC1[14]	IPC7[10:8]
Reserved	Reserved	39-42	31-34	0x000052-0x000058	_	—	—
Input Capture/Output Compare 3	_CCP3Interrupt	43	35	0x00005A	IFS2[3]	IEC2[3]	IPC8[14:12]
CCP3 Timer	_CCT3Interrupt	44	36	0x00005C	IFS2[4]	IEC2[4]	IPC9[2:0]
I2C2 Slave Event	_SI2C2Interrupt	45	37	0x00005E	IFS2[5]	IEC2[5]	IPC9[6:4]
I2C2 Master Event	_MI2C2Interrupt	46	38	0x000060	IFS2[6]	IEC2[6]	IPC9[10:8]
Reserved	Reserved	47	39	0x000062	_	—	—
Input Capture/Output Compare 4	_CCP4Interrupt	48	40	0x000064	IFS2[8]	IEC2[8]	IPC10[2:0]
CCP4 Timer	_CCT4Interrupt	49	41	0x000066	IFS2[9]	IEC2[9]	IPC10[6:4]
Reserved	Reserved	50	42	0x000068		—	
Input Capture/Output Compare 5	_CCP5Interrupt	51	43	0x00006A	IFS2[11]	IEC2[11]	IPC10[14:12]
CCP5 Timer	_CCT5Interrupt	52	44	0x00006C	IFS2[12]	IEC2[12]	IPC11[2:0]
Deadman Timer	_DMTInterrupt	53	45	0x00006E	IFS2[13]	IEC2[13]	IPC11[6:4]
Reserved	Reserved	54-55	46-47	0x000070-0x000072		—	

TABLE 7-2: INTERRUPT VECTOR DETAILS

TABLE 7-2: INTERRUPT VECTOR DETAILS (CONTINUED)

	MPLAB [®] XC16	Vector	IRQ		Int	errupt Bit L	ocation
Interrupt Source	ISR Name	#	#	IVT Address	Flag	Enable	Priority
QEI Position Counter Compare	_QEI1Interrupt	56	48	0x000074	IFS3[0]	IEC3[0]	IPC12[2:0]
UART1 Error	_U1EInterrupt	57	49	0x000076	IFS3[1]	IEC3[1]	IPC12[6:4]
UART2 Error	_U2EInterrupt	58	50	0x000078	IFS3[2]	IEC3[2]	IPC12[10:8]
CRC Generator	_CRCInterrupt	59	51	0x00007A	IFS3[3]	IEC3[3]	IPC12[14:12]
Reserved	Reserved	60-61	52-53	0x00007C-0x00007E	_	_	_
QEI Position Counter Compare	_QEI2Interrupt	62	54	0x000080	IFS3[6]	IEC3[6]	IPC13[10:8]
Reserved	Reserved	63	55	0x000082	_	_	_
UART3 Error	_U3EInterrupt	64	56	0x000084	IFS3[8]	IEC3[8]	IPC14[2:0]
UART3 Receiver	_U3RXInterrupt	65	57	0x000086	IFS3[9]	IEC3[9]	IPC14[6:4]
UART3 Transmitter	_U3TXInterrupt	66	58	0x000088	IFS3[10]	IEC3[10]	IPC14[10:8]
SPI3 Receiver	_SPI3RXInterrupt	67	59	0x00008A	IFS3[11]	IEC3[11]	IPC14[14:12]
SPI3 Transmitter	_SPI3TXInterrupt	68	60	0x00008C	IFS3[12]	IEC3[12]	IPC15[2:0]
Reserved	Reserved	69-70	61-62	0x00008E-0x000090			
PTG Step	_PTGSTEPInterrupt	71	63	0x000092	IFS3[15]	IEC3[15]	IPC15[14:12]
I2C1 Bus Collision	_I2C1BCInterrupt	72	64	0x000094	IFS4[0]	IEC4[0]	IPC16[2:0]
I2C2 Bus Collision	_I2C2BCInterrupt	73	65	0x000096	IFS4[1]	IEC4[1]	IPC16[6:4]
Reserved	Reserved	74	66	0x000098		_	
PWM Generator 1	_PWM1Interrupt	75	67	0x00009A	IFS4[3]	IEC4[3]	IPC16[14:12]
PWM Generator 2	_PWM2Interrupt	76	68	0x00009C	IFS4[4]	IEC4[4]	IPC17[2:0]
PWM Generator 3	_PWM3Interrupt	77	69	0x00009E	IFS4[5]	IEC4[5]	IPC17[6:4]
PWM Generator 4	_PWM4Interrupt	78	70	0x0000A0	IFS4[6]	IEC4[6]	IPC17[10:8]
Reserved	Reserved	79-82	71-74	0x0000A2-0x0000A8		_	
Change Notice D	_CNDInterrupt	83	75	0x0000AA	IFS4[11]	IEC4[11]	IPC18[14:12]
Reserved	Reserved	84	76	0x0000AC	_	_	
Comparator 1	_CMP1Interrupt	85	77	0x0000AE	IFS4[13]	IEC4[13]	IPC19[6:4]
Comparator 2	_CMP2Interrupt	86	78	0x0000B0	IFS4[14]	IEC4[14]	IPC19[10:8]
Comparator 3	_CMP3Interrupt	87	79	0x0000B2	IFS4[15]	IEC4[15]	IPC19[14:12]
Reserved	Reserved	88	80	0x0000B4			
PTG Watchdog Timer Time-out	_PTGWDTInterrupt	89	81	0x0000B6	IFS5[1]	IEC5[1]	IPC20[6:4]
PTG Trigger 0	_PTG0Interrupt	90	82	0x0000B8	IFS5[2]	IEC5[2]	IPC20[10:8]
PTG Trigger 1	_PTG1Interrupt	91	83	0x0000BA	IFS5[3]	IEC5[3]	IPC20[14:12]
PTG Trigger 2	_PTG2Interrupt	92	84	0x0000BC	IFS5[4]	IEC5[4]	IPC21[2:0]
PTG Trigger 3	_PTG3Interrupt	93	85	0x0000BE	IFS5[5]	IEC5[6]	IPC21[6:4]
SENT1 TX/RX	_SENT1Interrupt	94	86	0x0000C0	IFS5[6]	IEC5[6]	IPC21[10:8]
SENT1 Error	SENT1EInterrupt	95	87	0x0000C2	IFS5[7]	IEC5[7]	IPC21[14:12]
SENT2 TX/RX	SENT2Interrupt	96	88	0x0000C4	IFS5[8]	IEC5[8]	IPC22[2:0]
SENT2 Error	SENT2EInterrupt	97	89	0x0000C6	IFS5[9]	IEC5[9]	IPC22[6:4]
ADC Global Interrupt	ADCInterrupt	98	90	0x0000C8	IFS5[10]	IEC5[10]	IPC22[10:8]

	MPLAB [®] XC16	Vector	IRQ		Int	errupt Bit Lo	ocation
Interrupt Source	ISR Name	#	#	IVT Address	Flag	Enable	Priority
ADC AN0 Interrupt	_ADCAN0Interrupt	99	91	0x0000CA	IFS5[11]	IEC5[11]	IPC22[14:12]
ADC AN1 Interrupt	_ADCAN1Interrupt	100	92	0x0000CC	IFS5[12]	IEC5[12]	IPC23[2:0]
ADC AN2 Interrupt	_ADCAN2Interrupt	101	93	0x0000CE	IFS5[13]	IEC5[13]	IPC23[6:4]
ADC AN3 Interrupt	_ADCAN3Interrupt	102	94	0x0000D0	IFS5[14]	IEC5[14]	IPC23[10:8]
ADC AN4 Interrupt	_ADCAN4Interrupt	103	95	0x0000D2	IFS5[15]	IEC5[15]	IPC23[14:12]
ADC AN5 Interrupt	_ADCAN5Interrupt	104	96	0x0000D4	IFS6[0]	IEC6[0]	IPC24[2:0]
ADC AN6 Interrupt	_ADCAN6Interrupt	105	97	0x0000D6	IFS6[1]	IEC6[1]	IPC24[6:4]
ADC AN7 Interrupt	_ADCAN7Interrupt	106	98	0x0000D8	IFS6[2]	IEC6[2]	IPC24[10:8]
ADC AN8 Interrupt	_ADCAN8Interrupt	107	99	0x0000DA	IFS6[3]	IEC6[3]	IPC24[14:12]
ADC AN9 Interrupt	_ADCAN9Interrupt	108	100	0x0000DC	IFS6[4]	IEC6[4]	IPC25[2:0]
ADC AN10 Interrupt	_ADCAN10Interrupt	109	101	0x0000DE	IFS6[5]	IEC6[5]	IPC25[6:4]
ADC AN11 Interrupt	_ADCAN11Interrupt	110	102	0x0000E0	IFS6[6]	IEC6[6]	IPC25[10:8]
ADC AN12 Interrupt	_ADCAN12Interrupt	111	103	0x0000E2	IFS6[7]	IEC6[7]	IPC25[14:12]
ADC AN13 Interrupt	_ADCAN13Interrupt	112	104	0x0000E4	IFS6[8]	IEC6[8]	IPC26[2:0]
ADC AN14 Interrupt	_ADCAN14Interrupt	113	105	0x0000E6	IFS6[9]	IEC6[9]	IPC26[6:4]
ADC AN15 Interrupt	_ADCAN15Interrupt	114	106	0x0000E8	IFS6[10]	IEC6[10]	IPC26[10:8]
ADC AN16 Interrupt	_ADCAN16Interrupt	115	107	0x0000EA	IFS6[11]	IEC6[11]	IPC26[14:12]
ADC AN17 Interrupt	_ADCAN17Interrupt	116	108	0x0000EC	IFS6[12]	IEC6[12]	IPC27[2:0]
ADC AN18 Interrupt	_ADCAN18Interrupt	117	109	0x0000EE	IFS6[13]	IEC6[13]	IPC27[6:4]
ADC AN19 Interrupt	_ADCAN19Interrupt	118	110	0x0000F0	IFS6[14]	IEC6[14]	IPC27[10:8]
ADC AN20 Interrupt	_ADCAN20Interrupt	119	111	0x0000F2	IFS6[15]	IEC6[15]	IPC27[14:12]
Reserved	Reserved	120-123	112-115	0x0000F4-0x0000FA		—	
ADC Digital Comparator 0	_ADCMP0Interrupt	124	116	0x0000FC	IFS7[4]	IEC7[4]	IPC29[2:0]
ADC Digital Comparator 1	_ADCMP1Interrupt	125	117	0x0000FE	IFS7[5]	IEC7[5]	IPC29[6:4]
ADC Digital Comparator 2	_ADCMP2Interrupt	126	118	0x000100	IFS7[6]	IEC7[6]	IPC29[10:8]
ADC Digital Comparator 3	_ADCMP3Interrupt	127	119	0x000102	IFS7[7]	IEC7[7]	IPC29[14:12]
ADC Oversample Filter 0	_ADFLTR0Interrupt	128	120	0x000104	IFS7[8]	IEC7[8]	IPC30[2:0]
ADC Oversample Filter 1	_ADFLTR1Interrupt	129	121	0x000106	IFS7[9]	IEC7[9]	IPC30[6:4]
ADC Oversample Filter 2	_ADFLTR2Interrupt	130	122	0x000108	IFS7[10]	IEC7[10]	IPC30[10:8]
ADC Oversample Filter 3	_ADFLTR3Interrupt	131	123	0x00010A	IFS7[11]	IEC7[11]	IPC30[14:12]
CLC1 Positive Edge	_CLC1PInterrupt	132	124	0x00010C	IFS7[12]	IEC7[12]	IPC31[2:0]
CLC2 Positive Edge	_CLC2PInterrupt	133	125	0x00010E	IFS7[13]	IEC7[13]	IPC31[6:4]
SPI1 Error	_SPI1Interrupt	134	126	0x000110	IFS7[14]	IEC7[14]	IPC31[10:8]
SPI2 Error	_SPI2Interrupt	135	127	0x000112	IFS7[15]	IEC7[15]	IPC31[14:12]
SPI3 Error	_SPI3Interrupt	136	128	0x000114	IFS8[0]	IEC8[0]	IPC32[2:0]
Reserved	Reserved	137-176	129-168	0x000116-0x000164		—	_
PEVTA – PWM Event A	_PEVTAInterrupt	177	169	0x000166	IFS10[9]	IEC10[9]	IPC42[6:4]
PEVTB – PWM Event B	_PEVTBInterrupt	178	170	0x000168	IFS10[10]	IEC10[10]	IPC42[10:8]
PEVTC – PWM Event C	PEVTCInterrupt	179	171	0x00016A	IFS10[11]	IEC10[11]	IPC42[14:12]
PEVTD – PWM Event D	_PEVTDInterrupt	180	172	0x00016C	IFS10[12]	IEC10[12]	IPC43[2:0]
PEVTE – PWM Event E	_PEVTEInterrupt	181	173	0x00016E	IFS10[13]	IEC10[13]	IPC43[6:4]
PEVTF – PWM Event F	PEVTFInterrupt	182	174	0x000170	IFS10[14]	IEC10[14]	IPC43[10:8]

TABLE 7-2: INTERRUPT VECTOR DETAILS (CONTINUED)

TABLE 7-2:	INTERRUPT VECTOR DETAILS (CONTINUED)
-------------------	--------------------------------------

	MPLAB [®] XC16	Vector	IRQ		Int	errupt Bit Lo	ocation
Interrupt Source	ISR Name	#	#	IVT Address	Flag	Enable	Priority
CLC3 Positive Edge	_CLC3PInterrupt	183	175	0x000172	IFS10[15]	IEC10[15]	IPC43[14:12]
CLC4 Positive Edge	_CLC4PInterrupt	184	176	0x000174	IFS11[0]	IEC11[0]	IPC44[2:0]
CLC1 Negative Edge	_CLC1NInterrupt	185	177	0x000176	IFS11[1]	IEC11[1]	IPC44[6:4]
CLC2 Negative Edge	_CLC2NInterrupt	186	178	0x000178	IFS11[2]	IEC11[2]	IPC44[10:8]
CLC3 Negative Edge	_CLC3NInterrupt	187	179	0x00017A	IFS11[3]	IEC11[3]	IPC44[14:]12]
CLC4 Negative Edge	_CLC4NInterrupt	188	180	0x00017C	IFS11[4]	IEC11[4]	IPC45[2:0]
Reserved	Reserved	189-196	181-188	0x0017E-0x0018C			—
UART1 Event	_U1EVTInterrupt	197	189	0x00018E	IFS11[13]	IF2C11[13]	IPC47[6:4]
UART2 Event	_U2EVTInterrupt	198	190	0x000190	IFS11[14]	IF2C11[14]	IPC47[12:8]
UART3 Event	_U3EVTInterrupt	199	191	0x000192	IFS11[15]	IF2C11[15]	IPC47[14:12]
Reserved	Reserved	200-255	192-247	0x000194-0x0001FE	_	—	—

TABLE 7-3: INTERRUPT FLAG REGISTERS

Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IFS0	800h	INT1IF	NVMIF	ECCSBEIF	U1TXIF	U1RXIF	SPI1TXIF	SPI1RXIF	DMA1IF	CCT1IF	CCP1IF	_	DMA0IF	CNBIF	CNAIF	T1IF	INT0IF
IFS1	802h	_	SPI2TXIF	SPI2RXIF	U2TXIF	U2RXIF	INT3IF	_	CCT2IF	CCP2IF	_	DMA3IF	INT2IF	CNCIF	DMA2IF	MI2C1IF	SI2C1IF
IFS2	804h	-	_	DMTIF	CCT5IF	CCP5IF	_	CCT4IF	CCP4IF	-	MI2C2IF	SI2C2IF	CCT3IF	CCP3IF	_	_	-
IFS3	806h	PTGSTEPIF	_	_	SPI3TXIF	SPI3RXIF	U3TXIF	U3RXIF	U3EIF	-	QEI2IF	Ι	_	CRCIF	U2EIF	U1EIF	QEI1IF
IFS4	808h	CMP3IF	CMP2IF	CMP1IF	_	CNDIF	_	_	_	-	PWM4IF	PWM3IF	PWM2IF	PWM1IF	_	I2C2BCIF	I2C1BCIF
IFS5	80Ah	ADCAN4IF	ADCAN3IF	ADCAN2IF	ADCAN1IF	ADCAN0IF	ADCIF	SENT2EIF	SENT2IF	SENT1EIF	SENT1IF	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	-
IFS6	80Ch	ADCAN20IF	ADCAN19IF	ADCAN18IF	ADCAN17IF	ADCAN16IF	ADCAN15IF	ADCAN14IF	ADCAN13IF	ADCAN12IF	ADCAN11IF	ADCAN10IF	ADCAN9IF	ADCAN8IF	ADCAN7IF	ADCAN6IF	ADCAN5IF
IFS7	80Eh	SPI2GIF	SPI1GIF	CLC2PIF	CLC1PIF	ADFLTR3IF	ADFLTR2IF	ADFLTR1IF	ADFLTR0IF	ADCMP3IF	ADCMP2IF	ADCMP1IF	ADCMP0IF	_	_	_	-
IFS8	810h	-	_	_	_	_	_	_	_	-	_	Ι	_	_	_	_	SPI3GIF
IFS10	814h	CLC3PIF	PEVTFIF	PEVTEIF	PEVTDIF	PEVTCIF	PEVTBIF	PEVTAIF	_	_	_	_	_	_	_	_	—
IFS11	816h	U3EVTIF	U2EVTIF	U1EVTIF	_	_	_	_	_	_	—	_	CLC4NIF	CLC3NIF	CLC2NIF	CLC1NIF	CLC4PIF

Legend: — = Unimplemented.

TABLE 7-4: INTERRUPT ENABLE REGISTERS

Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IEC0	820h	INT1IE	NVMIE	ECCSBEIE	U1TXIE	U1RXIE	SPI1TXIE	SPI1RXIE	DMA1IE	CCT1IE	CCP1IE	-	DMA0IE	CNBIE	CNAIE	T1IE	INT0IE
IEC1	822h	-	SPI2TXIE	SPI2RXIE	U2TXIE	U2RXIE	INT3IE	_	CCT2IE	CCP2IE	_	DMA3IE	INT2IE	CNCIE	DMA2IE	MI2C1IE	SI2C1IE
IEC2	824h	-	_	DMTIE	CCT5IE	CCP5IE	_	CCT4IE	CCP4IE	_	MI2C2IE	SI2C2IE	CCT3IE	CCP3IE	_	_	_
IEC3	826h	PTGSTEPIE	_	_	SPI3TXIE	SPI3RXIE	U3TXIE	U3RXIE	U3EIE	_	QEI2IE	Ι	_	CRCIE	U2EIE	U1EIE	QEI1IE
IEC4	828h	CMP3IE	CMP2IE	CMP1IE	_	CNDIE	_	_	_	_	PWM4IE	PWM3IE	PWM2IE	PWM1IE	_	I2C2BCIE	I2C1BCIE
IEC5	82Ah	ADCAN4IE	ADCAN3IE	ADCAN2IE	ADCAN1IE	ADCAN0IE	ADCIE	SENT2EIE	SENT2IE	SENT1EIE	SENT1IE	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	_
IEC6	82Ch	ADCAN20IE	ADCAN19IE	ADCAN18IE	ADCAN17IE	ADCAN16IE	ADCAN15IE	ADCAN14IE	ADCAN13IE	ADCAN12IE	ADCAN11IE	ADCAN10IE	ADCAN9IE	ADCAN8IE	ADCAN7IE	ADCAN6IE	ADCAN5IE
IEC7	82Eh	SPI2GIE	SPI1GIE	CLC2PIE	CLC1PIE	ADFLTR3IE	ADFLTR2IE	ADFLTR1IE	ADFLTR0IE	ADCMP3IE	ADCMP2IE	ADCMP1IE	ADCMP0IE	_	_	_	_
IEC8	830h	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SPI3GIE
IEC10	834h	CLC3PIE	PEVTFIE	PEVTEIE	PEVTDIE	PEVTCIE	PEVTBIE	PEVTAIE	_	_	_	_	_	_	_	—	_
IEC11	836h	U3EVTIE	U2EVTIE	U1EVTIE	_	_	_	_	_	_	_	_	CLC4NIE	CLC3NIE	CLC2NIE	CLC1NIE	CLC4PIE

Legend: — = Unimplemented.

TABLE 7-5: INTERRUPT PRIORITY REGISTERS

Register	Address	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPC0	840h	-	CNBIP2	CNBIP1	CNBIP0	_	CNAIP2	CNAIP1	CNAIP0	_	T1IP2	T1IP1	T1IP0	_	INT0IP2	INT0IP1	INT0IP0
IPC1	842h	_	CCT1IP2	CCT1IP1	CCT1IP0	_	CCP1IP2	CCP1IP1	CCP1IP0	—	_	_	_	_	DMA0IP2	DMA0IP1	DMA0IP0
IPC2	844h	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0	_	SPI1RXIP2	SPI1RXIP1	SPI1RXIP0	_	DMA1IP2	DMA1IP1	DMA1IP0
IPC3	846h	_	INT1IP2	INT1IP1	INT1IP0	_	NVMIP2	NVMIP1	NVMIP0	_	ECCSBEIP2	ECCSBEIP1	ECCSBEIP0	_	U1TXIP2	U1TXIP1	U1TXIP0
IPC4	848h	_	CNCIP2	CNCIP1	CNCIP0	—	DMA2IP2	DMA2IP1	DMA2IP0	—	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0
IPC5	84Ah	—	CCP2IP2	CCP2IP1	CCP2IP0	—	_	_	_	—	DMA3IP2	DMA3IP1	DMA3IP20	_	INT2IP2	INT2IP1	INT2IP0
IPC6	84Ch	_	U2RXIP2	U2RXIP1	U2RXIP0	—	INT3IP2	INT3IP1	INT3IP0	—	—	—	_	_	CCT2IP2	CCT2IP1	CCT2IP0
IPC7	84Eh	_	_	_	_	_	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0	_	SPI2RXIP2	SPI2RXIP1	SPI2RXIP0	_	U2TXIP2	U2TXIP1	U2TXIP0
IPC8	850h	_	CCP3IP2	CCP3IP1	CCP3IP0	—	_	—	—	_	—	—	—	—	—	—	—
IPC9	852h	_	-	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	CCT3IP2	CCT3IP1	CCT3IP0
IPC10	854h		CCP5IP2	CCP5IP1	CCP5IP0	—		_	—	—	CCT4IP2	CCT4IP1	CCT4IP0	—	CCP4IP2	CCP4IP1	CCP4IP0
IPC11	856h	_	_	—	—	—	_	—	—	_	DMTIP2	DMTIP1	DMTIP0	—	CCT5IP2	CCT5IP1	CCT5IP0
IPC12	858h	_	CRCIP2	CRCIP1	CRCIP0	—	U2EIP2	U2EIP1	U2EIP0	—	U1EIP2	U1EIP1	U1EIP0	—	QEI1IP2	QEI1IP1	QEI1IP0
IPC13	85Ah	_	_	—	_	—	QEI2IP2	QEI2IP1	QEI2IP0	—	—	—	—	—	—	—	—
IPC14	85Ch		SPI3RXIP2	SPI3RXIP1	SPI3RXIP0	—	U3TXIP2	U3TXIP1	U3TXIP1	—	U3RXIP2	U3RXIP1	U3RXIP0	—	U3EIP2	U3EIP1	U3EIP0
IPC15	85Eh	_	PTGSTEPIP2	PTGSTEPIP1	PTGSTEPIP0	—		_	—	—	_	_	_	—	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0
IPC16	860h		PWM1IP2	PWM1IP1	PWM1IP0	—		_	—	—	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	—	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0
IPC17	862h			-	—	—	PWM4IP2	PWM4IP1	PWM4IP0	—	PWM3IP2	PWM3IP1	PWM3IP0	—	PWM2IP2	PWM2IP1	PWM2IP0
IPC18	864h	—	CNDIP2	CNDIP1	CNDIP0	_	_	_	—	_	—	—	_	_	—	—	—
IPC19	866h	—	CMP3IP2	CMP3IP1	CMP3IP0	—	CMP2IP2	CMP2IP1	CMP2IP0	—	CMP1IP2	CMP1IP1	CMP1IP0	—	—	—	_
IPC20	868h	—	PTG1IP2	PTG1IP1	PTG1IP0	—	PTG0IP2	PTG0IP1	PTG0IP0	—	PTGWDTIP2	PTGWDTIP1	PTGWDTIP0	—	—	—	_
IPC21	86Ah	—	SENT1EIP2	SENT1EIP1	SENT1EIP0	_	SENT1IP2	SENT1IP1	SENT1IP0	_	PTG3IP2	PTG3IP1	PTG3IP0	_	PTG2IP2	PTG2IP1	PTG2IP0
IPC22	86Ch	—	ADCAN0IP2	ADCAN0IP1	ADCAN0IP0	_	ADCIP2	ADCIP1	ADCIP0	_	SENT2EIP2	SENT2EIP1	SENT2EIP0	_	SENT2IP2	SENT2IP1	SENT2IP0
IPC23	86Eh	—	ADCAN4IP2	ADCAN4IP1	ADCAN4IP0	_	ADCAN3IP2	ADCAN3IP1	ADCAN3IP0	_	ADCAN2IP2	ADCAN2IP1	ADCAN2IP0	_	ADCAN1IP2	ADCAN1IP1	ADCAN1IP0
IPC24	870h	—	ADCAN8IP2	ADCAN8IP1	ADCAN8IP0	—	ADCAN7IP2	ADCAN7IP1	ADCAN7IP0	—	ADCAN6IP2	ADCAN6IP1	ADCAN6IP0	_	ADCAN5IP2	ADCAN5IP1	ADCAN5IPC
IPC25	872h	—	ADCAN12IP2	ADCAN12IP1	ADCAN12IP0	_	ADCAN11IP2	ADCAN11IP1	ADCAN11IP0	_	ADCAN10IP2	ADCAN10IP1	ADCAN10IP0	_	ADCAN9IP2	ADCAN9IP1	ADCAN9IP0
IPC26	874h	—	ADCAN16IP2	ADCAN16IP2	ADCAN16IP2	—	ADCAN15IP2	ADCAN15IP1	ADCAN15IP0	—	ADCAN14IP2	ADCAN14IP1	ADCAN14IP0	_	ADCAN13IP2	ADCAN13IP1	ADCAN13IP
IPC27	876h	—	ADCAN20IP2	ADCAN20IP1	ADCAN20IP0	_	ADCAN19IP2	ADCAN19IP1	ADCAN19IP0	_	ADCAN18IP2	ADCAN18IP1	ADCAN18IP0	_	ADCAN17IP2	ADCAN17IP1	ADCAN17IP
IPC29	87Ah	—	ADCMP3IP2	ADCMP3IP1	ADCMP3IP0	_	ADCMP2IP2	ADCMP2IP1	ADCMP2IP0	_	ADCMP1IP2	ADCMP1IP1	ADCMP1IP0	_	ADCMP0IP2	ADCMP0IP1	ADCMP0IP0
IPC30	87Ch	—	ADFLTR3IP2	ADFLTR3IP1	ADFLTR3IP0	—	ADFLTR2IP2	ADFLTR2IP1	ADFLTR2IP0	—	ADFLTR1IP2	ADFLTR1IP1	ADFLTR1IP0	—	ADFLTR0IP2	ADFLTR0IP1	ADFLTR0IP
IPC31	87Eh	—	SPI2GIP0	SPI2GIP1	SPI2GIP0	_	SPI1GIP2	SPI1GIP1	SPI1GIP0	_	CLC2PIP2	CLC2PIP1	CLC2PIP0	_	CLC1PIP2	CLC1PIP1	CLC1PIP0
IPC32	880h	—	_	_	—	—	_	_	—	—	_	_	_	_	SPI3GIP2	SPI3GIP1	SPI3GIP0
IPC42	894h	—	PEVTCIP2	PEVTCIP1	PEVTCIP0	—	PEVTBIP2	PEVTBIP1	PEVTBIP0	—	PEVTAIP2	PEVTAIP1	PEVTAIP0	—	-	—	—
IPC43	896h	—	CLC3PIP2	CLC3PIP1	CLC3PIP0	_	PEVTFIP2	PEVTFIP1	PEVTFIP0	—	PEVTEIP2	PEVTEIP1	PEVTEIP0	_	PEVTDIP2	PEVTDIP1	PEVTDIP0
IPC44	898h	—	CLC3NIP2	CLC3NIP1	CLC3NIP0	_	CLC2NIP2	CLC2NIP1	CLC2NIP0	_	CLC1NIP2	CLC1NIP1	CLC1NIP0	—	CLC4PIP2	CLC4PIP1	CLC4PIP0
IPC45	89Ah	—	_	_	_	_	_	_	_	—	_	_	_	_	CLC4NIP2	CLC4NIP1	CLC4NIP0
IPC47	89Eh	—	U3EVTIP2	U3EVTIP1	U3EVTIP0	_	U2EVTIP2	U2EVTIP1	U2EVTIP0	_	U1EVTIP2	U1EVTIP1	U1EVTIP0	_	_	_	—

Legend: - = Unimplemented.

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

7.3.1 KEY RESOURCES

- "Interrupts" (www.microchip.com/DS70000600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

7.4 Interrupt Control and Status Registers

The dsPIC33CK64MP105 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior, contains the Global Interrupt Enable bit (GIE) and the Alternate Interrupt Vector Table Enable bit (AIVTEN).

INTCON3 contains the status flags for the Auxiliary PLL and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap Status bit (SGHT).

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of seven priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM[7:0]) and Interrupt Level bits (ILR[3:0]) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-2. For example, INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0[0], the INT0IE bit in IEC0[0] and the INT0IP[2:0] bits in the first position of IPC0 (IPC0[2:0]).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to **"Enhanced CPU"** (www.microchip.com/DS70005158) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL[2:0] bits (SR[7:5]). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with IPL[2:0], also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15					•		bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С
bit 7					•		bit 0
l egend.		C = Clearable	bit				

Legena:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL[2:0]: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)
Note 1:	For complete register details, see Register 3-1.

- 2: The IPL[2:0] bits are concatenated with the IPL[3] bit (CORCON[3]) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL[3] = 1. User interrupts are disabled when IPL[3] = 1.
- **3:** The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR		US1	US0	EDT	DL2	DL1	DL0
bit 15	•						bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7		•					bit 0
Legend:		C = Clearable	e bit				

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	VAR: Variable Exception Processing Latency Control bit
	1 = Variable exception processing latency is enabled
	0 = Fixed exception processing latency is enabled
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾
	 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—		
bit 7							bit 0		
									
Legend:	••					(0)			
R = Readable I -n = Value at P		W = Writable		•	ented bit, read a				
-n = value at P	UR	'1' = Bit is set		'0' = Bit is clea	rea	x = Bit is unki	nown		
bit 15		errupt Nesting	Disable hit						
bit 15		nesting is disa							
	•	nesting is enal							
bit 14	OVAERR: Ad	ccumulator A C	verflow Trap F	lag bit					
		s caused by an							
	-	-		f Accumulator A					
bit 13		ccumulator B (
		s caused by an s not caused by							
bit 12	-	= Trap was not caused by an overflow of Accumulator B OVAERR: Accumulator A Catastrophic Overflow Trap Flag bit							
			-	erflow of Accum	-				
	-	-	-	c overflow of Ac					
bit 11			•	Overflow Trap F	•				
				erflow of Accum					
bit 10	-	umulator A Ove	-						
		rflow of Accum	•						
	0 = Trap is d	isabled							
bit 9		umulator B Ov		able bit					
	1 = Trap ove 0 = Trap is d	rflow of Accum	ulator B						
bit 8	-		flow Tran Enat	ole hit					
bit 0	COVTE: Catastrophic Overflow Trap Enable bit 1 = Trap catastrophic overflow of Accumulator A or B is enabled								
	0 = Trap is d								
bit 7	SFTACERR:	Shift Accumul	ator Error Statu	us bit					
				alid accumulator					
		•	-	invalid accumul	ator shift				
bit 6		iivide-by-Zero I or trap was cau							
		or trap was cat or trap was not	•	•					
bit 5		DMA Controlle	-	-					
		rror trap has o	•						
	0 = DMAC e	rror trap has no	ot occurred						
bit 4	MATHERR:	Math Error Sta	tus bit						
		or trap has occ							

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

© 2018-2020 Microchip Technology Inc.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
GIE	DISI	SWTRAP					AIVTEN			
bit 15							bit			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	—	INT3EP	INT2EP	INT1EP	INT0EP			
bit 7							bit			
Legend:										
R = Readable	o hit	W = Writable b	.i+	LI – Unimplon	nonted hit read					
			11	-	nented bit, read		2014/2			
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown			
bit 15	GIE: Global	Interrupt Enable	bit							
		ts and associated		enabled						
	0 = Interrupt	ts are disabled, b	ut traps are	still enabled						
bit 14	DISI: DISI	Instruction Status	s bit							
	1 = DISI instruction is active									
		struction is not ac								
bit 13	SWTRAP: Software Trap Status bit									
	 Software trap is enabled Software trap is disabled 									
bit 12-9		e trap is disabled ented: Read as '0	,							
bit 8	-			Enchlo hit						
	AIVTEN: Alternate Interrupt Vector Table Enable bit 1 = Uses Alternate Interrupt Vector Table									
	0 = Uses standard Interrupt Vector Table									
bit 7-4		Unimplemented: Read as '0'								
bit 3	-			t Polarity Select	bit					
	INT3EP: External Interrupt 3 Edge Detect Polarity Select bit 1 = Interrupt on negative edge									
	0 = Interrupt on positive edge									
bit 2	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit									
	1 = Interrupt on negative edge									
	-	t on positive edge								
bit 1		INT1EP: External Interrupt 1 Edge Detect Polarity Select bit								
		t on negative edg t on positive edge								
bit 0	-	ternal Interrupt 0		t Polarity Select	bit					
-		t on negative edg	-	, <u> </u>						
	0 = Interrupt									

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	NAE
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
_	—	DAE	DOOVR		_	—	APLL
bit 7							bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			t	'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-9	Unimpleme	nted: Read as	'0'				
bit 8	NAE: NVM A	Address Error S	Soft Trap Statu	s bit			
		dress error soft					
		dress error soft	-	occurred			
bit 7-6	•	nted: Read as					
bit 5		Address Error S	•				
		dress error soft					
		dress error soft	-				
bit 4		Stack Overflow	•				
 1 = DO stack overflow soft trap has occurred 0 = DO stack overflow soft trap has not occurred 							
			•	curred			
bit 3-1	-	nted: Read as					
bit 0		iary PLL Loss c		ap Status bit			
		ck soft trap has					
	0 = APLL loc	ck soft trap has	not occurred				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
	—	—		—	—	ECCDBE	SGHT	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 15-2	Unimpleme	nted: Read as	ʻ0'					

-	- • · · · · · · ·	
bit 1	ECCDBE: ECC Double-Bit Error Trap	bit

1 = ECC double-bit error trap has occurred

0 = ECC double-bit error trap has not occurred

bit 0 SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

U-0	U-0	R-0	U-0	R-0	R-0	R-0	R-0					
_	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0					
bit 15							bit					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
			VECN	IUM[7:0]								
bit 7							bit					
Legend:												
R = Readab	ole bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-14	Unimplemen	ted: Read as 'C)'									
bit 13	VHOLD: Vect	tor Number Cap	ture Enable	bit								
		1 = VECNUM[7:0] bits read current value of vector number encoding tree (i.e., highest priority pendin										
	interrupt)											
				/[7:0] at Interrup	ol Acknowledge	e and relained l						
bit 12	-	Unimplemented: Read as '0'										
bit 11-8	ILR[3:0]: New CPU Interrupt Priority Level bits											
	1111 = CPU Interrupt Priority Level is 15											
	0001 = CPU Interrupt Priority Level is 1											
	0000 = CPU Interrupt Priority Level is 0											
bit 7-0	VECNUM[7:0]: Vector Numb	er of Pendin	ig Interrupt bits								
	11111111 = 255, Reserved; do not use											
	00001001 = 9, T1 – Timer1 interrupt 00001000 = 8 INT0 – External Interrupt 0											
	00001000 = 8, INT0 – External Interrupt 0 00000111 = 7, Reserved; do not use											
		00000110 = 6, Generic soft error trap										
		5, Reserved; do										
		00000100 = 4, Math error trap 00000011 = 3, Stack error trap										
		2, Generic hard	•									
		1, Address erro										
		0, Oscillator fail										

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

NOTES:

8.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports with Edge Detect" (www.microchip.com/DS70005322) in the "dsPIC33/PIC24 Family Reference Manual".
 - **2:** Some registers and associated bits described in this section may not be available on all devices.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity. The PORT registers are located in the SFR.

Some of the key features of the I/O ports are:

- Individual Output Pin Open-Drain Enable/Disable
- Individual Input Pin Weak Pull-up and Pull-Down
- Monitor Selective Inputs and Generate Interrupt when Change in Pin State is Detected
- · Operation during Sleep and Idle modes

8.1 Parallel I/O (PIO) Ports

All port pins have 12 registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input.

All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch. Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. Table 8-1 shows the pin availability. Table 8-2 shows the 5V input tolerant pins across this family.

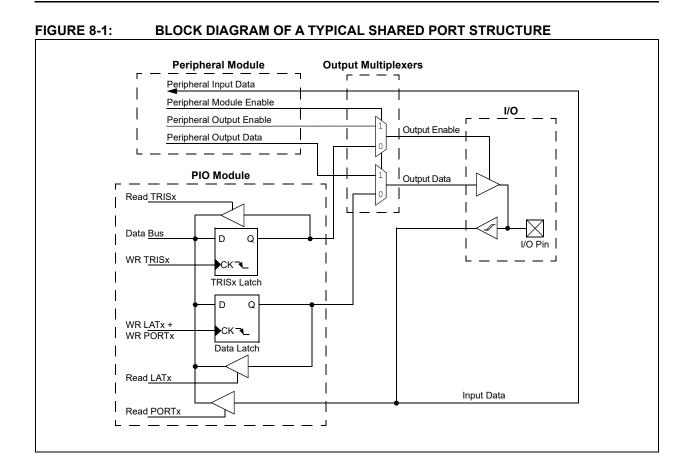

Device	Rx15	Rx14	Rx13	Rx12	Rx11	Rx10	Rx9	Rx8	Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0
PORTA																
dsPIC33CKXXMP105	—	—					—	—	—	_	_	Х	Х	Х	Х	Х
dsPIC33CKXXMP103	—		_	_	_	_	—	—	—	_	_	Х	Х	Х	Х	Х
dsPIC33CKXXMP102	—	_								_	_	Х	Х	Х	Х	Х
ANSELA	—	—	_	_	_	_						Х	Х	Х	Х	Х
PORTB																
dsPIC33CKXXMP105	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33CKXXMP103	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33CKXXMP102	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ANSELB	—	_					Х	Х	Х			Х	Х	Х	Х	Х
			-	-	-	POR	ГС							-	-	
dsPIC33CKXXMP105	—	—	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
dsPIC33CKXXMP103	—	—						-		—	Х	Х	Х	Х	Х	Х
dsPIC33CKXXMP102	—	—								—	_	—	—	_		—
ANSELC	—	—							Х	Х	_	—	Х	Х	Х	Х
						POR	ΓD									
dsPIC33CKXXMP105	—	—	Х			Х		Х		_		—	—	_	Х	—
dsPIC33CKXXMP103	—	_	_			_	_	-	_	_	_	—	_	_	_	—
dsPIC33CKXXMP102	—	—	—	_						—	-		—		—	—
ANSELD			Х			Х	_	—	_	_	_		_			—

TABLE 8-1: PIN AND ANSELx AVAILABILITY

TABLE 8-2:5V INPUT TOLERANT PORTS

PORTA		_	_		_	_	_	_	_	_	_	RA4	RA3	RA2	RA1	RA0
PORTB	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
PORTC	_	_	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PORTD	_	—	RD13		_	RD10	_	RD8	_	_	_	_	_		RD1	—

Legend: Shaded pins are up to 5.5 VDC input tolerant.

8.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Enable for PORTx register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs, other than VDD, by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

8.2 Configuring Analog and Digital Port Pins

The ANSELx registers control the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx registers have a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module. When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin, defined as a digital input (including the ANx pins), can cause the input buffer to consume current that exceeds the device specifications.

8.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

8.3 Control Registers

The following registers are in the PORT module:

- Register 8-1: ANSELx (one per port)
- Register 8-2: TRISx (one per port)
- Register 8-3: PORTx (one per port)
- Register 8-4: LATx (one per port)
- Register 8-5: ODCx (one per port)
- Register 8-6: CNPUx (one per port)
- Register 8-7: CNPDx (one per port)
- Register 8-8: CNCONx (one per port optional)
- Register 8-9: CNEN0x (one per port)
- Register 8-10: CNSTATx (one per port optional)
- Register 8-11: CNEN1x (one per port)
- Register 8-12: CNFx (one per port)

REGISTER 8-1: ANSELX: ANALOG SELECT FOR PORTX REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
			ANSE	ELx[15:8]					
bit 15							bit 8		
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
			ANS	ELx[7:0]					
bit 7							bit C		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0

ANSELx[15:0]: Analog Select for PORTx bits

1 = Analog input is enabled and digital input is disabled on the PORTx[n] pin

0 = Analog input is disabled and digital input is enabled on the PORTx[n] pin

REGISTER 8-2: TRISX: OUTPUT ENABLE FOR PORTX REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRIS	x[15:8]			
bit 15							bit 8
		D/// 4				D/4/ 4	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			TRI	Sx[7:0]			
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'					id as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			ared	x = Bit is unk	nown		

bit 15-0 **TRISx[15:0]**: Output Enable for PORTx bits

1 = LATx[n] is not driven on the PORTx[n] pin

0 = LATx[n] is driven on the PORTx[n] pin

REGISTER 8-3: PORTX: INPUT DATA FOR PORTX REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
			PORT	x[15:8]					
bit 15							bit 8		
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
FK/ V V- I	R/W-1	R/VV-1			R/VV-1	K/VV-1	R/W-1		
			POR	Tx[7:0]					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		

bit 15-0 **PORTx[15:0]:** PORTx Data Input Value bits

REGISTER 8-4: LATX: OUTPUT DATA FOR PORTX REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			LAT	x[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			LAT	x[7:0]			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un				nown			

bit 15-0 LATx[15:0]: PORTx Data Output Value bits

REGISTER 8-5: ODCx: OPEN-DRAIN ENABLE FOR PORTx REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ODC	Cx[15:8]				
bit 15								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			OD	Cx[7:0]				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk				nown				

bit 15-0 **ODCx[15:0]:** PORTx Open-Drain Enable bits

1 = Open-drain is enabled on the PORTx pin

0 = Open-drain is disabled on the PORTx pin

REGISTER 8-6: CNPUX: CHANGE NOTIFICATION PULL-UP ENABLE FOR PORTX REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNP	Ux[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNF	'Ux[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at P	POR	'1' = Bit is set	= Bit is set '0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0

CNPUx[15:0]: Change Notification Pull-up Enable for PORTx bits

1 = The pull-up for PORTx[n] is enabled – takes precedence over the pull-down selection

0 = The pull-up for PORTx[n] is disabled

CNPDx: CHANGE NOTIFICATION PULL-DOWN ENABLE FOR PORTx REGISTER **REGISTER 8-7:**

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNPDx[15:8]							
							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNPE	0x[7:0]			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CNPDx[15:0]: Change Notification Pull-Down Enable for PORTx bits

1 = The pull-down for PORTx[n] is enabled (if the pull-up for PORTx[n] is not enabled)

0 = The pull-down for PORTx[n] is disabled

REGISTER 8-8: CNCONX: CHANGE NOTIFICATION CONTROL FOR PORTX REGISTER

R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
ON	—	—	—	CNSTYLE	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	_		_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x =		x = Bit is unkn	own
bit 15	ON: Change I 1 = CN is ena 0 = CN is disa) Control for	PORTx On bit			
	Unimplemented: Read as '0'						
bit 14-12	Unimplemen	ieu. Reau as 0					
bit 14-12 bit 11	-	hange Notificati		ection bit			
	CNSTYLE: C 1 = Edge styl	hange Notificati e (detects edge n style (detects	on Style Sele transitions,	CNFx[15:0] bits			

REGISTER 8-9: CNEN0x: INTERRUPT CHANGE NOTIFICATION ENABLE FOR PORTX REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNEN	Dx[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNEN	0x[7:0]			
bit 7							bit 0
Legend:							

=ogona.			
R = Readable bit W = Writable bit		U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CNEN0x[15:0]:** Interrupt Change Notification Enable for PORTx bits 1 = Interrupt-on-change (from the last read value) is enabled for PORTx[n] 0 = Interrupt-on-change is disabled for PORTx[n]

REGISTER 8-10: CNSTATX: INTERRUPT CHANGE NOTIFICATION STATUS FOR PORTX REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			CNSTA	Tx[15:8]			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			CNSTA	ATx[7:0]			

bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CNSTATx[15:0]**: Interrupt Change Notification Status for PORTx bits

1 = Change occurred on PORTx[n] since last read of PORTx[n]

0 = Change did not occur on PORTx[n] since last read of PORTx[n]

REGISTER 8-11: CNEN1x: INTERRUPT CHANGE NOTIFICATION EDGE SELECT FOR PORTX REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNEN1x[15:8]							
							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNEN	1x[7:0]			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CNEN1x[15:0]:** Interrupt Change Notification Edge Select for PORTx bits

bit 0

When CNSTYLE (CNCONx[11]) = 0:

REGISTER 8-12: CNFx: INTERRUPT CHANGE NOTIFICATION FLAG FOR PORTx REGISTER

1.1.0
1.1.0
bit 8
R/W-0
bit 0

=ogona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15- CNFx[15:0]: Interrupt Change Notification Flag for PORTx bits

When CNSTYLE (CNCONx[11]) = 1:

1 = An enabled edge event occurred on the PORTx[n] pin

0 = An enabled edge event did not occur on the PORTx[n] pin

8.4 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the dsPIC33CK64MP105 family devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States, even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State. Five control registers are associated with the Change Notification (CN) functionality of each I/O port. To enable the Change Notification feature for the port, the ON bit (CNCONx[15]) must be set.

The CNEN0x and CNEN1x registers contain the CN interrupt enable control bits for each of the input pins. The setting of these bits enables a CN interrupt for the corresponding pins. Also, these bits, in combination with the CNSTYLE bit (CNCONx[11]), define a type of transition when the interrupt is generated. Possible CN event options are listed in Table 8-3.

TABLE 8-3: CHANGE NOTIFICATION EVENT OPTIONS

CNSTYLE Bit (CNCONx[11])	CNEN1x Bit	CNEN0x Bit	Change Notification Event Description
0	Does not matter	0	Disabled
0	Does not matter	1	Detects a mismatch between the last read state and the current state of the pin
1	0	0	Disabled
1	0	1	Detects a positive transition only (from '0' to '1')
1	1	0	Detects a negative transition only (from '1' to '0')
1	1	1	Detects both positive and negative transitions

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. In addition to the CNSTATx register, the CNFx register is implemented for each port. This register contains flags for Change Notification events. These flags are set if the valid transition edge, selected in the CNEN0x and CNEN1x registers, is detected. CNFx stores the occurrence of the event. CNFx bits must be cleared in software to get the next Change Notification interrupt. The CN interrupt is generated only for the I/Os configured as inputs (corresponding TRISx bits must be set).

Note:	Pull-ups and pull-downs on Input Change
	Notification pins should always be
	disabled when the port pin is configured
	as a digital output.

8.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

8.5.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions.

8.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I^2C modules. A similar requirement excludes all modules with analog inputs, such as the A/D Converter (ADC)

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

dsPIC33CK64MP105 FAMILY

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

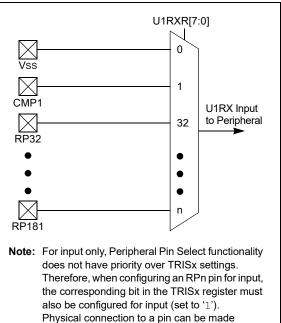
8.5.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral mapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. The dsPIC33CK64MP105 devices have implemented the control register lock sequence.

After a Reset, writes to the RPINRx and RPORx registers are allowed, but they can be disabled by setting the IOLOCK bit (RPCON[11]). Attempted writes with the IOLOCK bit set will appear to execute normally, but the contents of the registers will remain unchanged. Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes. To set or clear IOLOCK, the NVMKEY unlock sequence must be executed:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	XC16 compiler provides a built-in C
	language function for unlocking and
	modifying the RPCON register:
	builtin_write_RPCON(value);
	For more information, see the XC16
	compiler help files.


8.5.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping. Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit index value maps the RPn pin with the corresponding value, or internal signal, to that peripheral. See Table 8-4 for a list of available inputs.

For example, Figure 8-2 illustrates remappable pin selection for the U1RX input.

FIGURE 8-2:

REMAPPABLE INPUT FOR U1RX

through RP32 through RP77. There are internal signals and virtual pins that can be connected to an input. Table 8-4 shows the details of the input assignment.

RPINRx[15:8] or RPINRx[7:0]	Function	Available on Ports
0	Vss	Internal
1	Comparator 1	Internal
2	Comparator 2	Internal
3	Comparator 3	Internal
4-5	RP4-RP5	Reserved
6	PTG Trigger 26	Internal
7	PTG Trigger 27	Internal
8-10	RP8-RP10	Reserved
11	PWM Event Out C	Internal
12	PWM Event Out D	Internal
13	PWM Event Out E	Internal
14-31	RP14-RP31	Reserved
32	RP32	Port Pin RB0
33	RP33	Port Pin RB1
34	RP34	Port Pin RB2
35	RP35	Port Pin RB3
36	RP36	Port Pin RB4
37	RP37	Port Pin RB5
38	RP38	Port Pin RB6
39	RP39	Port Pin RB7
40	RP40	Port Pin RB8
41	RP41	Port Pin RB9
42	RP42	Port Pin RB10
43	RP43	Port Pin RB11
44	RP44	Port Pin RB12
45	RP45	Port Pin RB13
46	RP46	Port Pin RB14
47	RP47	Port Pin RB15
48	RP48	Port Pin RC0
49	RP49	Port Pin RC1
50	RP50	Port Pin RC2
51	RP51	Port Pin RC3
52	RP52	Port Pin RC4
53	RP53	Port Pin RC5
54	RP54	Port Pin RC6
55	RP55	Port Pin RC7
56	RP56	Port Pin RC8
57	RP57	Port Pin RC9
58	RP58	Port Pin RC10
59	RP59	Port Pin RC11
60	RP60	Port Pin RC12
61	RP61	Port Pin RC13

TABLE 8-4: REMAPPABLE PIN INPUTS

RPINRx[15:8] or RPINRx[7:0]	Function	Available on Ports	
62-64	RP62-RP64 Reserved		
65	RP65	Port Pin RD1	
66-71	RP66-RP71	Reserved	
72	RP72	Port Pin RD8	
73	RP73	Reserved	
74	RP74	Port Pin RD10	
75-76	RP75-RP76	Reserved	
77	RP77	Port Pin RD13	
78-175	RP78-RP175	Reserved	
176	RP176	Virtual RPV0	
177	RP177	Virtual RPV1	
178	RP178	Virtual RPV2	
179	RP179	Virtual RPV3	
180	RP180	Virtual RPV4	
181	RP181	Virtual RPV5	

TABLE 8-4: REMAPPABLE PIN INPUTS (CONTINUED)

8.5.5 VIRTUAL CONNECTIONS

The dsPIC33CK64MP105 devices support six virtual RPn pins (RP176-RP181), which are identical in functionality to all other RPn pins, with the exception of pinouts. These six pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP176 and the PWM Fault input can be configured for RP176 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

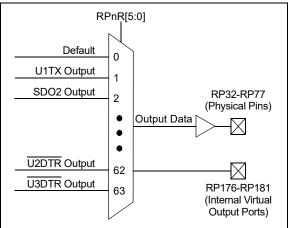
Input Name ⁽¹⁾	Function Name	Register	Register Bits
External Interrupt 1	INT1	RPINR0	INT1R[7:0]
External Interrupt 2	INT2	RPINR1	INT2R[7:0]
External Interrupt 3	INT3	RPINR1	INT3R[7:0]
Timer1 External Clock	T1CK	RPINR2	T1CK[7:0]
SCCP Timer1	TCKI1	RPINR3	TCKI1R[7:0]
SCCP Capture 1	ICM1	RPINR3	ICM1R[7:0]
SCCP Timer2	TCKI2	RPINR4	TCKI2R[7:0]
SCCP Capture 2	ICM2	RPINR4	ICM2R[7:0]
SCCP Timer3	TCKI3	RPINR5	TCKI3R[7:0]
SCCP Capture 3	ICM3	RPINR5	ICM3R[7:0]
SCCP Timer4	TCKI4	RPINR6	TCKI4R[7:0]
SCCP Capture 4	ICM4	RPINR6	ICM4R[7:0]
MCCP Timer5	TCKI5	RPINR7	TCKI5R[7:0]
MCCP Capture 5	ICM5	RPINR7	ICM5R[7:0]
xCCP Fault A	OCFA	RPINR11	OCFAR[7:0]
xCCP Fault B	OCFB	RPINR11	OCFBR[7:0]
PWM PCI Input 8	PCI8	RPINR12	PCI8R[7:0]
PWM PCI Input 9	PCI9	RPINR12	PCI9R[7:0]
PWM PCI Input 10	PCI10	RPINR13	PCI10R[7:0]
PWM PCI Input 11	PCI11	RPINR13	PCI11R[7:0]
QEI1 Input A	QEIA1	RPINR14	QEIA1R[7:0]
QEI1 Input B	QEIB1	RPINR14	QEIB1R[7:0]
QEI1 Index 1 Input	QEINDX1	RPINR15	QEINDX1R[7:0]
QEI1 Home 1 Input	QEIHOM1	RPINR15	QEIHOM1R[7:0]
QEI2 Input A	QEIA2	RPINR16	QEIA2R[7:0]
QEI2 Input B	QEIB2	RPINR16	QEIB2R[7:0]
QEI2 Index 1 Input	QEINDX2	RPINR17	QEINDX2R[7:0]
QEI2 Home 1 Input	QEIHOM2	RPINR17	QEIHOM2R[7:0]
UART1 Receive	U1RX	RPINR18	U1RXR[7:0]
UART1 Data-Set-Ready	U1DSR	RPINR18	U1DSRR[7:0]
UART2 Receive	U2RX	RPINR19	U2RXR[7:0]
UART2 Data-Set-Ready	U2DSR	RPINR19	U2DSRR[7:0]
SPI1 Data Input	SDI1	RPINR20	SDI1R[7:0]
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R[7:0]
SPI1 Slave Select	SS1	RPINR21	SS1R[7:0]
Reference Clock Input	REFCLKI	RPINR21	REFOIR[7:0]
SPI2 Data Input	SDI2	RPINR22	SDI2R[7:0]
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R[7:0]
SPI2 Slave Select	SS2	RPINR23	SS2R[7:0]
UART3 Receive	U3RX	RPINR27	U3RXR[7:0]
UART3 Data-Set-Ready	U3DSR	RPINR27	U3DSRR[7:0]

TABLE 8-5:	SELECTABLE INPUT SOURCES	(MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

Input Name ⁽¹⁾	Function Name	Register	Register Bits
SPI3 Data Input	SDI3	RPINR29	SDI3R[7:0]
SPI3 Clock Input	SCK3IN	RPINR29	SCK3R[7:0]
SPI3 Slave Select	SS3	RPINR30	SS3R[7:0]
xCCP Fault C	OCFC	RPINR37	OCFCR[7:0]
PWM PCI Input 17	PCI17	RPINR37	PCI17R[7:0]
PWM PCI Input 18	PCI18	RPINR38	PCI18R[7:0]
PWM PCI Input 12	PCI12	RPINR42	PCI12R[7:0]
PWM PCI Input 13	PCI13	RPINR42	PCI13R[7:0]
PWM PCI Input 14	PCI14	RPINR43	PCI14R[7:0]
PWM PCI Input 15	PCI15	RPINR43	PCI15R[7:0]
PWM PCI Input 16	PCI16	RPINR44	PCI16R[7:0]
SENT1 Input	SENT1	RPINR44	SENT1R[7:0]
SENT2 Input	SENT2	RPINR45	SENT2R[7:0]
CLC Input A	CLCINA	RPINR45	CLCINAR[7:0]
CLC Input B	CLCINB	RPINR46	CLCINBR[7:0]
CLC Input C	CLCINC	RPINR46	CLCINCR[7:0]
CLC Input D	CLCIND	RPINR47	CLCINDR[7:0]
ADC Trigger Input (ADTRIG31)	ADCTRG	RPINR47	ADCTRGR[7:0]
xCCP Fault D	OCFD	RPINR48	OCFDR[7:0]
UART1 Clear-to-Send	U1CTS	RPINR48	U1CTSR[7:0]
UART2 Clear-to-Send	U2CTS	RPINR49	U2CTSR[7:0]
UART3 Clear-to-Send	U3CTS	RPINR49	U3CTSR[7:0]

TABLE 8-5: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) (CONTINUED)


Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

8.5.6 OUTPUT MAPPING

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 8-48 through Register 8-67). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 8-7 and Figure 8-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 8-3: MULTIPLEXING REMAPPABLE OUTPUTS FOR RPn

Note 1: There are six virtual output ports which are not connected to any I/O ports (RP176-RP181). These virtual ports can be accessed by RPOR17, RPOR18 and RPOR19.

8.5.7 MAPPING LIMITATIONS

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally, any combination of peripheral mappings, across any or all of the RPn pins, is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs, and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view (see Table 8-6).

TABLE 8-6: REMAPPABLE OUTPUT PIN REGISTERS

Register	RP Pin	I/O Port
RPOR0[5:0]	RP32	Port Pin RB0
RPOR0[13:8]	RP33	Port Pin RB1
RPOR1[5:0]	RP34	Port Pin RB2
RPOR1[13:8]	RP35	Port Pin RB3
RPOR2[5:0]	RP36	Port Pin RB4
RPOR2[13:8]	RP37	Port Pin RB5
RPOR3[5:0]	RP38	Port Pin RB6
RPOR3[13:8]	RP39	Port Pin RB7
RPOR4[5:0]	RP40	Port Pin RB8
RPOR4[13:8]	RP41	Port Pin RB9
RPOR5[5:0]	RP42	Port Pin RB10
RPOR5[13:8]	RP43	Port Pin RB11
RPOR6[5:0]	RP44	Port Pin RB12
RPOR6[13:8]	RP45	Port Pin RB13
RPOR7[5:0]	RP46	Port Pin RB14
RPOR7[13:8]	RP47	Port Pin RB15
RPOR8[5:0]	RP48	Port Pin RC0
RPOR8[13:8]	RP49	Port Pin RC1
RPOR9[5:0]	RP50	Port Pin RC2
RPOR9[13:8]	RP51	Port Pin RC3
RPOR10[5:0]	RP52	Port Pin RC4
RPOR10[13:8]	RP53	Port Pin RC5
RPOR11[5:0]	RP54	Port Pin RC6
RPOR11[13:8]	RP55	Port Pin RC7
RPOR12[5:0]	RP56	Port Pin RC8
RPOR12[13:8]	RP57	Port Pin RC9
RPOR13[5:0]	RP58	Port Pin RC10
RPOR13[13:8]	RP59	Port Pin RC11
RPOR14[5:0]	RP60	Port Pin RC12
RPOR14[13:8]	RP61	Port Pin RC13
RPOR15[5:0]	RP65	Port Pin RD1
RPOR15[13:8]	RP72	Port Pin RD8
RPOR16[5:0]	RP74	Port Pin D10
RPOR16[13:8]	RP77	Port Pin RD13
RPOR17[5:0]	RP176	Virtual Pin RPV0
RPOR17[13:8]	RP177	Virtual Pin RPV1
RPOR18[5:0]	RP178	Virtual Pin RPV2
RPOR18[13:8]	RP179	Virtual Pin RPV3
RPOR19[5:0]	RP180	Virtual Pin RPV4
RPOR19[13:8]	RP181	Virtual Pin RPV5

Function	RPnR[5:0]	Output Name
Not Connected	0	Not Connected
U1TX	1	RPn tied to UART1 Transmit
U1RTS	2	RPn tied to UART1 Request-to-Send
U2TX	3	RPn tied to UART2 Transmit
U2RTS	4	RPn tied to UART2 Request-to-Send
SDO1	5	RPn tied to SPI1 Data Output
SCK1	6	RPn tied to SPI1 Clock Output
SS1	7	RPn tied to SPI1 Slave Select
SDO2	8	RPn tied to SPI2 Data Output
SCK2	9	RPn tied to SPI2 Clock Output
SS2	10	RPn tied to SPI2 Slave Select
SDO3	11	RPn tied to SPI3 Data Output
SCK3	12	RPn tied to SPI3 Clock Output
<u>SS3</u>	13	RPn tied to SPI3 Slave Select
REFCLKO	14	RPn tied to Reference Clock Output
OCM1A	15	RPn tied to SCCP1 Output
OCM2A	16	RPn tied to SCCP2 Output
ОСМЗА	17	RPn tied to SCCP3 Output
OCM4A	18	RPn tied to SCCP4 Output
CMP1	23	RPn tied to Comparator 1 Output
CMP2	24	RPn tied to Comparator 2 Output
CMP3	25	RPn tied to Comparator 3 Output
U3TX	27	RPn tied to UART3 Transmit
U3RTS	28	RPn tied to UART3 Request-to-Send
PWM4H	34	RPn tied to PWM4H Output
PWM4L	35	RPn tied to PWM4L Output
PWMEA	36	RPn tied to PWM Event A Output
PWMEB	37	RPn tied to PWM Event B Output
QEICMP1	38	RPn tied to QEI1 Comparator Output
QEICMP2	39	RPn tied to QEI2 Comparator Output
CLC1OUT	40	RPn tied to CLC1 Output
CLC2OUT	41	RPn tied to CLC2 Output
PWMEC	44	RPn tied to PWM Event C Output
PWMED	45	RPn tied to PWM Event D Output
PTGTRG24	46	PTG Trigger Output 24
PTGTRG25	47	PTG Trigger Output 25
SENT1OUT	48	RPn tied to SENT1 Output
SENT2OUT	49	RPn tied to SENT2 Output
OCM5A	50	RPn tied to MCCP5 Output A
OCM5B	51	RPn tied to MCCP5 Output B
OCM5C	52	RPn tied to MCCP5 Output C
OCM5D	53	RPn tied to MCCP5 Output D

© 2018-2020 Microchip Technology Inc.

Function	RPnR[5:0]	Output Name
OCM5E	54	RPn tied to MCCP5 Output E
OCM5F	55	RPn tied to MCCP5 Output F
CLC3OUT	59	RPn tied to CLC4 Output
CLC4OUT	60	RPn tied to CLC4 Output
U1DTR	61	RPn tied to UART1 DTR
U2DTR	62	RPn tied to UART2 DTR
U3DTR	63	RPn tied to UART3 DTR

TABLE 8-7: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn) (CONTINUED)

8.5.8 I/O HELPFUL TIPS

- 1. In some cases, certain pins, as defined in Table 31-15 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or lesser than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low-side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins, by default, after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Select for PORTx registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, $TRISx = 0 \times 0$, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name, from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1; this indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristics specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the Absolute Maximum Ratings in Section 31.0 "Electrical Characteristics" of this data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a Built-In Self-Test (BIST).
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Select for PORTx (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Select for PORTx registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

8.5.9 I/O PORTS RESOURCES

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

8.5.9.1 Key Resources

- "I/O Ports with Edge Detect" (www.microchip.com/DS70005322) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

TABLE 8-8: PORTA REGISTER SUMMARY

		-	D 14 4 0	D 14 40	D 14.44	D 14 4 0						D 14.4	D 14 A		544	-
Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELA	—	—	_	—	_		—		—	—	—			ANSELA[4:0]	
TRISA	—	—	_	—	_	_	_	_	_	_	_			TRISA[4:0]		
PORTA	_	_	_	_	_	_	_	_	_	_	_			RA[4:0]		
LATA	—	—	_	—	_	_	_	_	_	_	_			LATA[4:0]		
ODCA	_	_	_	_	_	_	_	_	_	_	_	ODCA[4:0]				
CNPUA	_	—	_	_	—		_		_		_			CNPUA[4:0]		
CNPDA	_	_	_	_	_	_	_	_	_	_	_			CNPDA[4:0]		
CNCONA	ON	—	_	_	CNSTYLE		_		_		_	_	—	—	_	—
CNEN0A	_	—	_	_	—		_		_		_		(CNEN0A[4:0]	
CNSTATA	—	—	_	—	_	_	_	_	_	_	_	CNSTATA[4:0]				
CNEN1A	_	—	_	_	_		_				_		(CNEN1A[4:0]	
CNFA	_	_		_			—		—		—			CNFA[4:0]		

TABLE 8-9: PORTB REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELB	—	—		_	—		A	NSELB[9:	7]	_	—		А	NSELB[4:	0]	
TRISB		TRISB[15:0]														
PORTB		RB[15:0]														
LATB							L	ATB[15:0]								
ODCB							0	DCB[15:0]								
CNPUB		CNPUB[15:0]														
CNPDB							CN	IPDB[15:0]							
CNCONB	ON	—	_	_	CNSTYLE	_	—	_	_	_	_		-			—
CNEN0B							CN	NEN0[15:0]							
CNSTATB		CNSTATB[15:0]														
CNEN1B		CNEN1B[15:0]														
CNFB		CNFB[15:0]														

TABLE 8-10: PORTC REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELC		—		_	—	—	_	_	ANSE	LC[7:6]	—	—	ANSELC[3:0]			
TRISC		_		TRISC[13:0]												
PORTC	_	_							RC[13	3:0]						
LATC	_	—							LATC[1	13:0]						
ODCC	_	—							ODCC[13:0]						
CNPUC	_	_		CNPUC[13:0]												
CNPDC	_	—							CNPDC	[13:0]						
CNCONC	ON	—	_	_	CNSTYLE	—	_	—	_	—	—	_	—		_	—
CNEN0C	_	_							CNEN00	2[13:0]						
CNSTATC		—		CNSTATC[13:0]												
CNEN1C		_		CNEN1C[13:0]												
CNFC	_	—							CNFC[13:0]						

TABLE 8-11: PORTD REGISTER SUMMARY

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELD	—	_	ANSELD13	_	—	ANSELD10	_	—	_	—	_			—	—	—
TRISD	—	_	TRISD13	_	—	TRISD10	_	TRISD8	_	_	_	_	_	_	TRISD1	—
PORTD	—	_	RD13	_	—	RD10	_	RD8	_	_	_	_	_	_	RD1	—
LATD	—		LATD13	_	_	LATD10	_	LATD8		_	_		_	_	LATD1	—
ODCD	—	_	ODCD13	_	—	ODCD10	_	ODCD8	_	_	_	_	_	_	ODCD1	—
CNPUD	—	_	CNPUD13	_	—	CNPUD10	_	CNPUD8	_	_	_	_	_	_	CNPUD1	—
CNPDD	—		CNPDD13	—	_	CNPDD10	_	CNPDD8		_	_		_	_	CNPDD1	—
CNCOND	ON	-	—	—	CNSTYLE	_	_	_	_	_			_		_	
CNEN0D	—	-	CNEN0D13	—	—	CNEN0D10	_	CNEN0D8	_	_			_		CNEN0D1	
CNSTATD	—		CNSTATD13	—	_	CNSTATD10	_	CNSTATD8		_	_		_	_	CNSTATD1	—
CNEN1D	—		CNEN1D13	—	_	CNEN1D10		CNEN1D8		—			—	_	CNEN1D1	—
CNFD	_		CNFD13	—	_	CNFD10		CNFD8							CNFD1	—

8.5.10 PERIPHERAL PIN SELECT REGISTERS

REGISTER 8-13: RPCON: PERIPHERAL REMAPPING CONFIGURATION REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
	_			IOLOCK			_
bit 15					•		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
					_	_	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	Unimplemented: Read as '0'
bit 11	IOLOCK: Peripheral Remapping Register Lock bit
	 1 = All Peripheral Remapping registers are locked and cannot be written 0 = All Peripheral Remapping registers are unlocked and can be written
bit 10-0	Unimplemented: Read as '0'

Note 1: Writing to this register needs an unlock sequence.

REGISTER 8-14: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **INT1R[7:0]:** Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT3R7	INT3R6	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2R7	INT2R6	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
bit 7	·			•	•	•	bit (
Legend:							

REGISTER 8-15: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8INT3R[7:0]: Assign External Interrupt 3 (INT3) to the Corresponding RPn Pin bits
See Table 8-4.bit 7-0INT2R[7:0]: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-16: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T1CKR7	T1CKR6	T1CKR5	T1CKR4	T1CKR3	T1CKR2	T1CKR1	T1CKR0
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **T1CKR[7:0]:** Assign Timer1 External Clock (T1CK) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICM1R7	ICM1R6	ICM1R5	ICM1R4	ICM1R3	ICM1R2	ICM1R1	ICM1R0
bit 15							bit 8

REGISTER 8-17: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TCKI1R7	TCKI1R6	TCKI1R5	TCKI1R4	TCKI1R3	TCKI1R2	TCKI1R1	TCKI1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM1R[7:0]: Assign SCCP Capture 1 (ICM1) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI1[7:0]:** Assign SCCP Timer1 (TCKI1) Input to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-18: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICM2R7	ICM2R6	ICM2R5	ICM2R4	ICM2R3	ICM2R2	ICM2R1	ICM2R0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TCKI2R7	TCKI2R6	TCKI2R5	TCKI2R4	TCKI2R3	TCKI2R2	TCKI2R1	TCKI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM2R[7:0]: Assign SCCP Capture 2 (ICM2) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI2R[7:0]:** Assign SCCP Timer2 (TCKI2) Input to the Corresponding RPn Pin bits See Table 8-4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICM3R7	ICM3R6	ICM3R5	ICM3R4	ICM3R3	ICM3R2	ICM3R1	ICM3R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TCKI3R7	TCKI3R6	TCKI3R5	TCKI3R4	TCKI3R3	TCKI3R2	TCKI3R1	TCKI3R0
bit 7				•			bit 0
Lonondu							

REGISTER 8-19: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM3R[7:0]: Assign SCCP Capture 3 (ICM3) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI3R[7:0]:** Assign SCCP Timer3 (TCKI3) Input to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-20: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICM4R7	ICM4R6	ICM4R5	ICM4R4	ICM4R3	ICM4R2	ICM4R1	ICM4R0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TCKI4R7	TCKI4R6	TCKI4R5	TCKI4R4	TCKI4R3	TCKI4R2	TCKI4R1	TCKI4R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM4R[7:0]: Assign SCCP Capture 4 (ICM4) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI4R[7:0]:** Assign SCCP Timer4 (TCKI4) Input to the Corresponding RPn Pin bits See Table 8-4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICM5R7	ICM5R6	ICM5R5	ICM5R4	ICM5R3	ICM5R2	ICM5R1	ICM5R0
bit 15							bit 8

REGISTER 8-21: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TCKI5R7	TCKI5R6	TCKI5R5	TCKI5R4	TCKI5R3	TCKI5R2	TCKI5R1	TCKI5R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 ICM5R[7:0]: Assign MCCP Capture 5 (ICM5) Input to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-22: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OCFBR7	OCFBR6	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OCFAR7	OCFAR6	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **OCFBR[7:0]:** Assign xCCP Fault B (OCFB) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **OCFAR[7:0]:** Assign xCCP Fault A (OCFA) Input to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **TCKI5R[7:0]:** Assign MCCP Timer5 (TCKI5) Input to the Corresponding RPn Pin bits See Table 8-4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI9R7	PCI9R6	PCI9R5	PCI9R4	PCI9R3	PCI9R2	PCI9R1	PCI9R0
bit 15							bit 8

REGISTER 8-23: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI8R7	PCI8R6	PCI8R5	PCI8R4	PCI8R3	PCI8R2	PCI8R1	PCI8R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	PCI9R[7:0]: Assign PWM Input 9 (PCI9) to the Corresponding RPn Pin bits
	See Table 8-4.
bit 7-0	PCI8R[7:0]: Assign PWM Input 8 (PCI8) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-24: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI11R7	PCI11R6	PCI11R5	PCI11R4	PCI11R3	PCI11R2	PCI11R1	PCI11R0
bit 15	•	•					bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI10R7	PCI10R6	PCI10R5	PCI10R4	PCI10R3	PCI10R2	PCI10R1	PCI10R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 **PCI11R[7:0]:** Assign PWM Input 11 (PCI11) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **PCI10R[7:0]:** Assign PWM Input 10 (PCI10) to the Corresponding RPn Pin bits See Table 8-4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIB1R7	QEIB1R6	QEIB1R5	QEIB1R4	QEIB1R3	QEIB1R2	QEIB1R1	QEIB1R0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
QEIA1R7	QEIA1R6	QEIA1R5	QEIA1R4	QEIA1R3	QEIA1R2	QEIA1R1	QEIA1R0	
bit 7 bit C								

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

 bit 15-8
 QEIB1R[7:0]: Assign QEI1 Input B (QEIB1) to the Corresponding RPn Pin bits See Table 8-4.

 bit 7-0
 QEIA1R[7:0]: Assign QEI1 Input A (QEIA1) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-26: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIHOM1R7	QEIHOM1R6	QEIHOM1R5	QEIHOM1R4	QEIHOM1R3	QEIHOM1R2	QEIHOM1R1	QEIHOM1R0
bit 15						•	bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
QEINDX1R7	QEINDX1R6	QEINDX1R5	QEINDX1R4	QEINDX1R3	QEINDX1R2	QEINDX1R1	QEINDX1R0	
bit 7 bit (

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 **QEIHOM1R[7:0]:** Assign QEI1 Home 1 Input (QEIHOM1) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **QEINDX1R[7:0]:** Assign QEI1 Index 1 Input (QEINDX1) to the Corresponding RPn Pin bits See Table 8-4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIB2R7	QEIB2R6	QEIB2R5	QEIB2R4	QEIB2R3	QEIB2R2	QEIB2R1	QEIB2R0
bit 15						•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIA2R7	QEIA2R6	QEIA2R5	QEIA2R4	QEIA2R3	QEIA2R2	QEIA2R1	QEIA2R0
bit 7						•	bit 0

REGISTER 8-27: RPINR16: PERIPHERAL PIN SELECT INPUT REGISTER 16

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIB2R[7:0]:** Assign QEI2 Input B (QEIB2) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **QEIA2R[7:0]:** Assign QEI2 Input A (QEIA2) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-28: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIHOM2R7	QEIHOM2R6	QEIHOM2R5	QEIHOM2R4	QEIHOM2R3	QEIHOM2R2	QEIHOM2R1	QEIHOM2R0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEINDX2R7	QEINDX2R6	QEINDX2R5	QEINDX2R4	QEINDX2R3	QEINDX2R2	QEINDX2R1	QEINDX2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **QEIHOM2R[7:0]:** Assign QEI2 Home 1 Input (QEIHOM2) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **QEINDX2R[7:0]:** Assign QEI2 Index 1 Input (QEINDX2) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-29:	RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18
----------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U1DSRR7	U1DSRR6	U1DSRR5	U1DSRR4	U1DSRR3	U1DSRR2	U1DSRR1	U1DSRR0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U1RXR7	U1RXR6	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **U1DSRR[7:0]:** Assign UART1 Data-Set-Ready (U1DSR) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **U1RXR[7:0]:** Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-30: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2DSRR7	U2DSRR6	U2DSRR5	U2DSRR4	U2DSRR3	U2DSRR2	U2DSRR1	U2DSRR0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2RXR7	U2RXR6	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **U2DSRR[7:0]:** Assign UART2 Data-Set-Ready (U2DSR) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **U2RXR[7:0]:** Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits See Table 8-4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SCK1R7	SCK1R6	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDI1R7	SDI1R6	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7		•	•	•			bit 0

REGISTER 8-31: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8SCK1R[7:0]: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn Pin bits
See Table 8-4.bit 7-0SDI1R[7:0]: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-32: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
REFOIR7	REFOIR6	REFOIR5	REFOIR4	REFOIR3	REFOIR2	REFOIR1	REFOIR0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SS1R7	SS1R6	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **REFOIR[7:0]:** Assign Reference Clock Input (REFCLKI) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **SS1R[7:0]:** Assign SPI1 Slave Select (SS1) to the Corresponding RPn Pin bits See Table 8-4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SCK2R7	SCK2R6	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15						•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

REGISTER 8-33: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 SCK2R[7:0]: Assign SPI2 Clock Input (SCK2IN) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **SDI2R[7:0]:** Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-34: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SS2R7	SS2R6	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **SS2R[7:0]:** Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits See Table 8-4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U3DSRR7	U3DSRR6	U3DSRR5	U3DSRR4	U3DSRR3	U3DSRR2	U3DSRR1	U3DSRR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U3RXR7	U3RXR6	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0
bit 7							bit 0
Legend:							

REGISTER 8-35: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **U3DSRR[7:0]:** Assign UART3 Data-Set-Ready (U3DSR) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **U3RXR[7:0]:** Assign UART3 Receive (U3RX) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-36: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SCK3R7	SCK3R6	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDI3R7	SDI3R6	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 SCK3R[7:0]: Assign SPI3 Clock Input (SCK3IN) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **SDI3R[7:0]:** Assign SPI3 Data Input (SDI3) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-37: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		_	_	_	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SS3R7	SS3R6	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **SS3R[7:0]:** Assign SPI3 Slave Select (SS3) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-38: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI17R7	PCI17R6	PCI17R5	PCI17R4	PCI17R3	PCI17R2	PCI17R1	PCI17R0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OCFCR7	OCFCR6	OCFCR5	OCFCR4	OCFCR3	OCFCR2	OCFCR1	OCFCR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8PCI17R[7:0]: Assign PWM Input 17 (PCI17) to the Corresponding RPn Pin bits
See Table 8-4.bit 7-0OCFCR[7:0]: Assign xCCP Fault C (OCFC) to the Corresponding RPn Pin bits

See Table 8-4.

REGISTER 8-39: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—			—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI18R7	PCI18R6	PCI18R5	PCI18R4	PCI18R3	PCI18R2	PCI18R1	PCI18R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0' bit 7-0 PCI18R[7:0]: Assign PWM Input 18 (PCI18) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-40: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI13R7	PCI13R6	PCI13R5	PCI13R4	PCI13R3	PCI13R2	PCI13R1	PCI13R0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI12R7	PCI12R6	PCI12R5	PCI12R4	PCI12R3	PCI12R2	PCI12R1	PCI12R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8PCI13R[7:0]: Assign PWM Input 13 (PCI13) to the Corresponding RPn Pin bits
See Table 8-4.bit 7-0PCI12R[7:0]: Assign PWM Input 12 (PCI12) to the Corresponding RPn Pin bits
See Table 8-4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI15R7	PCI15R6	PCI15R5	PCI15R4	PCI15R3	PCI15R2	PCI15R1	PCI15R0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI14R7	PCI14R6	PCI14R5	PCI14R4	PCI14R3	PCI14R2	PCI14R1	PCI14R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 PCI15R[7:0]: Assign PWM Input 15 (PCI15) to the Corresponding RPn Pin bits See Table 8-4. bit 7-0 PCI14R[7:0]: Assign PWM Input 14 (PCI14) to the Corresponding RPn Pin bits

bit 7-0 **PCI14R[7:0]:** Assign PWM Input 14 (PCI14) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-42: RPINR44: PERIPHERAL PIN SELECT INPUT REGISTER 44

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SENT1R7	SENT1R6	SENT1R5	SENT1R4	SENT1R3	SENT1R2	SENT1R1	SENT1R0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCI16R7	PCI16R6	PCI16R5	PCI16R4	PCI16R3	PCI16R2	PCI16R1	PCI16R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8SENT1R[7:0]: Assign SENT1 Input (SENT1) to the Corresponding RPn Pin bits
See Table 8-4.bit 7-0PCI16[7:0]: Assign PWM Input 16 (PCI16) to the Corresponding RPn Pin bits

See Table 8-4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLCINAR7	CLCINAR6	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SENT2R7	SENT2R6	SENT2R5	SENT2R4	SENT2R3	SENT2R2	SENT2R1	SENT2R0

REGISTER 8-43: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

bit	7
~	

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8CLCINAR[7:0]: Assign CLC Input A (CLCINA) to the Corresponding RPn Pin bits
See Table 8-4.bit 7-0SENT2R[7:0]: Assign SENT2 Input (SENT2) to the Corresponding RPn Pin bits

bit 7-0 SENT2R[7:0]: Assign SENT2 Input (SENT2) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-44: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLCINCR7	CLCINCR6	CLCINCR5	CLCINCR4	CLCINCR3	CLCINCR2	CLCINCR1	CLCINCR0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLCINBR7	CLCINBR6	CLCINBR5	CLCINBR4	CLCINBR3	CLCINBR2	CLCINBR1	CLCINBR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **CLCINCR[7:0]:** Assign CLC Input C (CLCINC) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **CLCINBR[7:0]:** Assign CLC Input B (CLCINB) to the Corresponding RPn Pin bits See Table 8-4.

bit 0

REGISTER 8-45: RPINR47: PERIPHERAL PIN SELECT INPUT REGISTER 47

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCTRGR7	ADCTRGR6	ADCTRGR5	ADCTRGR4	ADCTRGR3	ADCTRGR2	ADCTRGR1	ADCTRGR0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLCINDR7	CLCINDR6	CLCINDR5	CLCINDR4	CLCINDR3	CLCINDR2	CLCINDR1	CLCINDR0
bit 7						·	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **ADCTRGR[7:0]:** Assign ADC Trigger Input (ADCTRG) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **CLCINDR[7:0]:** Assign CLC Input D (CLCIND) to the Corresponding RPn Pin bits See Table 8-4.

REGISTER 8-46: RPINR48: PERIPHERAL PIN SELECT INPUT REGISTER 48

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OCFDR7	OCFDR6	OCFDR5	OCFDR4	OCFDR3	OCFDR2	OCFDR1	OCFDR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **U1CTSR[7:0]:** Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **OCFDR[7:0]:** Assign xCCP Fault D (OCFD) to the Corresponding RPn Pin bits See Table 8-4.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U3CTSR7	U3CTSR6	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2CTSR7	U2CTSR6	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, read	as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

REGISTER 8-47: RPINR49: PERIPHERAL PIN SELECT INPUT REGISTER 49

bit 15-8 **U3CTSR[7:0]:** Assign UART3 Clear-to-Send (U3CTS) to the Corresponding RPn Pin bits See Table 8-4.

bit 7-0 **U2CTSR[7:0]:** Assign UART2 Clear-to-Send (U2CTS) to the Corresponding RPn Pin bits See Table 8-4.

x = Bit is unknown

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	

'0' = Bit is cleared

REGISTER 8-48: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP33R[5:0]: Peripheral Output Function is Assigned to RP33 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP32R[5:0]: Peripheral Output Function is Assigned to RP32 Output Pin bits

(see Table 8-7 for peripheral function numbers)

'1' = Bit is set

REGISTER 8-49: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

-n = Value at POR

bit 13-8 **RP35R[5:0]:** Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP34R[5:0]:** Peripheral Output Function is Assigned to RP34 Output Pin bits (see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 15		•					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
bit 7		•					bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is u		x = Bit is unkr	າown		

REGISTER 8-50: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP37R[5:0]: Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP36R[5:0]: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-51: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

-n = Value at POR (1' = Bit is set			0° = Bit is cleared x = Bit is unknown		nown		
R = Readable bit W = Writable bit		hit	U = Unimplemented bit, read as '0'				
Legend:							
							Dir C
bit 7			1			1	bit 0
_	_	RP38R5	RP38R5	RP38R5	RP38R5	RP38R5	RP38R5
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
—	—	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP39R[5:0]:** Peripheral Output Function is Assigned to RP39 Output Pin bits (see Table 8-7 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP38R[5:0]:** Peripheral Output Function is Assigned to RP38 Output Pin bits (see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0
bit 15			•				bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
bit 7				•			bit 0
Legend:							

REGISTER 8-52: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP41R[5:0]: Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP40R[5:0]: Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-53: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RP43R[5:0]:** Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP42R[5:0]:** Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0
bit 15		•		·			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at P	-n = Value at POR '1' = Bit is set '0' =		'0' = Bit is cleared x = Bit is unknown			nown	

REGISTER 8-54: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP45R[5:0]: Peripheral Output Function is Assigned to RP45 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP44R[5:0]: Peripheral Output Function is Assigned to RP44 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-55: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0	
					•	bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0	
					•	bit 0	
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
			— RP47R5 RP47R4 U-0 R/W-0 R/W-0 — RP46R5 RP46R4 W = Writable bit K	— RP47R5 RP47R4 RP47R3 U-0 R/W-0 R/W-0 R/W-0 — RP46R5 RP46R4 RP46R3 W = Writable bit U = Unimpler	— RP47R5 RP47R4 RP47R3 RP47R2 U-0 R/W-0 R/W-0 R/W-0 R/W-0 — RP46R5 RP46R4 RP46R3 RP46R2 W = Writable bit U = Unimplemented bit, read	- RP47R5 RP47R4 RP47R3 RP47R2 RP47R1 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 - RP46R5 RP46R4 RP46R3 RP46R2 RP46R1 W = Writable bit U = Unimplemented bit, read as '0' U = Unimplemented bit, read as '0' U	

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP47R[5:0]:** Peripheral Output Function is Assigned to RP47 Output Pin bits (see Table 8-7 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP46R[5:0]:** Peripheral Output Function is Assigned to RP46 Output Pin bits (see Table 8-7 for peripheral function numbers)

-							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
bit 7	•		•				bit 0
Legend:							
P = Peadable bit $W = Writable bit$ $U = Upimplemented bit read as '0'$							

REGISTER 8-56: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP49R[5:0]: Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP48R[5:0]: Peripheral Output Function is Assigned to RP48 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-57: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP51R[5:0]:** Peripheral Output Function is Assigned to RP51 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP50R[5:0]:** Peripheral Output Function is Assigned to RP50 Output Pin bits (see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

REGISTER 8-58: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP53[5:0]: Peripheral Output Function is Assigned to RP53 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP52R[5:0]: Peripheral Output Function is Assigned to RP52 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-59: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

	11.0	D/1/0		DAMA	D/14/ 0		D /// 0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
bit 7							bit 0
Legend:							
•							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read		d as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP55R[5:0]:** Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 8-7 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP54R[5:0]:** Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
bit 7							bit 0
Legend:							

REGISTER 8-60: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP57R[5:0] : Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP56R[5:0]: Peripheral Output Function is Assigned to RP56 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-61: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			

'0' = Bit is cleared

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **RP59R[5:0]:** Peripheral Output Function is Assigned to RP59 Output Pin bits (see Table 8-7 for peripheral function numbers)

'1' = Bit is set

bit 7-6 Unimplemented: Read as '0'

-n = Value at POR

bit 5-0 **RP58R[5:0]:** Peripheral Output Function is Assigned to RP58 Output Pin bits (see Table 8-7 for peripheral function numbers)

x = Bit is unknown

U-0	R/W-0	R/W-0	R/W-0			
		10,11-0	R/W-U	R/W-0	R/W-0	R/W-0
—	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0
						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
						bit 0
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		iown	
		U-0 R/W-0 — RP60R5 W = Writable	U-0 R/W-0 R/W-0 — RP60R5 RP60R4 W = Writable bit	U-0 R/W-0 R/W-0 R/W-0 — RP60R5 RP60R4 RP60R3 W = Writable bit U = Unimplen	U-0 R/W-0 R/W-0 R/W-0 — RP60R5 RP60R4 RP60R3 RP60R2 W = Writable bit U = Unimplemented bit, read	U-0 R/W-0 R/W-0 R/W-0 R/W-0 - RP60R5 RP60R4 RP60R3 RP60R2 RP60R1 W = Writable bit U = Unimplemented bit, read as '0'

REGISTER 8-62: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP61R[5:0] : Peripheral Output Function is Assigned to RP61 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP60R[5:0]: Peripheral Output Function is Assigned to RP60 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-63: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP72R5	RP72R4	RP72R3	RP72R2	RP72R1	RP72R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP65R5	RP65R4	RP65R3	RP65R2	RP65R1	RP65R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP72R[5:0]:** Peripheral Output Function is Assigned to RP72 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP65R[5:0]:** Peripheral Output Function is Assigned to RP65 Output Pin bits (see Table 8-7 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP77R5	RP77R4	RP77R3	RP77R2	RP77R1	RP77R0
bit 15	-						bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP74R5	RP74R4	RP74R3	RP74R2	RP74R1	RP74R0
bit 7							bit 0
Legend:							

REGISTER 8-64: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP77R[5:0]: Peripheral Output Function is Assigned to RP77 Output Pin bits (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP74R[5:0]: Peripheral Output Function is Assigned to RP74 Output Pin bits (see Table 8-7 for peripheral function numbers)

REGISTER 8-65: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP177R5 ⁽¹⁾	RP177R4 ⁽¹⁾	RP177R3 ⁽¹⁾	RP177R2 ⁽¹⁾	RP177R1 ⁽¹⁾	RP177R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP176R5 ⁽¹⁾	RP176R4 ⁽¹⁾	RP176R3 ⁽¹⁾	RP176R2 ⁽¹⁾	RP176R1 ⁽¹⁾	RP176R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP177R[5:0]:** Peripheral Output Function is Assigned to RP177 Output Pin bits⁽¹⁾
(see Table 8-7 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'bit 5-0**RP176R[5:0]:** Peripheral Output Function is Assigned to RP176 Output Pin bits⁽¹⁾

(see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	RP179R5 ⁽¹⁾	RP179R4 ⁽¹⁾	RP179R3 ⁽¹⁾	RP179R2 ⁽¹⁾	RP179R1 ⁽¹⁾	RP179R0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		RP178R5 ⁽¹⁾	RP178R4 ⁽¹⁾	RP178R3 ⁽¹⁾	RP178R2 ⁽¹⁾	RP178R1 ⁽¹⁾	RP178R0 ⁽¹⁾
bit 7							bit 0

RPOR18: PERIPHERAL PIN SELECT OUTPUT REGISTER 18 REGISTER 8-66:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP179R[5:0]: Peripheral Output Function is Assigned to RP179 Output Pin bits ⁽¹⁾ (see Table 8-7 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP178R[5:0]: Peripheral Output Function is Assigned to RP178 Output Pin bits ⁽¹⁾ (see Table 8-7 for peripheral function numbers)

Note 1: These are virtual output ports.

REGISTER 8-67: RPOR19: PERIPHERAL PIN SELECT OUTPUT REGISTER 19

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP181R5 ⁽¹⁾	RP181R4 ⁽¹⁾	RP181R3 ⁽¹⁾	RP181R2 ⁽¹⁾	RP181R1 ⁽¹⁾	RP181R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP180R5 ⁽¹⁾	RP180R4 ⁽¹⁾	RP180R3 ⁽¹⁾	RP180R2 ⁽¹⁾	RP180R1 ⁽¹⁾	RP180R0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP181R[5:0]: Peripheral Output Function is Assigned to RP181 Output Pin bits (see Table 8-7 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP180R[5:0]: Peripheral Output Function is Assigned to RP180 Output Pin bits (see Table 8-7 for peripheral function numbers)

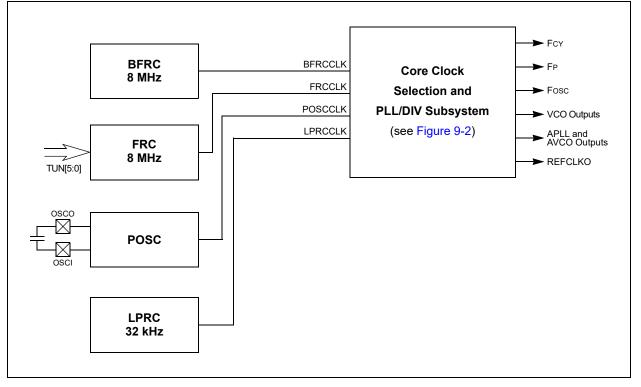
Note 1: These are virtual output ports.

TABLE 8-12: PPS INPUT CONTROL REGISTERS

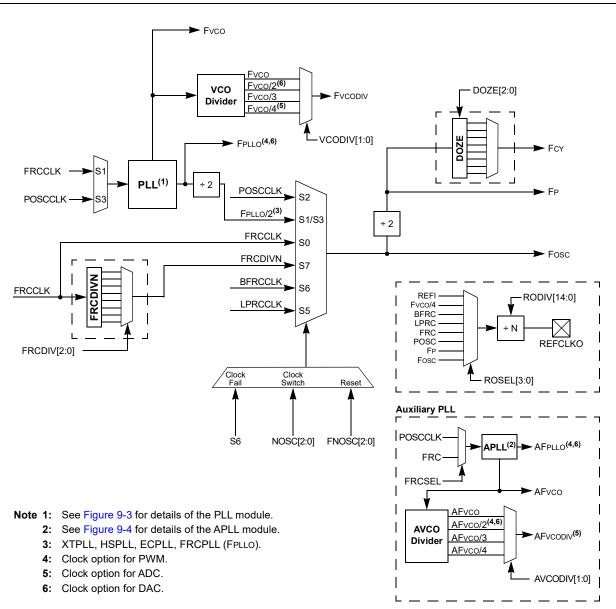
IADLL	. 0-12.					0										
Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RPCON	—	_	_	—	IOLOCK	_	_	_	—	—	_	_	_	—	_	—
RPINR0	INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	—	—	_		-	—	-	_
RPINR1	INT3R7	INT3R6	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	INT2R7	INT2R6	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
RPINR2	T1CKR7	T1CKR6	T1CKR5	T1CKR4	T1CKR3	T1CKR2	T1CKR1	T1CKR0	_	—	_	_	_	—	_	—
RPINR3	ICM1R7	ICM1R6	ICM1R5	ICM1R4	ICM1R3	ICM1R2	ICM1R1	ICM1R0	TCKI1R7	TCKI1R6	TCKI1R5	TCKI1R4	TCKI1R3	TCKI1R2	TCKI1R1	TCKI1R0
RPINR4	ICM2R7	ICM2R6	ICM2R5	ICM2R4	ICM2R3	ICM2R2	ICM2R1	ICM2R0	TCKI2R7	TCKI2R6	TCKI2R5	TCKI2R4	TCKI2R3	TCKI2R2	TCKI2R1	TCKI2R0
RPINR5	ICM3R7	ICM3R6	ICM3R5	ICM3R4	ICM3R3	ICM3R2	ICM3R1	ICM3R0	TCKI3R7	TCKI3R6	TCKI3R5	TCKI3R4	TCKI3R3	TCKI3R2	TCKI3R1	TCKI3R0
RPINR6	ICM4R7	ICM4R6	ICM4R5	ICM4R4	ICM4R3	ICM4R2	ICM4R1	ICM4R0	TCKI4R7	TCKI4R	TCKI4R5	TCKI4R4	TCKI4R3	TCKI4R2	TCKI4R1	TCKI4R0
RPINR7	ICM5R7	ICM5R6	ICM5R5	ICM5R4	ICM5R3	ICM5R2	ICM5R1	ICM5R0	TCKI5R7	TCKI5R6	TCKI5R5	TCKI5R4	TCKI5R3	TCKI5R2	TCKI5R1	TCKI5R0
RPINR11	OCFBR7	OCFBR6	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0	OCFAR7	OCFAR6	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
RPINR12	PCI9R7	PCI9R6	PCI9R5	PCI9R4	PCI9R3	PCI9R2	PCI9R1	PCI9R0	PCI8R7	PCI8R6	PCI8R5	PCI8R4	PCI8R3	PCI8R2	PCI8R1	PCI8R0
RPINR13	PCI11R7	PCI11R6	PCI11R5	PCI11R4	PCI11R3	PCI11R2	PCI11R1	PCI11R0	PCI10R7	PCI10R6	PCI10R5	PCI10R4	PCI10R3	PCI10R2	PCI10R1	PCI10R0
RPINR14	QEIB1R7	QEIB1R6	QEIB1R5	QEIB1R4	QEIB1R3	QEIB1R2	QEIB1R1	QEIB1R0	QEIA1R7	QEIA1R6	QEIA1R5	QEIA1R4	QEIA1R3	QEIA1R2	QEIA1R1	QEIA1R0
RPINR15	QEIHOM1R7	QEIHOM1R6	QEIHOM1R5	QEIHOM1R4	QEIHOM1R3	QEIHOM1R2	QEIHOM1R1	QEIHOM1R0	QEINDX1R7	QEINDX1R6	QEINDX1R5	QEINDX1R4	QEINDX1R3	QEINDX1R2	QEINDX1R1	QEINDX1R0
RPINR16	QEIB2R7	QEIB2R6	QEIB2R5	QEIB2R4	QEIB2R3	QEIB2R2	QEIB2R1	QEIB2R0	QEIA2R7	QEIA2R6	QEIA2R5	QEIA2R4	QEIA2R3	QEIA2R2	QEIA2R1	QEIA2R0
RPINR17	QEIHOM2R7	QEIHOM2R6	QEIHOM2R5	QEIHOM2R4	QEIHOM2R3	QEIHOM2R2	QEIHOM2R1	QEIHOM2R0	QEINDX2R7	QEINDX2R6	QEINDX2R5	QEINDX2R4	QEINDX2R3	QEINDX2R2	QEINDX2R1	QEINDX2R0
RPINR18	U1DSRR7	U1DSRR6	U1DSRR5	U1DSRR4	U1DSRR3	U1DSRR2	U1DSRR1	U1DSRR0	U1RXR7	U1RXR6	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
RPINR19	U2DSRR7	U2DSRR6	U2DSRR5	U2DSRR4	U2DSRR3	U2DSRR2	U2DSRR1	U2DSRR0	U2RXR7	U2RXR6	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
RPINR20	SCK1R7	SCK1R6	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	SDI1R7	SDI1R6	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
RPINR21	REFOIR7	REFOIR6	REFOIR5	REFOIR4	REFOIR3	REFOIR2	REFOIR1	REFOIR0	SS1R7	SS1R6	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
RPINR22	SCK2R7	SCK2R6	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
RPINR23	_			_		_		_	SS2R7	SS2R6	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
RPINR27	U3DSRR7	U3DSRR6	U3DSRR5	U3DSRR4	U3DSRR3	U3DSRR2	U3DSRR1	U3DSRR0	U3RXR7	U3RXR6	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0
RPINR29	SCK3R7	SCK3R6	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0	SDI3R7	SDI3R6	SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0
RPINR30	_			_		_		_	SS3R7	SS3R6	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
RPINR37	PCI17R7	PCI17R6	PCI17R5	PCI17R4	PCI17R3	PCI17R2	PCI17R1	PCI17R0	OCFCR7	OCFCR6	OCFCR5	OCFCR4	OCFCR3	OCFCR2	OCFCR1	OCFCR0
RPINR38	—	_	_	_	_	_	_	_	PCI18R7	PCI18R6	PCI18R5	PCI18R4	PCI18R3	PCI18R2	PCI18R1	PCI18R0
RPINR42	PCI13R7	PCI13R6	PCI13R5	PCI13R4	PCI13R3	PCI13R2	PCI13R1	PCI13R0	PCI12R7	PCI12R6	PCI12R5	PCI12R4	PCI12R3	PCI12R2	PCI12R1	PCI12R0
RPINR43	PCI15R7	PCI15R6	PCI15R5	PCI15R4	PCI15R3	PCI15R2	PCI15R1	PCI15R0	PCI14R7	PCI14R6	PCI14R5	PCI14R4	PCI14R3	PCI14R2	PCI14R1	PCI14R0
RPINR44	SENT1R7	SENT1R6	SENT1R5	SENT1R4	SENT1R3	SENT1R2	SENT1R1	SENT1R0	PCI16R7	PCI16R6	PCI16R5	PCI16R4	PCI16R3	PCI16R2	PCI16R1	PCI16R0
RPINR45	CLCINAR7	CLCINAR6	CLCINAR5	CLCINAR4	CLCINAR3	CLCINAR2	CLCINAR1	CLCINAR0	SENT2R7	SENT2R6	SENT2R5	SENT2R4	SENT2R3	SENT2R2	SENT2R1	SENT2R0
RPINR46	CLCINCR7	CLCINCR6	CLCINCR5	CLCINCR4	CLCINCR3	CLCINCR2	CLCINCR1	CLCINCR0	CLCINBR7	CLCINBR6	CLCINBR5	CLCINBR4	CLCINBR3	CLCINBR2	CLCINBR1	CLCINBR0
RPINR47	ADCTRGR7	ADCTRGR6	ADCTRGR5	ADCTRGR4	ADCTRGR3	ADCTRGR2	ADCTRGR1	ADCTRGR0	CLCINDR7	CLCINDR6	CLCINDR5	CLCINDR4	CLCINDR3	CLCINDR2	CLCINDR1	CLCINDR0
RPINR48	U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	OCFDR7	OCFDR6	OCFDR5	OCFDR4	OCFDR3	OCFDR2	OCFDR1	OCFDR0
RPINR49	U3CTSR7	U3CTSR6	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	U2CTSR7	U2CTSR6	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
	•	-		•				•	•	•				•		

TABLE 8-13: PPS OUTPUT CONTROL REGISTERS

Register	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RPOR0	-	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	_	_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0
RPOR1	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0			RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0
RPOR2	_	_	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0			RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
RPOR3	_	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	_	_	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0
RPOR4	_	_	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	_	_	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0
RPOR5	_	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	_	_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0
RPOR6	_	_	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0	_	_	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0
RPOR7	_	_	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0	_	_	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0
RPOR8	_	_	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	_	_	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0
RPOR9	_	_	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0	_	_	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0
RPOR10	_	_	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0	_	_	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0
RPOR11	_	_	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	_	_	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
RPOR12	_	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0	_	_	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0
RPOR13	_	_	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0	_	_	RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0
RPOR14	_	_	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0	_	_	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0
RPOR15	_	_	RP72R5	RP72R4	RP72R3	RP72R2	RP72R1	RP72R0	_	_	RP65R5	RP65R4	RP65R3	RP65R2	RP65R1	RP65R0
RPOR16	_	_	RP77R5	RP77R4	RP77R3	RP77R2	RP77R1	RP77R0	_	_	RP74R5	RP74R4	RP74R3	RP74R2	RP74R1	RP74R0
RPOR17	_	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0		_	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
RPOR18	_	_	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0		_	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
RPOR19	_	_	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0			RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0


9.0 OSCILLATOR WITH HIGH-FREQUENCY PLL

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator Module with High-Speed PLL" (www.microchip.com/DS70005255) in the "dsPIC33/PIC24 Family Reference Manual". The dsPIC33CK64MP105 family oscillator with high-frequency PLL includes these characteristics:

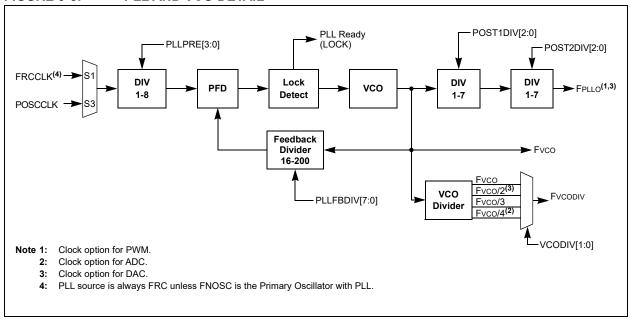

- On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources
- Auxiliary PLL (APLL) Clock Generator to Boost Operating Frequency for Peripherals
- Doze mode for System Power Savings
- Scalable Reference Clock Output (REFCLKO)
- On-the-Fly Clock Switching between Various Clock Sources
- Fail-Safe Clock Monitoring (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown

A block diagram of the dsPIC33CK64MP105 oscillator system is shown in Figure 9-1.

FIGURE 9-1: dsPIC33CK64MP105 CORE CLOCK SOURCES BLOCK DIAGRAM

dsPIC33CK64MP105 FAMILY

FIGURE 9-2: dsPIC33CK64MP105 CORE OSCILLATOR SUBSYSTEM


9.1 Primary PLL

The Primary Oscillator and internal FRC Oscillator sources can optionally use an on-chip PLL to obtain higher operating speeds. Figure 9-3 illustrates a block diagram of the PLL module.

For PLL operation, the following requirements must be met at all times without exception:

- The PLL Input Frequency (FPLLI) must be in the range of 8 MHz to 64 MHz
- The PFD Input Frequency (FPFD) must be in the range of 8 MHz to (FVCO/16) MHz

The VCO Output Frequency (Fvco) must be in the range of 400 MHz to 1600 MHz

FIGURE 9-3: PLL AND VCO DETAIL

Equation 9-1 provides the relationship between the PLL Input Frequency (FPLLI) and VCO Output Frequency (FVCO).

EQUATION 9-1: Fvco CALCULATION

$$FVCO = FPLLI \times \left(\frac{M}{N!}\right) = FPLLI \times \left(\frac{PLLFBDIV[7:0]}{PLLPRE[3:0]}\right)$$

Equation 9-2 provides the relationship between the PLL Input Frequency (FPLLI) and PLL Output Frequency (FPLLO).

EQUATION 9-2: FPLLO CALCULATION

 $FPLLO = FPLLI \times \left(\frac{M}{N1 \times N2 \times N3}\right) = FPLLI \times \left(\frac{PLLFBDIV[7:0]}{PLLPRE[3:0] \times POST1DIV[2:0] \times POST2DIV[2:0]}\right)$

Where:

M = PLLFBDIV[7:0] N1 = PLLPRE[3:0] N2 = POST1DIV[2:0] N3 = POST2DIV[2:0]

Note: The PLL Phase Detector Input Divider Select (PLLPREx) bits and the PLL Feedback Divider (PLLFBDIVx) bits should not be changed when operating in PLL mode. Therefore, the user must start in either a non-PLL mode or clock switch to a non-PLL mode (e.g., internal FRC Oscillator) to make any necessary changes and then clock switch to the desired PLL mode.

It is not permitted to directly clock switch from one PLL clock source to a different PLL clock source. The user would need to transition between PLL clock sources with a clock switch to a non-PLL clock source.

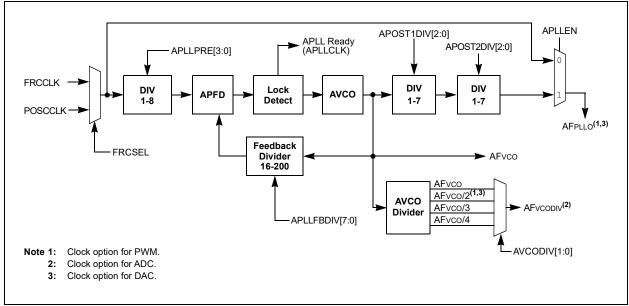
Example 9-1 illustrates code for using the PLL (50 MIPS) with the Primary Oscillator.

EXAMPLE 9-1: CODE EXAMPLE FOR USING PLL (50 MIPS) WITH PRIMARY OSCILLATOR (POSC)

```
//code example for 50 MIPS system clock using POSC with 10 MHz external crystal
// Select Internal FRC at POR
_FOSCSEL(FNOSC_FRC & IESO_OFF);
// Enable Clock Switching and Configure POSC in XT mode
FOSC (FCKSM CSECMD & POSCMD XT);
int main()
{
   // Configure PLL prescaler, both PLL postscalers, and PLL feedback divider
   CLKDIVbits.PLLPRE = 1; // N1=1
   PLLFBDbits.PLLFBDIV = 100;
                                 //M = 100
   PLLPBUDICS.PLLT
PLLDIVbits.POST1DIV = 5;
                                 // N2=5
                                 // N3=1
   PLLDIVbits.POST2DIV = 1;
   // Initiate Clock Switch to Primary Oscillator with PLL (NOSC=0b011)
    builtin write OSCCONH(0x03);
    builtin write OSCCONL(OSCCON | 0x01);
   // Wait for Clock switch to occur
   while (OSCCONbits.OSWEN!= 0);
   // Wait for PLL to lock
   while (OSCCONbits.LOCK!= 1);
```

Example 9-2 illustrates code for using the PLL with an 8 MHz internal FRC.

EXAMPLE 9-2: CODE EXAMPLE FOR USING PLL (50 MIPS) WITH 8 MHz INTERNAL FRC


```
//code example for 50 MIPS system clock using 8MHz FRC
// Select Internal FRC at POR
FOSCSEL(FNOSC FRC & IESO OFF);
// Enable Clock Switching
FOSC (FCKSM CSECMD);
int main()
{
   // Configure PLL prescaler, both PLL postscalers, and PLL feedback divider
   CLKDIVbits.PLLPRE = 1; // N1=1
                                   // M = 125
   PLLFBDbits.PLLFBDIV = 125;
   PLLDIVbits.POST1DIV = 5;
                                   // N2=5
   PLLDIVbits.POST2DIV = 1;
                                   // N3=1
   // Initiate Clock Switch to FRC with PLL (NOSC=0b001)
   __builtin_write_OSCCONH(0x01);
   __builtin_write_OSCCONL(OSCCON | 0x01);
   // Wait for Clock switch to occur
   while (OSCCONbits.OSWEN!= 0);
   // Wait for PLL to lock
   while (OSCCONbits.LOCK!= 1);
```

9.2 Auxiliary PLL

The dsPIC33CK64MP105 device family implements an Auxiliary PLL (APLL) module, which is used to generate various peripheral clock sources independent of the system clock. Figure 9-4 shows a block diagram of the APLL module.

For APLL operation, the following requirements must be met at all times without exception:

- The APLL Input Frequency (AFPLLI) must be in the range of 8 MHz to 64 MHz
- The APFD Input Frequency (AFPFD) must be in the range of 8 MHz to (AFvco/16) MHz
- The AVCO Output Frequency (AFvco) must be in the range of 400 MHz to 1600 MHz

FIGURE 9-4: APLL AND VCO DETAIL

Equation 9-3 provides the relationship between the APLL Input Frequency (AFPLLI) and the AVCO Output Frequency (AFvCO).

EQUATION 9-3: AFvco CALCULATION

 $AFVCO = AFPLLI \times \left(\frac{M}{N1}\right) = AFPLLI \times \left(\frac{APLLFBDIV[7:0]}{APLLPRE[3:0]}\right)$

Equation 9-4 provides the relationship between the APLL Input Frequency (AFPLLI) and APLL Output Frequency (AFPLLO).

EQUATION 9-4: AFPLLO CALCULATION

 $AFPLLO = AFPLLI \times \left(\frac{M}{N1 \times N2 \times N3}\right) = AFPLLI \times \left(\frac{APLLFBDIV[7:0]}{APLLPRE[3:0] \times APOSTIDIV[2:0] \times APOST2DIV[2:0]}\right)$

Where:

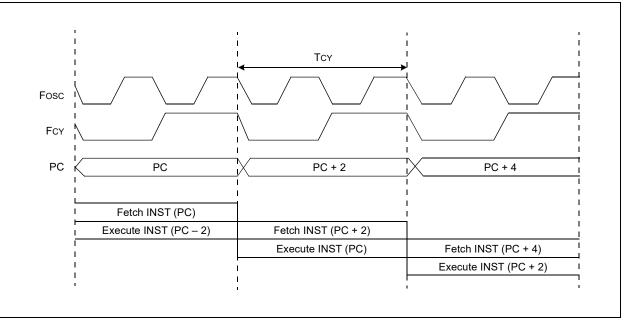
$$\begin{split} M &= APLLFBDIV[7:0]\\ N1 &= APLLPRE[3:0]\\ N2 &= APOSTIDIV[2:0]\\ N3 &= APOST2DIV[2:0] \end{split}$$

EXAMPLE 9-3: CODE EXAMPLE FOR USING AUXILIARY PLL WITH THE INTERNAL FRC OSCILLATOR

```
//code example for AFVCO = 1 GHz and AFPLLO = 500 MHz using 8 MHz internal FRC
// Configure the source clock for the APLL
ACLKCON1bits.FRCSEL = 1; // Select internal FRC as the clock source
// Configure the APLL prescaler, APLL feedback divider, and both APLL postscalers.
ACLKCON1bits.APLLPRE = 1; // N1 = 1
APLLFBD1bits.APLLFBDIV = 125; // M = 125
APLLDIV1bits.APOST1DIV = 2; // N2 = 2
APLLDIV1bits.APOST2DIV = 1; // N3 = 1
// Enable APLL
ACLKCON1bits.APLLEN = 1;
```

Note: Even with the APLLEN bit set, another peripheral must generate a clock request before the APLL will start.

9.3 CPU Clocking


The dsPIC33CK64MP105 devices can be configured to use any of the following clock configurations:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Internal Fast RC Oscillator (FRC) with optional clock divider
- Internal Low-Power RC Oscillator (LPRC)
- Primary Oscillator with PLL (ECPLL, HSPLL, XTPLL)
- Internal Fast RC Oscillator with PLL (FRCPLL)
- Backup Internal Fast RC Oscillator (BFRC)

The system clock source is divided by two to produce the internal instruction cycle clock. In this document, the instruction cycle clock is denoted by FCY. The timing diagram in Figure 9-5 illustrates the relationship between the system clock (FOSC), the instruction cycle clock (FCY) and the Program Counter (PC).

The internal instruction cycle clock (FCY) can be output on the OSCO I/O pin if the Primary Oscillator mode (POSCMD[1:0]) is not configured as HS/XT. For more information, see **Section 9.0 "Oscillator with High-Frequency PLL"**.

FIGURE 9-5: CLOCK AND INSTRUCTION CYCLE TIMING

9.4 Primary Oscillator (POSC)

The dsPIC33CK64MP105 family devices feature a Primary Oscillator (POSC) and it is available on the OSCI and OSCO pins. This connection enables an external crystal (or ceramic resonator) to provide the clock to the device. The Primary Oscillator provides three modes of operation:

- Medium Speed Oscillator (XT Mode): The XT mode is a Medium Gain, Medium Frequency mode used to work with crystal frequencies of 3.5 MHz to 10 MHz.
- High-Speed Oscillator (HS Mode): The HS mode is a High-Gain, High-Frequency mode used to work with crystal frequencies of 10 MHz to 32 MHz.
- External Clock Source Operation (EC Mode): If the on-chip oscillator is not used, the EC mode allows the internal oscillator to be bypassed. The device clocks are generated from an external source (0 MHz to up to 64 MHz) and input on the OSCI pin.

9.5 Internal Fast RC (FRC) Oscillator

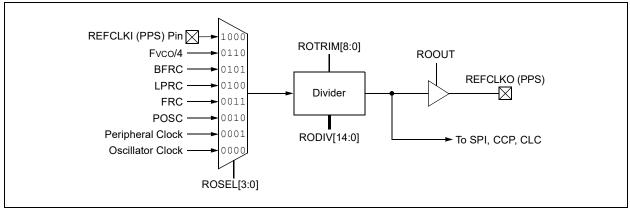
The dsPIC33CK64MP105 family devices contain one instance of the internal Fast RC (FRC) Oscillator and it provides a nominal 8 MHz clock without requiring an external crystal or ceramic resonator, which results in system cost savings for applications that do not require a precise clock reference.

The application software can tune the frequency of the oscillator using the FRC Oscillator Tuning bits (TUN[5:0]) in the FRC Oscillator Tuning register (OSCTUN[5:0]).

9.6 Low-Power RC (LPRC) Oscillator

The dsPIC33CK64MP105 family devices contain one instance of the Low-Power RC (LPRC) Oscillator. The LPRC Oscillator provides a nominal clock frequency of 32 kHz for modules such as the Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) or others.

The LPRC Oscillator is enabled under these conditions:


- The LPRC Oscillator is selected as the system clock
- The LPRC Oscillator is selected as a clock source for an enabled peripheral module (such as REFO, WDT, FSCM, Timer1 or others)

9.7 Backup Internal Fast RC (BFRC) Oscillator

The oscillator block provides a stable reference clock source for the Fail-Safe Clock Monitor (FSCM). When FSCM is enabled in the FCKSM[1:0] Configuration bits (FOSC[7:6]), it constantly monitors the main clock source against a reference signal from the 8 MHz Backup Internal Fast RC (BFRC) Oscillator. In case of a clock failure, the Fail-Safe Clock Monitor switches the clock to the BFRC Oscillator, allowing for continued low-speed operation or a safe application shutdown.

9.8 Reference Clock Output

In addition to the CLKO output (Fosc/2), the dsPIC33CK64MP105 family devices can be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCONL and REFOCONH registers. Setting the ROEN bit (REFOCONL[15]) makes the clock signal available on the REFCLKO pin. The RODIV[14:0] bits (REFOCONH[14:0]) and ROTRIM[8:0] bits (REFOTRIMH[15:7]) enable the selection of different clock divider options. The formula for determining the final frequency output is shown in Equation 9-5. The ROSWEN bit (REFOCONL[9]) indicates that the clock divider has been successfully switched. In order to switch the REFCLKO divider, the user should ensure that this bit reads as '0'. Write the updated values to the RODIV[14:0] or ROTRIM[8:0] bits, set the ROSWEN bit and then wait until it is cleared before assuming that the REFCLKO clock is valid.

EQUATION 9-5: CALCULATING FREQUENCY OUTPUT

$F_{REFOUT} = \frac{F_{REFIN}}{2 \cdot (RODIV[14:0] + ROT)}$	TRIM[8:0]/512)
Where: F_{REFOUT} = Output Frequency F_{REFIN} = Input Frequency When $RODIV$ [14:0] = 0, the the same as the input clock	e output clock is

The ROSEL[3:0] bits (REFOCONL[3:0]) determine which clock source is used for the reference clock output. The ROSLP bit (REFOCONL[11]) determines if the reference source is available on REFCLKO when the device is in Sleep mode.

CLKO is enabled by Configuration bit, OSCIOFCN, and

is independent of the REFCLKO reference clock.

REFCLKO is mappable to any I/O pin that has mapped

output capability. Refer to Table 8-7 for more information.

The Reference Clock Output module block diagram is

shown in Figure 9-6.

To use the reference clock output in Sleep mode, both the ROSLP bit must be set and the clock selected by the ROSEL[3:0] bits must be enabled for operation during Sleep mode, if possible. Clearing the ROSEL[3:0] bits allows the reference output frequency to change, as the system clock changes, during any clock switches. The ROOUT bit enables/disables the reference clock output on the REFCLKO pin.

The ROACTIV bit (REFOCONL[8]) indicates that the module is active; it can be cleared by disabling the module (setting ROEN to '0'). The user must not change the reference clock source, or adjust the divider when the ROACTIV bit indicates that the module is active. To avoid glitches, the user should not disable the module until the ROACTIV bit is '1'.

9.9 Oscillator Configuration

The oscillator system has both Configuration registers and SFRs to configure, control and monitor the system. The FOSCSEL and FOSC Configuration registers (Register 28-4 and Register 28-5, respectively) are used for initial setup. Table 9-1 lists the configuration settings that select the device's oscillator source and operating mode at a Power-on Reset (POR).

TABLE 9-1:	CONFIGURATION BIT VALUES FOR CLOCK SELECTION
-------------------	--

Oscillator Source	Oscillator Mode	FNOSC[2:0] Value	POSCMD[1:0] Value
S0	Fast RC Oscillator (FRC)	000	XX
S1	Fast RC Oscillator with PLL (FRCPLL)	001	XX
S2	Primary Oscillator (EC)	010	00
S2	Primary Oscillator (XT)	010	01
S2	Primary Oscillator (HS)	010	10
S3	Primary Oscillator with PLL (ECPLL)	011	00
S3	Primary Oscillator with PLL (XTPLL)	011	01
S3	Primary Oscillator with PLL (HSPLL)	011	10
S4	Reserved	100	XX
S5	Low-Power RC Oscillator (LPRC)	101	XX
S6	Backup FRC (BFRC)	110	XX
S7	Fast RC Oscillator with ÷ N Divider (FRCDIVN)	111	XX

9.10 OSCCON Unlock Sequence

The OSCCON register is protected against unintended writes through a lock mechanism. The upper and lower bytes of OSCCON have their own unlock sequence, and both must be used when writing to both bytes of the register. Before OSCCON can be written to, the following unlock sequence must be used:

1. Execute the unlock sequence for the OSCCON high byte.

In two back-to-back instructions:

- Write 0x78 to OSCCON[15:8]
- Write 0x9A to OSCCON[15:8]
- In the instruction immediately following the unlock sequence, the OSCCON[15:8] bits can be modified.

3. Execute the unlock sequence for the OSCCON low byte.

In two back-to-back instructions:

- Write 0x46 to OSCCON[7:0]
- Write 0x57 to OSCCON[7:0]
- In the instruction immediately following the unlock sequence, the OSCCON[7:0] bits can be modified.

Note: MPLAB[®] XC16 provides a built-in C language function, including the unlocking sequence to modify high and low bytes in the OSCCON register: __builtin_write_OSCCONH(value) builtin write OSCCONL(value)

9.11 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
—	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSC0 ⁽²⁾
bit 15							bit 8
R/W-0	U-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
CLKLOCK	—	LOCK	—	CF ⁽³⁾	—	—	OSWEN
bit 7							bit 0

Legend:	y = Value set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC[2:0]: Current Oscillator Selection bits (read-only)
	111 = Fast RC Oscillator (FRC) with Divide-by-n (FRCDIVN)
	110 = Backup FRC (BFRC)
	101 = Low-Power RC Oscillator (LPRC)
	100 = Reserved – default to FRC
	011 = Primary Oscillator (XT, HS, EC) with PLL (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator (FRC) with PLL (FRCPLL)
	000 = Fast RC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC[2:0]: New Oscillator Selection bits ⁽²⁾
	111 = Fast RC Oscillator (FRC) with Divide-by-n (FRCDIVN)
	110 = Backup FRC (BFRC)
	101 = Low-Power RC Oscillator (LPRC)
	100 = Reserved – default to FRC
	011 = Primary Oscillator (XT, HS, EC) with PLL (XTPLL, HSPLL, ECPLL)
	010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator (FRC) with PLL (FRCPLL)
	000 = Fast RC Oscillator (FRC)
bit 7	CLKLOCK: Clock Lock Enable bit
	1 = If (FCKSM0 = 1), then clock and PLL configurations are locked; if (FC

- 1 = If (FCKSM0 = 1), then clock and PLL configurations are locked; if (FCKSM0 = 0), then clock and PLL configurations may be modified
 - 0 = Clock and PLL selections are not locked, configurations may be modified
- bit 6 Unimplemented: Read as '0'
- bit 5 LOCK: PLL Lock Status bit (read-only)
 - 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied
 - 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
- bit 4 Unimplemented: Read as '0'
- Note 1: Writes to this register require an unlock sequence (see Section 9.10 "OSCCON Unlock Sequence").
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected a clock failure
 - 0 = FSCM has not detected a clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to the selection specified by the NOSC[2:0] bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence (see Section 9.10 "OSCCON Unlock Sequence").
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0				
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0				
bit 15				· · ·			bit 8				
U-0	U-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-1				
—			—		PLLPR	E[3:0] ⁽⁴⁾					
bit 7							bit				
Legend:		r = Reserved	bit								
R = Readab	ole bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown				
bit 15	ROI: Recover	r on Interrupt bi	t								
				he processor clo	ock, and the pe	ripheral clock ra	tio is set to 1:				
	•	s have no effec									
bit 14-12	DOZE[2:0]: P	Processor Clock	Reduction Se	elect bits ⁽¹⁾							
	111 = FP divided by 128										
		110 = FP divided by 64									
		101 = FP divided by 32 100 = FP divided by 16									
	011 = FP divided by 10										
	010 = F P divid		<i>arc)</i>								
	001 = FP divid										
	000 = Fp divi	ded by 1									
bit 11	DOZEN: Doz	e Mode Enable	bit ^(2,3)								
				veen the periphe atio is forced to ?		the processor	clocks				
bit 10-8	FRCDIV[2:0]:	: Internal Fast F	RC Oscillator F	Postscaler bits							
	111 = FRC divided by 256										
	110 = FRC divided by 64										
	101 = FRC divided by 32										
	100 = FRC divided by 16 011 = FRC divided by 8										
	011 = FRC di 010 = FRC di										
	001 = FRC di	•									
		ivided by 1 (def	ault)								
bit 7-6		ted: Read as '									
bit 5-4	Reserved: Re										
	he DOZE[2:0] bi OZE[2:0] are igr		written to whe	n the DOZEN bit	t is clear. If DC	DZEN = 1, any	writes to				
	his bit is cleared		bit is set and a	an interrupt occu	ırs.						
	he DOZEN bit ca			•		tempt by user s	oftware to se				

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

- 3: The DOZEN bit cannot be set if DOZE[2:0] = 000. If DOZE[2:0] = 000, any attempt by user software to set the DOZEN bit is ignored.
- 4: PLLPRE[3:0] may be updated while the PLL is operating, but the VCO may overshoot.

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER (CONTINUED)

- bit 3-0 **PLLPRE[3:0]:** PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler)⁽⁴⁾ 11111 = Reserved
 - 1001 = Reserved 1000 = Input divided by 8 0111 = Input divided by 7 0110 = Input divided by 6 0101 = Input divided by 5 0100 = Input divided by 4 0011 = Input divided by 3
 - 0010 =Input divided by 3
 - 0001 = Input divided by 1 (power-on default selection)
 - 0000 = Reserved
- **Note 1:** The DOZE[2:0] bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE[2:0] are ignored.
 - 2: This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE[2:0] = 000. If DOZE[2:0] = 000, any attempt by user software to set the DOZEN bit is ignored.
 - 4: PLLPRE[3:0] may be updated while the PLL is operating, but the VCO may overshoot.

00000000 = Reserved

U-0	U-0	U-0	U-0	r-0	r-0	r-0	r-0			
_	_	_			_		_			
bit 15							bit 8			
R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0			
			PLLFB	DIV[7:0]						
bit 7							bit 0			
										
Legend:		r = Reserved								
R = Readable bit		W = Writable bit		U = Unimplemented bit, rea						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-12		ted. Deed as (o'							
bit 15-12	Reserved: M	ted: Read as '	U							
			a als Dividan bits	- (alaa damataa		ultiplipu)				
bit 7-0	РЦГВЛИЦ/ 11111111 =	:0]: PLL Feedb	ack Divider bits	s (also denoted	ias M, PLL m	ulupiler)				
		Reserved								
	11001000 =	200 Maximum ⁽	1)							
	10010110 = 150 (default)									
	00010000 =	16 Minimum ⁽¹⁾								
		Peserved								
	00000010 = Reserved 00000001 = Reserved									

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVIDER REGISTER

Note 1: The allowed range is 16-200 (decimal). The rest of the values are reserved and should be avoided. The power on the default feedback divider is 150 (decimal) with an 8 MHz FRC input clock. The VCO frequency is 1.2 GHz.

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—	—	_	—	—		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			TUN	[5:0]				
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-6	Unimpleme	nted: Read as ')'						
bit 5-0	TUN[5:0]: FI	RC Oscillator Tu	ning bits						
		aximum frequen enter frequency		f +1.45%					
	000001 = Center frequency + 0.047% 000000 = Center frequency (8.00 MHz nominal) 111111 = Center frequency – 0.047%								
	100001 = Center frequency – 1.45% 100000 = Minimum frequency deviation of – 1.50%								

REGISTER 9-5: PLLDIV: PLL OUTPUT DIVIDER REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	VCOD	IV[1:0]
bit 15	•				•		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1
_	POST1DIV[2:0] ^(1,2)			—		POST2DIV[2:0] ^{(1,;}	2)
bit 7	·				•		bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

bit 9-8 VCODIV[1:0]: PLL VCO Output Divider Select bits

11 **= Fvco**

Lagandu

- 10 = Fvco/2
- 01 = Fvco/3
- 00 = Fvco/4

bit 7 Unimplemented: Read as '0'

- bit 6-4 **POST1DIV[2:0]:** PLL Output Divider #1 Ratio bits^(1,2) POST1DIV[2:0] can have a valid value, from 1 to 7 (POST1DIVx value should be greater than or equal to the POST2DIVx value). The POST1DIVx divider is designed to operate at higher clock rates than the POST2DIVx divider.
- bit 3 Unimplemented: Read as '0'
- bit 2-0 **POST2DIV[2:0]:** PLL Output Divider #2 Ratio bits^(1,2)

POST2DIV[2:0] can have a valid value, from 1 to 7 (POST2DIVx value should be less than or equal to the POST1DIVx value). The POST1DIVx divider is designed to operate at higher clock rates than the POST2DIVx divider.

- Note 1: The POST1DIVx and POST2DIVx divider values must not be changed while the PLL is operating.
 - 2: The default values for POST1DIVx and POST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

REGISTER 9-6: ACLKCON1: AUXILIARY CLOCK CONTROL REGISTER

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
APLLEN ⁽¹⁾	APLLCK	_	_	_	—	_	FRCSEL				
bit 15						1	bit 8				
U-0	U-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-1				
_			_			'RE[3:0]					
bit 7						[]	bit (
Legend:		r = Reserved bi	-								
R = Readabl		W = Writable b	it	U = Unimplem		l as '0'					
-n = Value at	POR	'1' = Bit is set		ʻ0' = Bit is clea	ired	x = Bit is unkı	nown				
bit 15		viliany DLL Enabl	o/Bunass as	loct hit(1)							
		xiliary PLL Enabl s connected to th			hypana diaabla	vd)					
		s connected to the	•	• •	• •	u)					
bit 14		LL Phase-Locke	-								
	1 = Auxiliary PLL is in lock										
		PLL is not in loc	k								
bit 13-9	Unimplemen	ted: Read as '0'									
bit 8	FRCSEL: FR	CSEL: FRC Clock Source Select bit									
	1 = FRC is the clock source for APLL										
	0 = Primary (Oscillator is the o	clock source	for APLL							
bit 7-6	Unimplemen	ted: Read as '0'									
bit 5-4	Reserved: M	aintain as '0'									
bit 3-0	APLLPRE[3:	0]: Auxiliary PLL	Phase Dete	ctor Input Divide	er bits						
	1111 = Reserved										
	· · ·										
	1001 = Reserved 1000 = Input divided by 8										
	0111 = Input divided by 7										
	0110 = Input divided by 6										
	0101 = Input	•									
	0100 = Input 0011 = Input										
	0010 = Input										
		divided by 1 (po	wer-on defau	Ilt selection)							

Note 1: Even with the APLLEN bit set, another peripheral must generate a clock request before the APLL will start.

U-0	U-0	U-0	U-0	r-0	r-0	r-0	r-0
—	—		—	—	—		—
bit 15							bit 8
R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0
			APLLF	BDIV[7:0]			
bit 7							bit 0
Legend:		r = Reserved	bit				
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value at POR '1' = Bit is set			ʻ0' = Bit is clea	red	x = Bit is unkr	nown	
bit 15-12	Unimplemer	nted: Read as '	0'				
bit 11-8	Reserved: N	/aintain as '0'					
bit 7-0	APLLFBDIV	[7:0]: APLL Fee	edback Divide	r bits			
	11111111 =	Reserved					
	 11001000 =	200 maximum	(1)				
	 10010110 =	150 (default)					
	 00010000 =	16 minimum ⁽¹⁾					
	 00000010 = 00000001 = 00000000 =	Reserved					

REGISTER 9-7: APLLFBD1: APLL FEEDBACK DIVIDER REGISTER

Note 1: The allowed range is 16-200 (decimal). The rest of the values are reserved and should be avoided. The power-on default feedback divider is 150 (decimal) with an 8 MHz FRC input clock; the VCO frequency is 1.2 GHz.

REGISTER 9-8: APLLDIV1: APLL OUTPUT DIVIDER REGISTER

bit 15	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-1
 bit 15							
							bit 8
	—					AVCOE	DIV[1:0]
U-0		U-0	U-0	U-0	U-0	R/W-0	R/W-0

0-0	1 \/ V V-1	10/00-0	10/00-0	0-0	10/00-0	10/00-0	1 (/ V V - 1
—	APOST1DIV[2:0] ^(1,2)				APOST2DIV[2:0] ^(1,2)		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	Writable bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

- bit 9-8 AVCODIV[1:0]: APLL VCO Output Divider Select bits
 - 11 = AFvco 10 = AFvco/2 01 = AFvco/3 00 = AFvco/4

bit 7 Unimplemented: Read as '0'

bit 6-4 **APOST1DIV[2:0]:** APLL Output Divider #1 Ratio bits^(1,2)

APOST1DIV[2:0] can have a valid value, from 1 to 7 (the APOST1DIVx value should be greater than or equal to the APOST2DIVx value). The APOST1DIVx divider is designed to operate at higher clock rates than the APOST2DIVx divider.

- bit 3 Unimplemented: Read as '0'
- bit 2-0 APOST2DIV[2:0]: APLL Output Divider #2 Ratio bits^(1,2)

APOST2DIV[2:0] can have a valid value, from 1 to 7 (the APOST2DIVx value should be less than or equal to the APOST1DIVx value). The APOST1DIVx divider is designed to operate at higher clock rates than the APOST2DIVx divider.

- Note 1: The APOST1DIVx and APOST2DIVx values must not be changed while the PLL is operating.
 - 2: The default values for APOST1DIVx and APOST2DIVx are 4 and 1, respectively, yielding a 150 MHz system source clock.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	HC/R/W-0	HSC/R-0			
ROEN	_	ROSIDL	ROOUT	ROSLP	_	ROSWEN	ROACTIV			
bit 15				•			bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
0-0	0-0	0-0	0-0	R/VV-U			K/W-0			
 bit 7	_		_		RUG	EL[3:0]	bit (
							Dit (
Legend:		HC = Hardware	e Clearable bit	HSC = Hardw	/are Settable/	Clearable bit				
R = Readabl	e bit	W = Writable b	bit	U = Unimplen	nented bit, rea	ad as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
L:1 4 5										
bit 15	-	eference Clock En ence Oscillator is e								
		ence Oscillator is o		REFOLKO pili						
bit 14	Unimplem	nented: Read as '	0'							
bit 13	ROSIDL: F	Reference Clock \$	Stop in Idle bit							
	1 = Refere	ence Oscillator co	ntinues to run i	n Idle mode						
	0 = Refere	ence Oscillator is o	disabled in Idle	mode						
bit 12		Reference Clock C	-							
		 1 = Reference clock external output is enabled and available on the REFCLKO pin 0 = Reference clock external output is disabled 								
bit 11		Reference Clock S								
		ence Oscillator co	• •							
	0 = Refere	ence Oscillator is o	disabled in Slee	ep modes						
bit 10	Unimplem	nented: Read as '	0'							
bit 9		: Reference Clock	•							
	1 = Clock divider change (requested by changes to RODIVx) is requested or is in progress (set in									
	software, cleared by hardware upon completion) 0 = Clock divider change has completed or is not pending									
bit 8		0 = Clock divider change has completed or is not pending ROACTIV: Reference Clock Status bit								
		1 = Reference clock status bit								
		ence clock is stop			ation may be	safely changed				
bit 7-4	Unimplem	nented: Read as '	0'							
bit 3-0	ROSEL[3:	0]: Reference Clo	ock Source Sel	ect bits						
	1111 = Reserved									
	= Reserved									
		1000 = Reserved								
	0111 = REFI pin 0110 = Fvco/4									
	0110 - FVC0/4 0101 = BFRC									
	0100 = LP									
	0011 = FR	-								
	0010 = Primary Oscillator									
		imary Oscillator eripheral clock (FF)							

REGISTER 9-9: REFOCONL: REFERENCE CLOCK CONTROL LOW REGISTER

REGISTER 9-10: REFOCONH: REFERENCE CLOCK CONTROL HIGH REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_				RODIV[14:8]						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			ROE	0IV[7:0]						
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable bi	t	U = Unimplem	nented bit, rea	id as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	Unimpleme	nted: Read as '0'								
bit 14-0	RODIV[14:0]: Reference Cloc	k Integer Div	vider Select bits						
	Divider for t	he selected input o	clock source	is two times the	selected valu	le.				
		111 1111 1111 1111 Base clock value divided by 65 534 (2 * 7EEEb)								

111 1111 1111 1111 = Base clock value divided by 65,534 (2 * 7FFFh)
111 1111 1111 1110 = Base clock value divided by 65,532 (2 * 7FFEh)
111 1111 1111 1101 = Base clock value divided by 65,530 (2 * 7FFDh)
...
000 0000 0000 0010 = Base clock value divided by 4 (2 * 2)
000 0000 0000 0001 = Base clock value divided by 2 (2 * 1)
000 0000 0000 0000 = Base clock value

REGISTER 9-11: REFOTRIMH: REFERENCE OSCILLATOR TRIM REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ROTRIM[8:1]									
bit 15 bit 8									
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
ROTRIM0			_				<u> </u>		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable b	bit	U = Unimplemented bit, read as '0'					
-n = Value a	It POR	'1' = Bit is set	et '0' = Bit is cleare		ared x = Bit is unknown		nown		
bit 15-7	ROTRIM[8:0]: REFO Trim bit	ts						
	These bits provide a fractional additive to the RODIV[14:0] value for the 1/2 period of the REFO clock. 000000000 = 0/512 (0.0 divisor added to the RODIV[14:0] value) 000000001 = 1/512 (0.001953125 divisor added to the RODIV[14:0] value) 000000010 = 2/512 (0.00390625 divisor added to the RODIV[14:0] value) 								
		= 256/512 (0.50			,				
	111111110 = 510/512 (0.99609375 divisor added to the RODIV[14:0] value) 111111111 = 511/512 (0.998046875 divisor added to the RODIV[14:0] value)								

bit 6-0 Unimplemented: Read as '0'

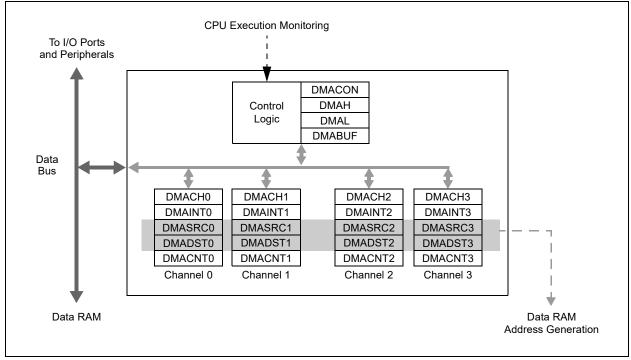
© 2018-2020 Microchip Technology Inc.

NOTES:

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "Direct Memory Access Controller (DMA)" (www.microchip.com/DS30009742) in the "dsPIC33/PIC24 Family Reference Manual".

The Direct Memory Access (DMA) Controller is designed to service high data throughput peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU-intensive management. By allowing these data-intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.


The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus, between the CPU and DMA-enabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA-capable peripherals located on the new DMA SFR bus. The controller serves as a Master device on the DMA SFR bus, controlling data flow from DMA-capable peripherals. The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations, causing a processor Stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- Four Independently Programmable Channels
- Concurrent Operation with the CPU (no DMA caused Wait states)
- DMA Bus Arbitration
- Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- · Byte or Word Support for Data Transfer
- 16-Bit Source and Destination Address Register for each Channel, Dynamically Updated and Reloadable
- 16-Bit Transaction Count Register, Dynamically Updated and Reloadable
- · Upper and Lower Address Limit Registers
- Counter Half-Full Level Interrupt
- Software Triggered Transfer
- Null Write mode for Symmetric Buffer Operations
- A simplified block diagram of the DMA Controller is shown if Figure 10-1.

dsPIC33CK64MP105 FAMILY

10.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction. In addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- · Source and destination (SFRs and data RAM)
- Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (Fixed Address or Address Blocks with or without Address Increment/Decrement)

In addition, the DMA Controller provides channel priority arbitration for all channels.

10.1.1 SOURCE AND DESTINATION

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 0FFFh) or the data RAM space (1000h to 2FFFh) can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 10-2.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

10.1.2 DATA SIZE

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn[1]). By default, each channel is configured for word-size transactions. When byte-size transactions are chosen, the LSB of the source and/or destination address determines if the data represent the upper or lower byte of the data RAM location.

10.1.3 TRIGGER SOURCE

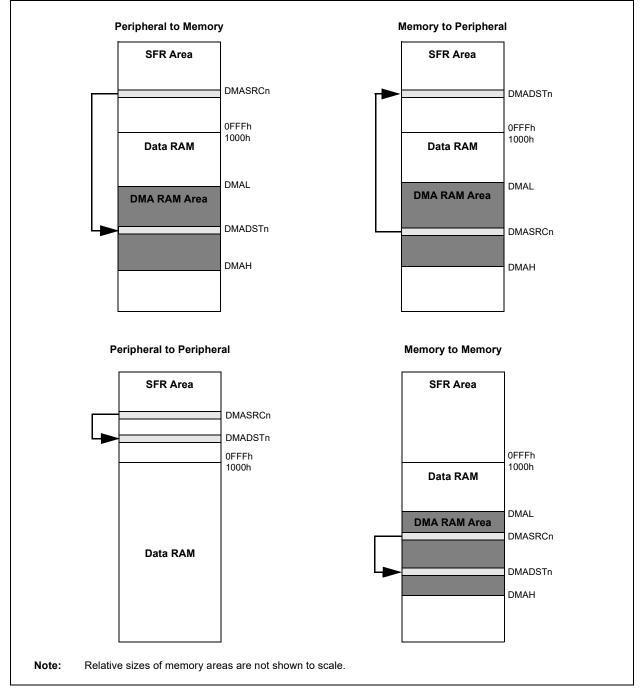
The DMA Controller can use 82 of the device's interrupt sources to initiate a transaction. The DMA trigger sources occur in reverse order from their natural interrupt priority and are shown in Table 10-1. Since the source and destination addresses for any transaction can be programmed independently of the trigger source, the DMA Controller can use any trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

10.1.4 TRANSFER MODE

The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each trigger.

- One-Shot: A single transaction occurs for each trigger.
- Continuous: A series of back-to-back transactions occur for each trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per trigger, until the DMA channel is disabled.
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per trigger, until the DMA channel is disabled.

All transfer modes allow the option to have the source and destination addresses, and counter value, automatically reloaded after the completion of a transaction.


10.1.5 ADDRESSING MODES

The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:

- Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- Block-to-Fixed: From a range of source addresses to a single, constant destination address
- Block-to-Block: From a range of source addresses to a range of destination addresses

The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.

FIGURE 10-2: TYPES OF DMA DATA TRANSFERS

10.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority based on their channel number.
- Fixed: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history; however, any channel being actively processed is not available for an immediate retrigger. If a higher priority channel is continually requesting service, it will be scheduled for service after the next lower priority channel with a pending request.

10.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- 1. Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- 2. Program DMAH and DMAL with appropriate upper and lower address boundaries for data RAM operations.
- Select the DMA channel to be used and disable its operation (CHEN = 0).
- 4. Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers.
- Program the DMACNTn register for the number of triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE[1:0] bits to select the Data Transfer mode.
- 8. Program the SAMODE[1:0] and DAMODE[1:0] bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the trigger source interrupt.

10.3 Peripheral Module Disable

The channels of the DMA Controller can be individually powered down using the Peripheral Module Disable (PMD) registers.

10.4 Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Engine Control Register (Register 10-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- DMABUF: DMA Transfer Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 10-2)
- DMAINTn: DMA Channel n Interrupt Register (Register 10-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n Register
- DMADSTn: DMA Data Destination Address Pointer for Channel n Register
- DMACNTn: DMA Transaction Counter for Channel n Register

For dsPIC33CK64MP105 devices, there are a total of 34 registers.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
DMAEN	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
—	—	—	—	—	—	—	PRSSEL			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15	DMAEN: DMA	A Module Enab	le bit							
	1 = Enables n	nodule								
	0 = Disables module and terminates all active DMA operation(s)									
bit 14-1	Unimplement	ted: Read as ')'							
bit 0	PRSSEL: Cha	annel Priority S	cheme Selection	on bit						
		•								

REGISTER 10-1: DMACON: DMA ENGINE CONTROL REGISTER

1 = Round robin scheme

0 = Fixed priority scheme

REGISTER 10-2: DMACHn: DMA CHANNEL n CONTROL REGISTER

U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0
—		_		—	NULLW	RELOAD ⁽¹⁾	CHREQ ⁽³⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	Reserved: Maintain as '0'
bit 11	Unimplemented: Read as '0'
bit 10	NULLW: Null Write Mode bit
	 1 = A dummy write is initiated to DMASRCn for every write to DMADSTn 0 = No dummy write is initiated
bit 9	RELOAD: Address and Count Reload bit ⁽¹⁾
	 DMASRCn, DMADSTn and DMACNTn registers are reloaded to their previous values upon the start of the next operation DMASRCn, DMADSTn and DMACNTn are not reloaded on the start of the next operation⁽²⁾
bit 8	CHREQ: DMA Channel Software Request bit ⁽³⁾
	 1 = A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer 0 = No DMA request is pending
bit 7-6	SAMODE[1:0]: Source Address Mode Selection bits
	 11 = Reserved 10 = DMASRCn is decremented based on the SIZE bit after a transfer completion 01 = DMASRCn is incremented based on the SIZE bit after a transfer completion 00 = DMASRCn remains unchanged after a transfer completion
bit 5-4	DAMODE[1:0]: Destination Address Mode Selection bits
	 11 = Reserved 10 = DMADSTn is decremented based on the SIZE bit after a transfer completion 01 = DMADSTn is incremented based on the SIZE bit after a transfer completion 00 = DMADSTn remains unchanged after a transfer completion
bit 3-2	TRMODE[1:0]: Transfer Mode Selection bits
	 11 = Repeated Continuous 10 = Continuous 01 = Repeated One-Shot 00 = One-Shot
bit 1	SIZE: Data Size Selection bit
	1 = Byte (8-bit) 0 = Word (16-bit)
bit 0	CHEN: DMA Channel Enable bit
	 1 = The corresponding channel is enabled 0 = The corresponding channel is disabled
	Only the original DMACNTn is required to be stored to recover the original DMASRCn and DMADSTn values. DMACNTn will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.

2: DMACN I n will always be reloaded in Repeated mode transfers, regardless of the state of the RELOAD bit.
3: The number of transfers executed while CHREQ is set depends on the configuration of TRMODE[1:0].

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DBUFWF ⁽¹⁾	CHSEL6	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0			
bit 15						• •	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0			
HIGHIF ^(1,2)	LOWIF ^(1,2)	DONEIF ⁽¹⁾	HALFIF ⁽¹⁾	OVRUNIF ⁽¹⁾	—	—	HALFEN			
bit 7							bit (
										
Legend:			,							
R = Readable		W = Writable		U = Unimplem						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15		/A Buffered Da	ta Writa Elag I							
DIL 10			•	not been writter	to the locati	on specified in	DMADSTn o			
		Cn in Null Write				on opcomed m				
				been written	to the locatio	n specified in	DMADSTn o			
L:1 4 4 0		Cn in Null Write		ian hita						
bit 14-8		DMA Channel 1 for a comple		ion dits						
bit 7		High Address		Elog bit(1,2)						
				cess an addres	s higher than l	DMAH or the un	ner limit of th			
	data RAN		tiempted to ac		S nighter than i					
	0 = The DMA	channel has n	ot invoked the	high address li	mit interrupt					
bit 6	LOWIF: DMA Low Address Limit Interrupt Flag bit ^(1,2) 1 = The DMA channel has attempted to access the DMA SFR address lower than DMAL, but above									
			attempted to a	ccess the DMA	SFR address	lower than DM	IAL, but above			
		range (07FFh) schappel bas n	ot invoked the	low address lin	nit interrunt					
bit 5		A Complete Op			int interrupt					
DIL U	If CHEN = 1:	A complete op		ipt i lag bit						
		ous DMA sessi	on has ended	with completion						
		nt DMA sessio	n has not yet o	ompleted						
	$\frac{\text{If CHEN} = 0}{1}$									
				with completion without complet						
bit 4		A 50% Waterma								
		n has reached								
		n has not reacl								
bit 3	OVRUNIF: DI	MA Channel Ov	/errun Flag bit	(1)						
				still completing	the operation	based on the p	revious trigge			
		un condition ha		t de la companya de la						
bit 2-1	-	ted: Read as '								
bit 0		Ifway Completi								
				n has reached it pletion of the tra		nt and at comple	etion			
			-	ate an interrupt.						
2: Te	sting for addres	s limit violatior	is (DMASRCn	or DMADSTn is	s either greate	r than DMAH o	r less than			

REGISTER 10-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

TABLE	10-1	: DMA CHANNEL 1	RIGGE	R 50	JURCES			
CHSEL[[6:0]	Trigger (Interrupt)	CHSEL	6:0]	Trigger (Interrupt)	CHSEL[6:0]	Trigger (Interrupt)
0	00h	INT0 – External Interrupt 0	33	21h		66	42h	AD1FLTR3 – Oversample Filter 3
1	01h	SCCP1 Interrupt	34	22h	(Reserved, do not use)	67	43h	AD1FLTR4 – Oversample Filter 4
2	02h	SPI1 Receiver	35	23h		68	44h	CLC1 Positive Edge Interrupt
3	03h	SPI1 Transmitter	36	24h	PWM Event C	69	45h	CLC2 Positive Edge Interrupt
4	04h	UART1 Receiver	37	25h	SENT1 TX/RX	70	46h	SPI1 – Fault Interrupt
5	05h	UART1 Transmitter	38	26h	SENT2 TX/RX	71	47h	SPI2 – Fault Interrupt
6	06h	ECC Single-Bit Error	39	27h	ADC Common Interrupt	72	48h	
7	07h	NVM Write Complete	40	28h	ADC Done AN0			(Reserved, do not use)
8	08h	INT1 – External Interrupt 1	41	29h	ADC Done AN1	86	56h	
9	09h	SI2C1 – I2C1 Slave Event	42	2Ah	ADC Done AN2	87	57h	PWM Event D
10	0Ah	MI2C1 – I2C1 Master Event	43	2Bh	ADC Done AN3	88	58h	PWM Event E
11	0Bh	INT2 – External Interrupt 2	44	2Ch	ADC Done AN4	89	59h	PWM Event F
12	0Ch	SCCP2 Interrupt	45	2Dh	ADC Done AN5	90	5Ah	
13	0Dh	INT3 – External Interrupt 3	46	2Eh	ADC Done AN6	91	5Bh	
14	0Eh	UART2 Receiver	47	2Fh	ADC Done AN7	92	5Ch	(Decomondate motores)
15	0Fh	UART2 Transmitter	48	30h	ADC Done AN8	93	5Dh	(Reserved, do not use)
16	10h	SPI2 Receiver	49	31h	ADC Done AN9	94	5Eh	
17	11h	SPI2 Transmitter	50	32h	ADC Done AN10	95	5Fh	
18	12h	SCCP3 Interrupt	51	33h	ADC Done AN11	96	60h	CLC3 Positive Edge Interrupt
19	13h	SI2C2 – I2C2 Slave Event	52	34h	ADC Done AN12	97	61h	CLC4 Positive Edge Interrupt
20	14h	MI2C2 – I2C2 Master Event	53	35h	ADC Done AN13	98	62h	SPI3 Receiver
21	15h	SCCP4 Interrupt	54	36h	ADC Done AN14	99	63h	SPI3 Transmitter
22	16h	MCCP5 Interrupt	55	37h	ADC Done AN15	100	64h	SI2C3 – I2C3 Slave Event
23	17h	(Reserved, do not use)	56	38h	ADC Done AN16	101	65h	MI2C3 – I2C3 Master Event
24	18h	CRC Generator Interrupt	57	39h	ADC Done AN17	102	66h	SPI3 Fault
25	19h	PWM Event A	58	3Ah	ADC Done AN18	103	67h	MCCP9
26	1Ah	(Reserved, do not use)	59	3Bh	ADC Done AN19	104	68h	UART3 Receiver
27	1Bh	PWM Event B	60	3Ch	ADC Done AN20	105	69h	UART3 Transmitter
28	1Ch	PWM Generator 1	61	3Dh		106	6Ah	
29	1Dh	PWM Generator 2	62	3Eh	(Reserved, do not use)			(Reserved, do not use)
30	1Eh	PWM Generator 3	63	3Fh		127	7Fh	
31	1Fh	PWM Generator 4	64	40h	AD1FLTR1 – Oversample Filter 1			
32	20h	(Reserved, do not use)	65	41h	AD1FLTR2 – Oversample Filter 2			

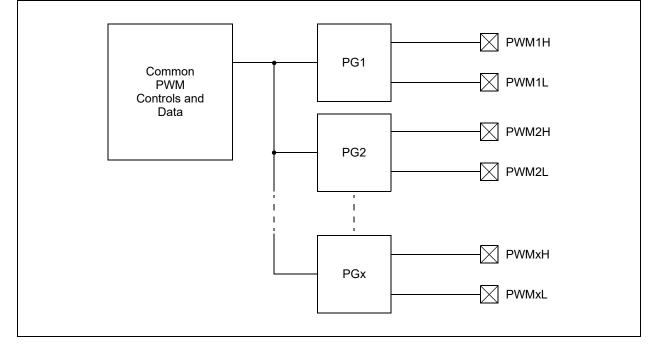
TABLE 10-1: DMA CHANNEL TRIGGER SOURCES

NOTES:

11.0 HIGH-RESOLUTION PWM WITH FINE EDGE PLACEMENT

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Resolution PWM with Fine Edge Placement" (www.microchip.com/DS70005320) in the "dsPIC33/PIC24 Family Reference Manual".

The High-Speed PWM (HSPWM) module is a Pulse-Width Modulated (PWM) module to support both motor control and power supply applications. This flexible module provides features to support many types of Motor Control (MC) and Power Control (PC) applications, including:


- AC-to-DC Converters
- DC-to-DC Converters
- AC and DC Motors: BLDC, PMSM, ACIM, SRM, etc.
- Inverters
- · Battery Chargers
- Digital Lighting
- Power Factor Correction (PFC)

11.1 Features

- Four Independent PWM Generators, each with Dual Outputs
- · Operating modes:
 - Independent Edge mode
 - Variable Phase PWM mode
 - Center-Aligned mode
 - Double Update Center-Aligned mode
 - Dual Edge Center-Aligned mode
 - Dual PWM mode
- · Output modes:
 - Complementary
 - Independent
 - Push-Pull
- · Dead-Time Generator
- Leading-Edge Blanking (LEB)
- · Output Override for Fault Handling
- Flexible Period/Duty Cycle Updating Options
- Programmable Control Inputs (PCI)
- Advanced Triggering Options
- Six Combinatorial Logic Outputs
- Six PWM Event Outputs

11.2 Architecture Overview

The PWM module consists of a common set of controls and features, and multiple instantiations of PWM Generators (PGs). Each PWM Generator can be independently configured or multiple PWM Generators can be used to achieve complex multiphase systems. PWM Generators can also be used to implement sophisticated triggering, protection and logic functions. A high-level block diagram is shown in Figure 11-1.

FIGURE 11-1: PWM HIGH-LEVEL BLOCK DIAGRAM

11.3 PWM4H Output on PPS

All devices support the capability to output a PWM4H signal via PPS on to any "RPn" pin. This feature is intended for lower pin count devices that do not have PWM4H on a dedicated pin. If PWM4H PPS output functions are used on 48-pin devices that also have a fixed RP65/PWM4H/RD1 pin, the output signal will be present on both the dedicated and "RPn" pins. The PWM4L/H Output Port Enable bits, PENH and PENL (PG4IOCONH[3:2]), control both dedicated and PPS pins together; it is not possible to disable the dedicated pin and use only PPS.

Given the natural priority of the "RPn" functions above that of the PWM, it is possible to use the PPS output functions on the dedicated RP65/PWM4H/RD1 pin while the PWM4H signal is routed to other pins via PPS.

11.4 Write Restrictions

The LOCK bit (PCLKCON[8]) may be set in software to block writes to certain registers. For more information, refer to "High-Resolution PWM with Fine Edge Placement" (www.microchip.com/DS70005320) in the "dsPIC33/PIC24 Family Reference Manual".

The following lock/unlock sequence is required to set or clear the LOCK bit:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Clear (or set) the LOCK bit (PCLKCON[8]) as a single operation.

In general, modifications to configuration controls should not be done while the module is running, as indicated by the ON bit (PGxCONL[15]) being set.

11.5 Control Registers

There are two categories of Special Function Registers (SFRs) used to control the operation of the PWM module:

- Common, shared by all PWM Generators
- PWM Generator-specific

An 'x' in the register name denotes an instance of a PWM Generator.

A 'y' in the register name denotes an instance of the common function.

REGISTER 11-1: PCLKCON: PWM CLOCK CONTROL REGISTER

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
HRRDY	/ HRERR		_	_		_	LOCK ⁽¹⁾				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
	—	DIVSEL1	DIVSEL0	—		MCLKSEL1 ^(2,3)	MCLKSEL0 ^(2,3)				
bit 7							bit 0				
Legend:											
R = Reada	able bit	W = Writable	bit	U = Unimple	mented bit,	read as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknov	wn				
bit 15	HRRDY: Hig	h-Resolution F	Ready bit								
	•	h-resolution cir	• •								
	 0 = The high-resolution circuitry is not ready 4 HRERR: High-Resolution Error bit 										
bit 14	-	•									
		has occurred;				n hen HRRDY = 1					
bit 13-9		nted: Read as	-								
bit 8	LOCK: Lock		0								
DILO	-	otected registe	ers and bits are	locked							
		otected registe									
bit 7-6	Unimpleme	nted: Read as	' 0 '								
bit 5-4	DIVSEL[1:0	: PWM Clock	Divider Selecti	on bits							
	11 = Divide	ratio is 1:16									
	10 = Divide	-									
	01 = Divide 00 = Divide										
bit 3-2		nted: Read as	' ∩'								
bit 1-0	•	I:0]: PWM Mas		ction hits ^(2,3)							
Dit 1-0		– Auxiliary PL									
		- Primary PLL									
		2 – Auxiliary V	CO/2								
	00 = Fosc										
Note 1:	The LOCK bit is	protected agair	nst an accident	tal write. To se	et this bit, 0x	55 and 0xAA valu	es must be				
	written sequentia	-	-	•							
	Changing the MC		•	/							
9 -	The DIA/NA import	- I I. f	· # - · · #		4.01 1.1.	-1	NALL_ in NL - mar - L				

3: The PWM input clock frequency selected by the MCLKSEL[1:0] bits must not exceed 500 MHz in Normal Resolution mode and must be 500 MHz for the High-Resolution mode.

REGISTER 11-2: FSCL: FREQUENCY SCALE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSC	L[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSC	CL[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	

bit 15-0 FSCL[15:0]: Frequency Scale Register bits

The value in this register is added to the frequency scaling accumulator at each PWM clock. When the accumulated value exceeds the value of FSMINPER, a clock pulse is produced.

REGISTER 11-3: FSMINPER: FREQUENCY SCALING MINIMUM PERIOD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSMINF	PER[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSMIN	PER[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at PC	R	'1' = Bit is set		ʻ0' = Bit is clear	red	x = Bit is unkn	own

bit 15-0 **FSMINPER[15:0]:** Frequency Scaling Minimum Period Register bits This register holds the minimum clock period (maximum clock frequency) that can be produced by the frequency scaling circuit.

REGISTER 11-4: MPHASE: MASTER PHASE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MPHA	SE[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MPH	ASE[7:0]			
bit 7							bit 0
Logondy							
Legend:							
R = Readable	bit	W = Writable b	e bit U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	

bit 15-0 **MPHASE[15:0]:** Master Phase Register bits

This register holds the phase offset value that can be shared by multiple PWM Generators.

REGISTER 11-5: MDC: MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	[15:8] ⁽¹⁾			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDO	C[7:0] ⁽¹⁾			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
n – Valuo at D	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = E		x = Bit is unk	nown			

bit 15-0 **MDC[15:0]:** Master Duty Cycle Register bits⁽¹⁾ This register holds the duty cycle value that can be shared by multiple PWM Generators.

Note 1: Duty cycle values less than '0x0008' should not be used ('0x0020' in High-Resolution mode).

REGISTER 11-6: MPER: MASTER PERIOD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		MPEF	א[15:8] ⁽¹⁾			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		MPE	R[7:0] ⁽¹⁾			
						bit 0
R = Readable bit W = Writable bit U = Unim				nented bit, rea	ıd as '0'	
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno		nown	
	R/W-0	R/W-0 R/W-0	R/W-0 R/W-0 MPEF MPE Dit W = Writable bit	MPER[15:8] ⁽¹⁾ R/W-0 R/W-0 MPER[7:0] ⁽¹⁾ Dit W = Writable bit	MPER[15:8] ⁽¹⁾ R/W-0 R/W-0 R/W-0 MPER[7:0] ⁽¹⁾ MPER[7:0] ⁽¹⁾ Dit W = Writable bit U = Unimplemented bit, real	MPER[15:8] ⁽¹⁾ R/W-0 R/W-0 R/W-0 R/W-0 MPER[7:0] ⁽¹⁾ W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 MPER[15:0]: Master Period Register bits⁽¹⁾

This register holds the period value that can be shared by multiple PWM Generators.

Note 1: Period values less than '0x0010' should not be used ('0x0080' in High-Resolution mode).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
						_	
bit 15							bit
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	_	—	CTA4EN	CTA3EN	CTA2EN	CTA1EN
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-4	Unimpleme	n ted: Read as	' 0 '				
bit 3	CTA4EN: Er	able Trigger C	utput from PW	/M Generator #	4 as Source for	Combinational	Trigger A bit
	1 = Enables 0 = Disable		er signal to be	OR'd into the	Combinatorial T	rigger A signal	
bit 2	CTA3EN: Er	able Trigger C	utput from PW	/M Generator #	#3 as Source for	Combinational	Trigger A bit
	1 = Enables 0 = Disable		er signal to be	OR'd into the	Combinatorial T	rigger A signal	
bit 1	CTA2EN: Er	able Trigger C	utput from PW	/M Generator #	2 as Source for	Combinational	Trigger A bit
	1 = Enables 0 = Disable		er signal to be	OR'd into the	Combinatorial T	rigger A signal	
bit 0	CTA1EN: Er	able Trigger C	utput from PW	/M Generator #	t1 as Source for	Combinational	Trigger A bit
	1 = Enables	specified trigg	er signal to be	OR'd into the	Combinatorial T	rigger A signal	

0 = Disabled

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—		—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—	_	CTB4EN	CTB3EN	CTB2EN	CTB1EN		
bit 7							bit C		
<u> </u>									
Legend:									
R = Readab		W = Writable		U = Unimplemented bit, read as '0'					
-n = Value a	it POR	'1' = Bit is se	l	'0' = Bit is cle	eared	x = Bit is unki	nown		
		ate de De e de e	(o)						
bit 15-4	•	nted: Read as							
bit 3			•		#4 as Source for				
	1 = Enables 0 = Disableo		er signal to be	e OR'd into the	Combinatorial T	rigger B signal			
bit 2	CTB3EN: Er	nable Trigger C	utput from PV	VM Generator #	#3 as Source for	⁻ Combinationa	I Trigger B bit		
	1 = Enables 0 = Disableo		er signal to be	e OR'd into the	Combinatorial T	rigger B signal			
bit 1	CTB2EN: Er	nable Trigger C	utput from PV	VM Generator #	#2 as Source for	- Combinationa	I Trigger B bit		
	1 = Enables 0 = Disableo		er signal to be	e OR'd into the	Combinatorial T	rigger B signal			
bit 0	CTB1EN: Er	nable Trigger C	utput from PV	VM Generator #	#1 as Source for	Combinationa	I Trigger B bit		
	1 = Enables		er signal to be	e OR'd into the	Combinatorial T	rigger B signal			

REGISTER 11-8: CMBTRIGH: COMBINATIONAL TRIGGER REGISTER HIGH

0 = Disabled

REGISTER 11-9: LOGCONY: COMBINATORIAL PWM LOGIC CONTROL REGISTER y⁽²⁾

	REGI	SIER y					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWMS1y3 ⁽¹⁾	PWMS1y2 ⁽¹⁾	PWMS1y1 ⁽¹⁾	PWMS1y0 ⁽¹⁾	PWMS2y3 ⁽¹⁾	PWMS2y2 ⁽¹⁾	PWMS2y1 ⁽¹⁾	PWMS2y0 ⁽¹⁾
bit 15	·	•		•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
S1yPOL	S2yPOL	PWMLFy1	PWMLFy0		PWMLFyD2 ⁽³⁾	PWMLFyD1 ⁽³⁾	PWMLFyD0 ⁽³⁾
bit 7							bit 0
Legend:							
R = Readable		W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15-12 bit 11-8	1111-1000 = 0111 = PWM 0110 = PWM 0101 = PWM 0100 = PWM 0011 = PWM 0001 = PWM 0000 = PWM	Reserved 4L 4H 3L 2H 1L 1H]: Combinatoria Reserved 4L 4H 3L 3H 2L		Source #1 Sel			
	0001 = PWM	1L					
bit 7	0000 = PWM		M Logic Sourc	ce #1 Polarity b	it		
	1 = Input is ir 0 = Input is p	nverted					
bit 6	-		M Logic Sourc	e #2 Polarity b	it		
	1 = Input is in						
	0 = Input is p	-		Eurotian Cala	tion hite		
bit 5-4	11 = Reserve 10 = PWMS1 01 = PWMS1	-	XOR) (AND)	Function Selec	tion bits		
bit 3	Unimplemen	ted: Read as '	0'				
2: 'y'	denotes a com	mon instance (A-F).		el is not presen tput to the PWM	t. 1xH pin. Instanc	es of y = B, D,

Instances of y = A, C, E of LOGCONy assign logic function output to the PWMxH pin. Instances of y = B, D,
 F of LOGCONy assign logic function to the PWMxL pin.

REGISTER 11-9: LOGCONY: COMBINATORIAL PWM LOGIC CONTROL REGISTER y⁽²⁾ (CONTINUED)

- bit 2-0 **PWMLFyD[2:0]:** Combinatorial PWM Logic Destination Selection bits⁽³⁾
 - 111-100 = Reserved
 - 011 = Logic function is assigned to PWM4H or PWM4L pin
 - 010 = Logic function is assigned to PWM3H or PWM3L pin
 - 001 = Logic function is assigned to PWM2H or PWM2L pin
 - 000 = No assignment, combinatorial PWM logic function is disabled
- **Note 1:** Logic function input will be connected to '0' if the PWM channel is not present.
 - **2:** 'y' denotes a common instance (A-F).
 - **3:** Instances of y = A, C, E of LOGCONy assign logic function output to the PWMxH pin. Instances of y = B, D, F of LOGCONy assign logic function to the PWMxL pin.

REGISTER 11-10: PWMEVTy: PWM EVENT OUTPUT CONTROL REGISTER y⁽⁵⁾

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
EVTyOEN	EVTyPOL	EVTySTRD	EVTySYNC	_	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
EVTySEL3	EVTySEL2	EVTySEL1	EVTySEL0	-	EVTyPGS2 ⁽²⁾	EVTyPGS1 ⁽²⁾	EVTyPGS0 ⁽²⁾
bit 7							bit 0

Legend:				
R = Read	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	EVTyOEN: F	WM Event Output Enab	le bit	
		utput signal is output on I		
		utput signal is internal on	-	
bit 14	•	WM Event Output Polari	ty bit	
		utput signal is active-low		
		utput signal is active-high		
bit 13	•	PWM Event Output Stre		
		utput signal pulse width is	s not stretched o eight PWM clock cycles mi	nimum(1)
hi+ 10				
bit 12	-	PWM Event Output Syn utput signal is synchroniz		
		utput is not synchronized		
			system clocks when this bit is	set and EVTySTRD = 1.
bit 11-8	Unimpleme	nted: Read as '0'		
bit 7-4	EVTySEL[3:	0]: PWM Event Selectior	n bits	
	1111 = High	- -resolution error event si	gnal	
	1110-1010			
		Trigger 2 signal		
		: Trigger 1 signal ER signal (available in P	ush-Pull Output modes only) ⁽	4)
			Center-Aligned modes only)	
		Fault active output signa		
		Current limit active outpu		
		Feed-forward active outp		
		Sync active output signa / Generator output signa		
		ce is selected by the PG		
bit 3		nted: Read as '0'		
	•			M Concentration in the same of
Note 1:	from different cloc		erai_cik because diπerent PW	/M Generators may be operating
2:			WM Generator is not presen	t.
3:			prior to output mode logic and	
		· · · · · · · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , , ,

- **4:** This signal should be the PGx_clk domain signal prior to any synchronization into the system clock domain.
- 5: 'y' denotes a common instance (A-F).

© 2018-2020 Microchip Technology Inc.

REGISTER 11-10: PWMEVTy: PWM EVENT OUTPUT CONTROL REGISTER y⁽⁵⁾ (CONTINUED)

bit 2-0 EVTyPGS[2:0]: PWM Event Source Selection bits⁽²⁾

111-100 = Reserved 011 = PWM Generator 4

... 000 = PWM Generator 1

- **Note 1:** The event signal is stretched using peripheral_clk because different PWM Generators may be operating from different clock sources.
 - 2: No event will be produced if the selected PWM Generator is not present.
 - 3: This is the PWM Generator output signal prior to output mode logic and any output override logic.
 - **4:** This signal should be the PGx_clk domain signal prior to any synchronization into the system clock domain.
 - 5: 'y' denotes a common instance (A-F).

REGISTER 11-11: LFSR: LINEAR FEEDBACK SHIFT REGISTER

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	-0 R/W-0
LFSR[14:8]	
bit 15	bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	-0 R/W-0
LFSR[7:0]	
bit 7	bit 0
Legend:	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is	s unknown

bit 15 Unimplemented: Read as '0'

bit 14-0 LFSR[14:0]: Linear Feedback Shift Register bits

A read of this register will provide a 15-bit pseudorandom value.

	r-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ON				_	TRGCNT2	TRGCNT1	TRGCNT0
bit 15							bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
HREN ⁽²⁾			CLKSEL1	CLKSEL0	MODSEL2	MODSEL1	MODSEL0
bit 7							bit (
Legend:		r = Reserved	hit				
R = Readable	bit	W = Writable		II = Unimplei	mented bit, read	as 'O'	
-n = Value at I		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
					arcu		IOWIT
bit 15	ON: Enable b	oit					
	1 = PWM Ge	enerator is ena	bled				
	0 = PWM Ge	enerator is not	enabled				
bit 14	Reserved: N	laintain as '0'					
bit 13-11	Unimplemer	nted: Read as	ʻ0 '				
bit 10-8	TRGCNT[2:0]: Trigger Cou	nt Select bits				
	111 = PWM	Generator pro	duces eight PV	VM cycles afte	r triggered		
			duces seven P				
			duces six PWM				
			duces five PWI	•			
			duces four PW				
			duces three PV				
			duces two PWI duces one PWI				
bit 7			ligh-Resolutior	•	nggered		
			ates in High-R		•		
				esolution mod	e		
	0 = PWM Ge	enerator x oper	ates in standa		e		
bit 6-5		enerator x oper nted: Read as			e		
bit 6-5 bit 4-3	Unimplemer CLKSEL[1:0	nted: Read as]: Clock Select	'0' ion bits	rd resolution			
	Unimplemer CLKSEL[1:0 11 = PWM G	nted: Read as]: Clock Select Senerator uses	'₀' ion bits Master clock s	rd resolution	lency scaling cir		
	Unimplemer CLKSEL[1:0 11 = PWM G 10 = PWM G	nted: Read as]: Clock Select Senerator uses Senerator uses	'o' ion bits Master clock s Master clock d	rd resolution scaled by frequ livided by cloc	iency scaling cir k divider circuit ⁽	1)	
	Unimplemer CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G	nted: Read as]: Clock Select enerator uses enerator uses enerator uses	' ₀ ' ion bits Master clock s Master clock d Master clock se	rd resolution scaled by frequ livided by cloc elected by the	lency scaling cir k divider circuit ⁽ MCLKSEL[1:0] (I) PCLKCON[1:0]]) control bits
bit 4-3	Unimplemen CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G 00 = No cloc	nted: Read as]: Clock Select Generator uses Generator uses Generator uses k selected, PW	^t o' ion bits Master clock s Master clock d Master clock se /M Generator is	rd resolution scaled by frequ livided by cloc elected by the	iency scaling cir k divider circuit ⁽	I) PCLKCON[1:0]]) control bits
bit 4-3	Unimplemen CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G 00 = No cloc MODSEL[2:0	nted: Read as]: Clock Select Generator uses Generator uses Generator uses k selected, PW O]: Mode Select	['] 0' ion bits Master clock s Master clock d Master clock se /M Generator is tion bits	rd resolution scaled by frequ livided by cloc elected by the s in lowest pov	lency scaling cir k divider circuit ⁽ MCLKSEL[1:0] (wer state (defau	i) PCLKCON[1:0] lt)	
bit 4-3	Unimplemen CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G 00 = No cloc MODSEL[2:0 111 = Dual B	nted: Read as]: Clock Select Generator uses Generator uses K selected, PW O]: Mode Select Edge Center-Al	'0' ion bits Master clock s Master clock d Master clock se /M Generator is ition bits igned PWM me	rd resolution scaled by frequ livided by cloc elected by the s in lowest pov ode (interrupt/	lency scaling cir k divider circuit ⁽ MCLKSEL[1:0] (wer state (defau register update	i) PCLKCON[1:0] it) wice per cycle)
	Unimplemen CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G 00 = No cloc MODSEL[2:0 111 = Dual E 110 = Dual E	nted: Read as]: Clock Select Generator uses Generator uses k selected, PW D]: Mode Select Edge Center-Al Edge Center-Al	'0' ion bits Master clock s Master clock d Master clock se /M Generator is ition bits igned PWM maigned PWM maigned PWM maigned PWM maigned PWM maigned	rd resolution scaled by frequ livided by cloc elected by the s in lowest pow ode (interrupt/ ode (interrupt/	lency scaling cir k divider circuit ⁽ MCLKSEL[1:0] (wer state (defau	i) PCLKCON[1:0] it) wice per cycle)
bit 4-3	Unimplemen CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G 00 = No cloc MODSEL[2:0 111 = Dual E 110 = Dual E 101 = Doubl	ited: Read as]: Clock Select senerator uses senerator uses k selected, PW D]: Mode Select Edge Center-Al Edge Center-Al Edge Center-Al	"0' ion bits Master clock s Master clock d Master clock se /M Generator is ition bits igned PWM m igned PWM m er-Aligned PW	rd resolution scaled by frequ livided by cloc elected by the s in lowest pow ode (interrupt/ ode (interrupt/	lency scaling cir k divider circuit ⁽ MCLKSEL[1:0] (wer state (defau register update	i) PCLKCON[1:0] it) wice per cycle)
bit 4-3	Unimplemen CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G 00 = No cloc MODSEL[2:0 111 = Dual E 110 = Dual E 101 = Doubl 100 = Cente	ited: Read as]: Clock Select senerator uses senerator uses k selected, PW D]: Mode Select Edge Center-Al Edge Center-Al e-Update Cent r-Aligned PWM	"0' ion bits Master clock s Master clock d Master clock se /M Generator is ition bits igned PWM m igned PWM m er-Aligned PW	rd resolution scaled by frequ livided by cloc elected by the s in lowest pow ode (interrupt/ ode (interrupt/	lency scaling cir k divider circuit ⁽ MCLKSEL[1:0] (wer state (defau register update	i) PCLKCON[1:0] it) wice per cycle)
bit 4-3	Unimplemen CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G 00 = No cloc MODSEL[2:0 111 = Dual E 110 = Dual E 101 = Doubl 100 = Cente 011 = Reser	ited: Read as]: Clock Select senerator uses senerator uses k selected, PW D]: Mode Select Edge Center-Al Edge Center-Al e-Update Cent r-Aligned PWM ved	¹ 0' ion bits Master clock s Master clock d Master clock se /M Generator is igned PWM m igned PWM m er-Aligned PW 1 mode	rd resolution scaled by frequ livided by cloc elected by the s in lowest pow ode (interrupt/ ode (interrupt/ /M mode	lency scaling cir k divider circuit ⁽ MCLKSEL[1:0] (wer state (defau register update	i) PCLKCON[1:0] it) wice per cycle)
bit 4-3	Unimplemen CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G 00 = No cloc MODSEL[2:0 111 = Dual E 110 = Dual E 101 = Doubl 100 = Cente 011 = Reser 010 = Indepe	ited: Read as]: Clock Select senerator uses senerator uses k selected, PW D]: Mode Select Edge Center-Al Edge Center-Al e-Update Cent r-Aligned PWM ved	⁴ 0' ion bits Master clock s Master clock d Master clock se /M Generator is igned PWM me igned PWM me er-Aligned PW 1 mode	rd resolution scaled by frequ livided by cloc elected by the s in lowest pow ode (interrupt/ ode (interrupt/ /M mode	lency scaling cir k divider circuit ⁽ MCLKSEL[1:0] (wer state (defau register update	i) PCLKCON[1:0] it) wice per cycle)
bit 4-3	Unimplemen CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G 00 = No cloc MODSEL[2:0 111 = Dual E 101 = Dual E 101 = Dual E 101 = Doubl 100 = Cente 011 = Reser 010 = Indepe 001 = Variab	ited: Read as]: Clock Select Generator uses Generator uses k selected, PW D]: Mode Select Edge Center-Al Edge Center-Al e-Update Cent r-Aligned PWM ved endent Edge P	¹ 0' ion bits Master clock s Master clock d Master clock se (M Generator is igned PWM me igned PWM me er-Aligned PWM 1 mode WM mode, dua 1 mode	rd resolution scaled by frequ livided by cloc elected by the s in lowest pow ode (interrupt/ ode (interrupt/ /M mode	lency scaling cir k divider circuit ⁽ MCLKSEL[1:0] (wer state (defau register update	i) PCLKCON[1:0] it) wice per cycle)
bit 4-3 bit 2-0	Unimplemen CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G 00 = No cloc MODSEL[2:0 111 = Dual E 110 = Dual E 101 = Doubl 100 = Cente 011 = Resen 010 = Indepo 000 = Indepo	ited: Read as]: Clock Select Generator uses Generator uses Generator uses k selected, PW D]: Mode Select Edge Center-Al Edge Center-Al Edge Center-Al e-Update Center-Al	¹ 0' ion bits Master clock s Master clock d Master clock se /M Generator is igned PWM m igned PWM m er-Aligned PW 1 mode WM mode, dua 1 mode WM mode	rd resolution scaled by frequ livided by cloc elected by the s in lowest pow ode (interrupt/ ode (interrupt/ 'M mode al output	lency scaling cir k divider circuit ⁽ MCLKSEL[1:0] (wer state (defau register update	I) PCLKCON[1:0] It) twice per cycle once per cycle))
bit 4-3 bit 2-0 Note 1: The	Unimplemen CLKSEL[1:0 11 = PWM G 10 = PWM G 01 = PWM G 00 = No cloc MODSEL[2:0 111 = Dual E 110 = Dual E 101 = Doubl 100 = Cente 011 = Resen 010 = Indepo 000 = Indepo	ited: Read as]: Clock Select Generator uses Generator uses Generator uses K selected, PW D]: Mode Select Edge Center-Al Edge Center-Al e-Update Center	¹ 0' ion bits Master clock s Master clock d Master clock se /M Generator is igned PWM mo igned PWM mo er-Aligned PW 1 mode WM mode, dua 1 mode WM mode WM mode perates from t	rd resolution scaled by frequ livided by cloc elected by the s in lowest pow ode (interrupt/ ode (interrupt/ 'M mode al output	lency scaling cir k divider circuit ⁽ MCLKSEL[1:0] (wer state (defau register update r register update s	I) PCLKCON[1:0] It) twice per cycle once per cycle))

REGISTER 11-12: PGxCONL: PWM GENERATOR x CONTROL REGISTER LOW

REGISTER 11-13: PGxCONH: PWM GENERATOR x CONTROL REGISTER HIGH

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
MDCSE	L MPERSEL	MPHSEL		MSTEN	UPDMOD2	UPDMOD1	UPDMOD0
bit 15							bit
r-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	TRGMOD	_		SOCS3 ^(1,2,3)	SOCS2 ^(1,2,3)	SOCS1 ^(1,2,3)	SOCS0 ^{(1,2,3}
bit 7							bit
Legend:		r = Reserved	bit				
R = Read	able bit	W = Writable	bit	U = Unimpleme	ented bit, read as	' 0'	
-n = Value	at POR	'1' = Bit is set		ʻ0' = Bit is clear	ed	x = Bit is unkr	nown
bit 15		laster Duty Cy	-				
		enerator uses	0				
		enerator uses		•			
bit 14		Master Period	-				
		enerator uses enerator uses					
bit 13		laster Phase F		•			
		enerator uses	-				
		enerator uses					
bit 12	Unimpleme	nted: Read as	6 '0'				
bit 11	MSTEN: Ma	ster Update E	nable bit				
			dcasts soft	ware set/clear of t	he UPDREQ stat	us bit and EOC	c signal to othe
	-	enerators	not broode	and the LIDDREA	atatua hitatata a		
bit 10-8				ast the UPDREQ			
BIL 10-8	=	d immediate ι	-	Node Selection bi	IS		
			•	ately, or as soon	as possible, whe	en a Master up	date request is
	receiv	ved. A Master	update req	uest will be trans			
		esting PWM G					
		ed SOC update		of next cycle if a	Master undate	request is rece	eived A Maste
				itted if MSTEN =			
	Gene						
		diate update		lata			
				late, or as soon as / after the update		REQ = 1. The	OPDATE Statu
	000 = SOC		atomatioany		000010.		
				WM cycle if UPD	REQ = 1. The UP	DATE status bi	t will be cleare
		natically after	he update	occurs.			
bit 7	Reserved: N	Maintain as '0'					
Note 1:	The PCI selecter SOCS[3:0] bits			available to be OR s enabled.	'd with the select	ed SOC signal	per the
2:		t, the source r	nust be rou	its MUST operate ted through the Port			
3:	-			s of four: PG1-PG	4 and PG5-PG8	if available Ar	nv generator
ν.		is all grouped	a into group			, ii availabio. Al	., generator

3: PWM Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator within a group of four may be used to trigger another generator within the same group.

REGISTER 11-13: PGxCONH: PWM GENERATOR x CONTROL REGISTER HIGH (CONTINUED)

- bit 6 **TRGMOD:** PWM Generator Trigger Mode Selection bit 1 = PWM Generator operates in Retriggerable mode
 - 0 = PWM Generator operates in Single Trigger mode
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **SOCS[3:0]:** Start-of-Cycle Selection bits^(1,2,3)
 - 1111 = TRIG bit or PCI Sync function only (no hardware trigger source is selected) 1110-0101 = Reserved
 - 0100 = Trigger output selected by PG4 PGTRGSEL[2:0] bits (PGxEVTL[2:0])
 - 0011 = Trigger output selected by PG3 PGTRGSEL[2:0] bits (PGxEVTL[2:0])
 - 0010 = Trigger output selected by PG2 PGTRGSEL[2:0] bits (PGxEVTL[2:0])
 - 0001 = Trigger output selected by PG1 PGTRGSEL[2:0] bits (PGxEVTL[2:0])
 - 0000 = Local EOC PWM Generator is self-triggered
- **Note 1:** The PCI selected Sync signal is always available to be OR'd with the selected SOC signal per the SOCS[3:0] bits if the PCI Sync function is enabled.
 - 2: The source selected by the SOCS[3:0] bits MUST operate from the same clock source as the local PWM Generator. If not, the source must be routed through the PCI Sync logic so the trigger signal may be synchronized to the PWM Generator clock domain.
 - **3:** PWM Generators are grouped into groups of four: PG1-PG4 and PG5-PG8, if available. Any generator within a group of four may be used to trigger another generator within the same group.

REGISTER 11-14: PGxSTAT: PWM GENERATOR x STATUS REGISTER

HS/C-0	HS/C-0	HS/C-0	HS/C-0	R-0	R-0	R-0	R-0
SEVT	FLTEVT	CLEVT	FFEVT	SACT	FLTACT	CLACT	FFACT
 bit 15	FLIEVI	CLEVI	FFEVI	SACT	FLIACI	CLACT	bit
511 15							DI
W-0	W-0	HS/R/W-0	R-0	W-0	R-0	R-0	R-0
TRSET	TRCLR	CAP ⁽¹⁾	UPDATE	UPDREQ	STEER	CAHALF	TRIG
bit 7							bit
Legend:		C = Clearable	- hit	HS = Hardwar	e Settable bit		
R = Readab	ole hit	W = Writable		'0' = Bit is clea		x = Bit is unkno	าพท
-n = Value a		'1' = Bit is set			nented bit, read a		50011
				e enimpion			
bit 15		Sunc Event hit					
JIL IS		Sync Event bit	accurred (rigin	a adaa an DCI	Sync output or		in high who
		is enabled)		ig edge on FCI	Sync output of		. IS HIGH WHE
		Sync event ha	s occurred				
bit 14		CI Fault Active					
				e on PCI Fault	output or PCI Fa	ult output is high	when modu
	is enab			,			
	0 = No Fau	It event has oc	curred				
bit 13	CLEVT: PC	I Current Limit	Status bit				
	1 = A PCI o	current limit ev	ent has occurre	ed (rising edge	on PCI current li	mit output or PC	CI current lim
	output i	s high when m	odule is enable	d)			
	0 = No PCI	current limit ev	ent has occurre	ed			
bit 12	FFEVT: PCI	Feed-Forward	Active Status t	pit			
					n PCI feed-forwa	ard output or PC	I feed-forwar
			odule is enable				
			event has occur	red			
bit 11		Sync Status bit					
		nc output is act					
	-	nc output is ina					
bit 10		CI Fault Active					
		ult output is act					
hit O		ult output is ina I Current Limit					
bit 9	_	-					
		rent limit outpu rent limit outpu					
bit 8		-	Active Status	nit			
		d-forward outp					
		d-forward outp					
bit 7		-	oftware Trigger	^r Set bit			
					PWM Generator	cycle. The bit lo	cation alwa
					Generator is trig		,
					•		

bit 6 **TRCLR:** PWM Generator Software Trigger Clear bit User software writes a '1' to this bit location to stop a PWM Generator cycle. The bit location always reads as '0'. The TRIG bit will indicate '0' when the PWM Generator is not triggered.

Note 1: User software may write a '1' to CAP as a request to initiate a software capture. The CAP status bit will be set when the capture event has occurred. No further captures will occur until CAP is cleared by software.

© 2018-2020 Microchip Technology Inc.

REGISTER 11-14: PGxSTAT: PWM GENERATOR x STATUS REGISTER (CONTINUED)

bit 5	CAP: Capture Status bit ⁽¹⁾
	1 = PWM Generator time base value has been captured in PGxCAP0 = No capture has occurred
bit 4	UPDATE: PWM Data Register Update Status bit
	 1 = PWM Data register update is pending – user Data registers are not writable 0 = No PWM Data register update is pending
bit 3	UPDREQ: PWM Data Register Update Request bit
	User software writes a '1' to this bit location to request a PWM Data register update. The bit location always reads as '0'. The UPDATE status bit will indicate '1' when an update is pending.
bit 2	STEER: Output Steering Status bit (Push-Pull Output mode only)
	1 = PWM Generator is in 2nd cycle of Push-Pull mode0 = PWM Generator is in 1st cycle of Push-Pull mode
bit 1	CAHALF: Half Cycle Status bit (Center-Aligned modes only)
	 1 = PWM Generator is in 2nd half of time base cycle 0 = PWM Generator is in 1st half of time base cycle
bit 0	TRIG: PWM Trigger Status bit
	1 = PWM Generator is triggered and PWM cycle is in progress0 = No PWM cycle is in progress

Note 1: User software may write a '1' to CAP as a request to initiate a software capture. The CAP status bit will be set when the capture event has occurred. No further captures will occur until CAP is cleared by software.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CLMOD SWAP **OVRENH** OVRENL **OVRDAT1 OVRDAT0** OSYNC1 OSYNC0 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 FLTDAT1 **FLTDAT0** CLDAT1 CLDAT0 FFDAT1 FFDAT0 DBDAT1 DBDAT0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CLMOD: Current Limit Mode Select bit 1 = If PCI current limit is active, then the PWMxH and PWMxL output signals are inverted (bit flipping), and the CLDAT[1:0] bits are not used 0 = If PCI current limit is active, then the CLDAT[1:0] bits define the PWM output levels bit 14 SWAP: Swap PWM Signals to PWMxH and PWMxL Device Pins bit 1 = The PWMxH signal is connected to the PWMxL pin and the PWMxL signal is connected to the PWMxH pin 0 = PWMxH/L signals are mapped to their respective pins bit 13 **OVRENH:** User Override Enable for PWMxH Pin bit 1 = OVRDAT1 provides data for output on the PWMxH pin 0 = PWM Generator provides data for the PWMxH pin bit 12 **OVRENL:** User Override Enable for PWMxL Pin bit 1 = OVRDAT0 provides data for output on the PWMxL pin 0 = PWM Generator provides data for the PWMxL pin bit 11-10 OVRDAT[1:0]: Data for PWMxH/PWMxL Pins if Override is Enabled bits If OVERENH = 1, then OVRDAT1 provides data for PWMxH. If OVERENL = 1, then OVRDAT0 provides data for PWMxL. bit 9-8 OSYNC[1:0]: User Output Override Synchronization Control bits 11 = Reserved 10 = User output overrides via the OVRENH/L and OVRDAT[1:0] bits occur when specified by the UPDMOD[2:0] bits in the PGxCONH register 01 = User output overrides via the OVRENH/L and OVRDAT[1:0] bits occur immediately (as soon as possible) 00 = User output overrides via the OVRENH/L and OVRDAT[1:0] bits are synchronized to the local PWM time base (next Start-of-Cycle) bit 7-6 FLTDAT[1:0]: Data for PWMxH/PWMxL Pins if Fault Event is Active bits If Fault is active, then FLTDAT1 provides data for PWMxH. If Fault is active, then FLTDAT0 provides data for PWMxL. bit 5-4 CLDAT[1:0]: Data for PWMxH/PWMxL Pins if Current Limit Event is Active bits If current limit is active, then CLDAT1 provides data for PWMxH. If current limit is active, then CLDAT0 provides data for PWMxL. bit 3-2 FFDAT[1:0]: Data for PWMxH/PWMxL Pins if Feed-Forward Event is Active bits If feed-forward is active, then FFDAT1 provides data for PWMxH. If feed-forward is active, then FFDAT0 provides data for PWMxL. bit 1-0 DBDAT[1:0]: Data for PWMxH/PWMxL Pins if Debug Mode is Active bits If Debug mode is active and device halted, then DBDAT1 provides data for PWMxH. If Debug mode is active and device halted, then DBDAT0 provides data for PWMxL.

REGISTER 11-15: PGxIOCONL: PWM GENERATOR x I/O CONTROL REGISTER LOW

© 2018-2020 Microchip Technology Inc.

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0			
_	CAPSRC2 ⁽¹⁾	CAPSRC1 ⁽¹⁾	CAPSRC0 ⁽¹⁾	_	_	_	DTCMPSEL			
bit 15	0/11 01102		0				bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	PMOD1	PMOD0	PENH	PENL	POLH	POLL			
bit 7				L			bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read a	is '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown			
bit 15 bit 14-12	CAPSRC[2:0 111 = Reserv 110 = Reserv 101 = Reserv	ved ved	apture Source							
	 100 = Capture time base value at assertion of selected PCI Fault signal 011 = Capture time base value at assertion of selected PCI current limit signal 010 = Capture time base value at assertion of selected PCI feed-forward signal 001 = Capture time base value at assertion of selected PCI Sync signal 000 = No hardware source selected for time base capture – software only 									
bit 11-9	Unimplemen	ted: Read as '	0'							
bit 8	DTCMPSEL: Dead-Time Compensation Select bit									
		e compensatio e compensatio		•	orward limit logic					
bit 7-6	Unimplemen	ted: Read as '	0'							
bit 5-4	PMOD[1:0]: PWM Generator Output Mode Selection bits									
	 11 = Reserved 10 = PWM Generator outputs operate in Push-Pull mode 01 = PWM Generator outputs operate in Independent mode 00 = PWM Generator outputs operate in Complementary mode 									
bit 3	PENH: PWM	xH Output Port	Enable bit							
		nerator control nerator does n			pin					
bit 2	 PENL: PWMxL Output Port Enable bit 1 = PWM Generator controls the PWMxL output pin 0 = PWM Generator does not control the PWMxL output pin 									
bit 1	1 = Output pi	xH Output Pola in is active-low in is active-high								
bit 0	POLL: PWM>	L Output Polar								
		n is active-high	ı							
Note 1: A	A capture may b	e initiated in so	oftware at any t	ime by writing	a '1' to CAP (PG	xSTAT[5]).				

REGISTER 11-16: PGxIOCONH: PWM GENERATOR x I/O CONTROL REGISTER HIGH

		R/W-0	R/W-0			R/W-0				
R/W-0	R/W-0	-		R/W-0	R/W-0		R/W-0			
ADTR1PS4	ADTR1PS3	ADTR1PS2	ADTR1PS1	ADTR1PS0	ADTR1EN3	ADTR1EN2	ADTR1EN1			
bit 15							bit 8			
			BAUO	DMU O	54440	DM (0)				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			UPDTRG1	UPDTRG0	PGTRGSEL2 ⁽¹⁾	PGTRGSEL1 ⁽¹⁾				
bit 7							bit 0			
Logondu										
Legend: R = Readabl	o hit	W = Writable	hit	II – Unimplo	mented bit, read	ac '0'				
				'0' = Bit is cl						
-n = Value at	PUR	'1' = Bit is set		$0^{\circ} = Bit is clo$	eared	x = Bit is unknow	wn			
L: 4 7 44				••• O a la -# ! !	4-					
bit 15-11	ADTR1PS[4:	: 0]: ADC Trigg	er i Postscale	er Selection bi	IS					
		2								
	00010 = 1:3									
	00001 = 1:2									
	00000 = 1:1									
bit 10					npare Event Ena					
	 1 = PGxTRIGC register compare event is enabled as trigger source for ADC Trigger 1 0 = PGxTRIGC register compare event is disabled as trigger source for ADC Trigger 1 									
bit 9		•	•							
DIL 9	ADTR1EN2: ADC Trigger 1 Source is PGxTRIGB Compare Event Enable bit 1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 1									
					trigger source fo					
bit 8	ADTR1EN1:	ADC Trigger 1	Source is PC	SxTRIGA Com	pare Event Enal	ble bit				
	1 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 1									
	0 = PGxTRI	GA register co	mpare event i	s disabled as	trigger source fo	r ADC Trigger 1				
bit 7-5	Unimplemen	nted: Read as	'0'							
bit 4-3	UPDTRG[1:0)]: Update Trig	ger Select bit	s						
	11 = A write of the PGxTRIGA register automatically sets the UPDATE bit									
	 10 = A write of the PGxPHASE register automatically sets the UPDATE bit 01 = A write of the PGxDC register automatically sets the UPDATE bit 									
		ust set the UP								
bit 2-0			•	/	•					
SILE 0	PGTRGSEL[2:0]: PWM Generator Trigger Output Selection bits ⁽¹⁾ 111 = Reserved									
	110 = Reserved									
	101 = Reserved									
	100 = Reserved 011 = PGxTRIGC compare event is the PWM Generator trigger									
	010 = PGxTRIGB compare event is the PWM Generator trigger 001 = PGxTRIGA compare event is the PWM Generator trigger									
		event is the PV								

REGISTER 11-17: PGxEVTL: PWM GENERATOR x EVENT REGISTER LOW

Note 1: These events are derived from the internal PWM Generator time base comparison events.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
FLTIEN ⁽¹⁾	CLIEN ⁽²⁾	FFIEN ⁽³⁾	SIEN ⁽⁴⁾	_	_	IEVTSEL1	IEVTSEL0				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ADTR2EN3		ADTR2EN1	ADTR10FS4	ADTR10FS3		ADTR10FS1	ADTR10FS0				
bit 7	ADIRZENZ	ADIRZENI	ADIRIOF34	ADIRIOF33	ADIRIOF32	ADIRIOFSI	bit 0				
Legend:											
R = Readal	ole bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
L:1 4 F		F 14 Junt	F								
bit 15		Fault Interrupt errupt is enable									
		errupt is enable									
bit 14		•	terrupt Enable b	oit ⁽²⁾							
		imit interrupt is									
		imit interrupt is		(2)							
bit 13		FFIEN: PCI Feed-Forward Interrupt Enable bit ⁽³⁾									
	 1 = Feed-forward interrupt is enabled 0 = Feed-forward interrupt is disabled 										
bit 12	SIEN: PCI Sync Interrupt Enable bit ⁽⁴⁾										
	1 = Sync interrupt is enabled										
	0 = Sync inte	errupt is disable	ed								
bit 11-10	Unimplemen	ted: Read as '	0'								
bit 9-8	_		ent Selection bit								
			are disabled (S	Sync, Fault, cu	rrent limit and	feed-forward	events can be				
	independently enabled) 10 = Interrupts CPU at ADC Trigger 1 event										
	01 = Interrupts CPU at TRIGA compare event										
17	•	ts CPU at EOC				1.11					
bit 7			Source is PGxT npare event is e	-							
			npare event is c								
bit 6	ADTR2EN2:	ADC Trigger 2	Source is PGx1	RIGB Compare	e Event Enable	bit					
	 1 = PGxTRIGB register compare event is enabled as trigger source for ADC Trigger 2 0 = PGxTRIGB register compare event is disabled as trigger source for ADC Trigger 2 										
		•	•								
bit 5	ADTR2EN1: ADC Trigger 2 Source is PGxTRIGA Compare Event Enable bit										
	 1 = PGxTRIGA register compare event is enabled as trigger source for ADC Trigger 2 0 = PGxTRIGA register compare event is disabled as trigger source for ADC Trigger 2 										
bit 4-0		•	•			- 00					
	ADTR1OFS[4:0]: ADC Trigger 1 Offset Selection bits 11111 = Offset by 31 trigger events										
	···	ot by Otriggor	overte								
		et by 2 trigger et by 1 trigger									
	00000 = No d										
Note 1:	An interrupt is o	nlv generated	on the rising ed	ge of the PCI Fa	ault active sign:	al.					
	-		on the rising ed	-	-						
	-		on the rising ed	-		-					
4.	An intorrunt is a	المعقمة معامد ما	امم بمعاملة مرا			- 1					

REGISTER 11-18: PGxEVTH: PWM GENERATOR x EVENT REGISTER HIGH

4: An interrupt is only generated on the rising edge of the PCI Sync active signal.

REGISTER 11-19: PGxyPCIL: PWM GENERATOR xy PCI REGISTER LOW (x = PWM GENERATOR #; y = F, CL, FF OR S)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
TSYNCDIS	TERM2	TERM1	TERM0	AQPS	AQSS2	AQSS1	AQSS0				
bit 15			•			·	bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SWTERM	PSYNC	PPS	PSS4	PSS3	PSS2	PSS1	PSS0				
bit 7							bit 0				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read a	as '0'					
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	iown				
bit 15			ynchronization PCI occurs im								
	0 = Termina	tion of latched	PCI occurs at	PWM EOC							
bit 14-12	TERM[2:0]:	Termination E	vent Selection	bits							
		ts PCI Source									
		110 = Selects PCI Source #8									
	 101 = Selects PCI Source #1 (PWM Generator output selected by the PWMPCI[2:0] bits) 100 = PGxTRIGC trigger event 										
	011 = PGxTRIGE trigger event										
	010 = PGxTRIGA trigger event										
					itions from active						
hit 11					e SWTERM bit l	ocation					
bit 11	AQPS: Acceptance Qualifier Polarity Select bit										
	1 = Inverted 0 = Not inve										
bit 10-8			ualifier Source	Selection bits							
	AQSS[2:0]: Acceptance Qualifier Source Selection bits 111 = SWPCI control bit only (qualifier forced to '0')										
	110 = Selects PCI Source #9										
	101 = Selects PCI Source #8										
	100 = Selects PCI Source #1 (PWM Generator output selected by the PWMPCI[2:0] bits) 011 = PWM Generator is triggered										
	010 = LEB is active										
	001 = Duty cycle is active (base PWM Generator signal)										
	000 = No acceptance qualifier is used (qualifier forced to '1')										
bit 7	SWTERM: PCI Software Termination bit										
	A write of '1' to this location will produce a termination event. This bit location always reads as '0'.										
bit 6	PSYNC: PCI Synchronization Control bit										
			nized to PWM chronized to PV								
	DDS. DCI DC	plarity Select b	it								
bit 5	110.10110	Janty Select D	11								

REGISTER 11-19: PGxyPCIL: PWM GENERATOR xy PCI REGISTER LOW (x = PWM GENERATOR #; y = F, CL, FF OR S) (CONTINUED)

bit 4-0 **PSS[4:0]:** PCI Source Selection bits

11111 = CLC1 11110 = Reserved 11101 = Comparator 3 output 11100 = Comparator 2 output 11011 = Comparator 1 output 11010 = PWM Event D 11001 = PWM Event C 11000 = PWM Event B 10111 = PWM Event A 10110 = Device pin, PCI[22] 10101 = Device pin, PCI[21] 10100 = Device pin, PCI[20] 10011 = Device pin, PCI[19] 10010 = RPn input, PCI18R 10001 = RPn input, PCI17R 10000 = RPn input, PCI16R 01111 = RPn input, PCI15R 01110 = RPn input, PCI14R 01101 = RPn input, PCI13R 01100 = RPn input, PCI12R 01011 = RPn input, PCI11R 01010 = RPn input, PCI10R 01001 = RPn input, PCI9R 01000 = RPn input, PCI8R 00111 = Reserved 00110 = Reserved 00101 = Reserved 00100 = Reserved

- 00011 = Internally connected to Combo Trigger B
- 00010 = Internally connected to Combo Trigger A
- 00001 = Internally connected to the output of PWMPCI[2:0] MUX
- 00000 = Tied to '0'

REGISTER 11-20: PGxyPCIH: PWM GENERATOR xy PCI REGISTER HIGH (x = PWM GENERATOR #; y = F, CL, FF OR S)

	(* -			-1, 02,11 (
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
BPEN	BPSEL2 ⁽¹⁾	BPSEL1 ⁽¹⁾	BPSEL0 ⁽¹⁾	_	ACP2	ACP1	ACP0			
bit 15	÷				•	·	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SWPCI	SWPCIM1	SWPCIM0	LATMOD	TQPS	TQSS2	TQSS1	TQSS0			
bit 7							bit 0			
Legend:										
R = Reada	ıble bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'				
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15 bit 14-12	1 = PCI fund function 0 = PCI fund	in the PWM G ction is not byp	ed and local PC Senerator select	ed by the BPS		erator will be co	ntrolled by PCI			
	111-100 = F 011 = PCI c 010 = PCI c 001 = PCI c	Reserved ontrol is sourc ontrol is sourc ontrol is sourc	ed from PWM G ed from PWM G ed from PWM G	Generator 4 PC Generator 3 PC Generator 2 PC	I logic when BPE I logic when BPE I logic when BPE I logic when BPE	EN = 1 EN = 1				
bit 11	Unimpleme	nted: Read as	· 'O'							
bit 10-8	ACP[2:0]: P	CI Acceptance	e Criteria Selecti	ion bits						
	111 = Reser 110 = Reser 101 = Latch 100 = Latch 011 = Latch 010 = Any e 001 = Rising 000 = Level	ved ed any edge ed rising edge ed dge g edge								
bit 7	SWPCI: Soft	tware PCI Con	trol bit							
					[1:0] control bits [1:0] control bits					
bit 6-5	SWPCIM[1:0	0]: Software P	CI Control Mode	e bits						
	01 = SWPC	l bit is assigne l bit is assigne	d to termination d to acceptance d to PCI accept	qualifier logic						
bit 4	LATMOD: P	LATMOD: PCI SR Latch Mode bit								
			iinant in Latcheo ant in Latched A							
bit 3	TQPS: Term	ination Qualifie	er Polarity Selec	ct bit						
	1 = Inverted 0 = Not inve		-							
Note 4	0 -1 + - (0) *		.							

Note 1: Selects '0' if selected PWM Generator is not present.

REGISTER 11-20: PGxyPCIH: PWM GENERATOR xy PCI REGISTER HIGH (x = PWM GENERATOR #; y = F, CL, FF OR S) (CONTINUED)

- bit 2-0 **TQSS[2:0]:** Termination Qualifier Source Selection bits
 - 111 = SWPCI control bit only (qualifier forced to '0')
 - 110 = Selects PCI Source #9
 - 101 = Selects PCI Source #8
 - 100 = Selects PCI Source #1 (PWM Generator output selected by the PWMPCI[2:0] bits)
 - 011 = PWM Generator is triggered
 - 010 = LEB is active
 - 001 = Duty cycle is active (base PWM Generator signal)
 - 000 = No termination qualifier used (qualifier forced to '1')
- Note 1: Selects '0' if selected PWM Generator is not present.

REGISTER 11-21: PGxLEBL: PWM GENERATOR x LEADING-EDGE BLANKING REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LE	B[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
			LEI	3[7:0] ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow					wn		

bit 15-0 LEB[15:0]: Leading-Edge Blanking Period bits⁽¹⁾ Leading-Edge Blanking period. The three LSBs of the blanking time are not used, providing a blanking resolution of eight clock periods. The minimum blanking period is eight clock periods, which occurs when LEB[15:3] = 0.

Note 1: Bits[2:0] are read-only and always remain as '0'.

	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—		_	—		PWMPCI[2:0] ⁽¹⁾	
bit 15							bit
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0 PLF
	— — — PHR PHF PLR						
bit 7							bit
Legend:							
R = Read	able bit	W = Writable	e bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value	e at POR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is unknow	wn
bit 15-11	•	nted: Read a					
oit 10-8	PWMPCI[2:	0]: PWM Sou	rce for PCI Se	lection bits ⁽¹⁾			
	111 - 100 = F	Reserved					
			4 output is ma				
	010 = PWN	I Generator #	3 output is ma	ide available t	o PCI logic		
	001 = PVVN	/I Generator #	2 output is ma	ide available t			
			2 output is ma 1 output is ma	ide available t	o PCI logic		
oit 7-4	000 = PWN		1 output is ma	ide available t	o PCI logic		
	000 = PWM Unimpleme	/I Generator # nted: Read a	1 output is ma	ide available t ide available t	o PCI logic		
bit 7-4 bit 3	000 = PWM Unimpleme PHR: PWM>	/I Generator # nted: Read a ‹H Rising Edg	1 output is ma s '0'	ide available t ide available t ble bit	o PCI logic o PCI logic		
	000 = PWM Unimpleme PHR: PWM> 1 = Rising e	/I Generator # nted: Read a kH Rising Edg edge of PWM	1 output is ma s '0' je Trigger Ena	ide available t ide available t ble bit the LEB durat	o PCI logic o PCI logic		
bit 3	000 = PWM Unimpleme PHR: PWM> 1 = Rising e 0 = LEB ign	/I Generator # nted: Read a kH Rising Edge edge of PWM pores the rising	1 output is ma s '0' je Trigger Ena kH will trigger f g edge of PWI	ide available t ide available t ble bit the LEB durat MxH	o PCI logic o PCI logic		
	000 = PWM Unimpleme PHR: PWM> 1 = Rising e 0 = LEB ign PHF: PWMx	/I Generator # nted: Read a KH Rising Edg edge of PWM ores the rising KH Falling Edg	1 output is ma s '0' je Trigger Ena kH will trigger f g edge of PWI je Trigger Ena	ide available t ide available t ble bit the LEB durat VxH ble bit	o PCI logic o PCI logic ion counter		
bit 3	000 = PWM Unimpleme PHR: PWM> 1 = Rising e 0 = LEB ign PHF: PWMx 1 = Falling e	/I Generator # nted: Read a KH Rising Edg edge of PWM ores the risin KH Falling Edg edge of PWM	1 output is ma s '0' je Trigger Ena kH will trigger f g edge of PWI	ide available t ide available t ble bit the LEB durat MxH ble bit the LEB durat	o PCI logic o PCI logic ion counter		
bit 3	000 = PWM Unimpleme PHR: PWM> 1 = Rising e 0 = LEB ign PHF: PWMx 1 = Falling e 0 = LEB ign	A Generator # nted: Read a kH Rising Edge adge of PWM ores the rising kH Falling Edge adge of PWM ores the falling	1 output is ma s '0' je Trigger Ena kH will trigger f g edge of PWI je Trigger Ena xH will trigger	ide available t ide available t ble bit the LEB durat MxH ble bit the LEB durat MxH	o PCI logic o PCI logic ion counter		
bit 3 bit 2	000 = PWM Unimpleme PHR: PWM> 1 = Rising e 0 = LEB ign PHF: PWMx 1 = Falling e 0 = LEB ign PLR: PWMx	A Generator # nted: Read a A Rising Edge adge of PWM ores the rising A Falling Edge adge of PWM ores the falling A Rising Edge	1 output is ma s '0' ge Trigger Ena (H will trigger f g edge of PWI ge Trigger Ena xH will trigger g edge of PW e Trigger Enab	ide available t ide available t ble bit the LEB durat MxH ble bit the LEB durat MxH ole bit	o PCI logic o PCI logic ion counter tion counter		
bit 3 bit 2	000 = PWM Unimpleme PHR: PWM> 1 = Rising e 0 = LEB ign PHF: PWMx 1 = Falling e 0 = LEB ign PLR: PWMx 1 = Rising e	A Generator # nted: Read a A Rising Edge adge of PWM ores the rising A Falling Edge adge of PWM ores the falling A Rising Edge adge of PWM	1 output is ma s '0' le Trigger Ena kH will trigger f g edge of PWI ge Trigger Ena xH will trigger g edge of PW	ide available t ide available t ble bit the LEB durat MxH ble bit the LEB durat MxH ble bit he LEB durati	o PCI logic o PCI logic ion counter tion counter		
bit 2 bit 1	000 = PWM Unimpleme PHR: PWM> 1 = Rising e 0 = LEB ign PHF: PWMx 1 = Falling e 0 = LEB ign PLR: PWMx 1 = Rising e 0 = LEB ign	A Generator # nted: Read a KH Rising Edg edge of PWM ores the rising CH Falling Edg edge of PWM ores the falling CL Rising Edg edge of PWM ores the rising	1 output is ma s '0' je Trigger Ena kH will trigger f g edge of PWI je Trigger Ena xH will trigger g edge of PW e Trigger Enab kL will trigger t	ide available t ide available t ble bit the LEB durat MxH ble bit MxH ble bit he LEB durati MxL	o PCI logic o PCI logic ion counter tion counter		
bit 3 bit 2	000 = PWM Unimpleme PHR: PWMx 1 = Rising e 0 = LEB ign PHF: PWMx 1 = Falling e 0 = LEB ign PLR: PWMx 1 = Rising e 0 = LEB ign PLF: PWMx	A Generator # nted: Read a KH Rising Edg edge of PWM ores the rising cH Falling Edg edge of PWM ores the falling cL Rising Edg ores the rising L Falling Edg	1 output is ma s '0' je Trigger Ena kH will trigger i g edge of PWI ge Trigger Ena xH will trigger g edge of PWI e Trigger Enak kL will trigger t g edge of PWI	ide available t ide available t ble bit the LEB durat MxH ble bit MxH ble bit he LEB durat MxL ble bit	o PCI logic o PCI logic ion counter tion counter on counter		
bit 2 bit 1	000 = PWM Unimpleme PHR: PWMx 1 = Rising e 0 = LEB ign PHF: PWMx 1 = Falling e 0 = LEB ign PLR: PWMx 1 = Rising e 0 = LEB ign PLF: PWMx 1 = Falling e	A Generator # nted: Read a KH Rising Edg edge of PWM ores the rising cH Falling Edg edge of PWM ores the falling cL Rising Edg edge of PWM L Falling Edg edge of PWM	1 output is ma s '0' je Trigger Ena kH will trigger i g edge of PWI ge Trigger Ena xH will trigger g edge of PWI e Trigger Enab kL will trigger t g edge of PWI e Trigger Enab	ide available t ide available t ble bit the LEB durat MxH ble bit MxH ble bit he LEB durat MxL ble bit the LEB durat	o PCI logic o PCI logic ion counter tion counter on counter		
bit 2 bit 1	000 = PWM Unimpleme PHR: PWMx 1 = Rising e 0 = LEB ign PHF: PWMx 1 = Falling e 0 = LEB ign PLR: PWMx 1 = Rising e 0 = LEB ign PLF: PWMx 1 = Falling e 0 = LEB ign	A Generator # nted: Read a KH Rising Edg edge of PWM ores the rising cH Falling Edg edge of PWM ores the falling cdge of PWM ores the rising L Falling Edg edge of PWM ores the falling	1 output is ma s '0' je Trigger Ena kH will trigger in g edge of PWI ge Trigger Ena xH will trigger ig edge of PWI e Trigger Enab kL will trigger t g edge of PWI e Trigger Enab xL will trigger t g edge of PWI	ide available t ide available t ble bit the LEB durat MxH ble bit the LEB durat MxH ble bit he LEB durat MxL ble bit the LEB durat	o PCI logic o PCI logic ion counter tion counter on counter ion counter	his source can be	e optionally
bit 2 bit 1 bit 0	000 = PWM Unimpleme PHR: PWMx 1 = Rising e 0 = LEB ign PHF: PWMx 1 = Falling e 0 = LEB ign PLR: PWMx 1 = Rising e 0 = LEB ign PLF: PWMx 1 = Falling e 0 = LEB ign	A Generator # nted: Read a KH Rising Edge adge of PWM acres the rising A Falling Edge adge of PWM acres the falling CL Rising Edge adge of PWM acres the rising L Falling Edge adge of PWM acres the falling CL Falling Edge adge of PWM acres the falling CL Falling Edge adge of PWM	1 output is ma s '0' je Trigger Ena kH will trigger in g edge of PWI ge Trigger Ena xH will trigger ig edge of PWI e Trigger Enak kL will trigger t g edge of PWI e Trigger Enak xL will trigger t g edge of PWI or source does	ide available t ide available t ble bit the LEB durat MxH ble bit the LEB durat MxH ble bit the LEB durat MxL ble bit the LEB durat MxL s not affect the	o PCI logic o PCI logic ion counter tion counter on counter ion counter	his source can be	

REGISTER 11-22: PGxLEBH: PWM GENERATOR x LEADING-EDGE BLANKING REGISTER HIGH

REGISTER 11-23: PGxPHASE: PWM GENERATOR x PHASE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxPl	HASE[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				HASE[7:0]		1,110	10110
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-0 PGxPHASE[15:0]: PWM Generator x Phase Register bits

REGISTER 11-24: PGxDC: PWM GENERATOR x DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PGxE	0C[15:8] ⁽¹⁾				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		1.000 0		DC[7:0] ⁽¹⁾			1077 0	
bit 7							bit 0	
Logondu								
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkn	own	

bit 15-0 **PGxDC[15:0]:** PWM Generator x Duty Cycle Register bits⁽¹⁾

Note 1: Duty cycle values less than '0x0008' should not be used ('0x0020' in High-Resolution mode).

REGISTER 11-25: PGxDCA: PWM GENERATOR x DUTY CYCLE ADJUSTMENT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		_	_	—		—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxE	DCA[7:0]			
bit 7							bit 0
Legend:							
R = Readable	= Readable bit W = Writable bit U = Unimplemented bit read as '0'						

R – Readable bil		0 – Onimplemented bit, rea	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **PGxDCA[7:0]:** PWM Generator x Duty Cycle Adjustment Value bits Depending on the state of the selected PCI source, the PGxDCA value will be added to the value in the PGxDC register to create the effective duty cycle. When the PCI source is active, PGxDCA is added.

REGISTER 11-26: PGxPER: PWM GENERATOR x PERIOD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PGxP	'ER[15:8] ⁽¹⁾			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PGxF	PER[7:0] ⁽¹⁾			
						bit 0
Legend:R = Readable bitW = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		ared	x = Bit is unknown	
	R/W-0	R/W-0 R/W-0	PGxP R/W-0 R/W-0 R/W-0 PGxF e bit W = Writable bit	PGxPER[15:8] ⁽¹⁾ R/W-0 R/W-0 R/W-0 PGxPER[7:0] ⁽¹⁾ e bit W = Writable bit U = Unimplem	$PGxPER[15:8]^{(1)}$ $R/W-0 \qquad R/W-0 \qquad R/W-0 \qquad R/W-0$ $PGxPER[7:0]^{(1)}$ $e \text{ bit } W = Writable \text{ bit } U = Unimplemented \text{ bit, real}$	$PGxPER[15:8]^{(1)}$ $R/W-0 \qquad R/W-0 \qquad R/W-0 \qquad R/W-0 \qquad R/W-0$ $PGxPER[7:0]^{(1)}$ $e \text{ bit } W = Writable \text{ bit } U = Unimplemented \text{ bit, read as '0'}$

bit 15-0 **PGxPER[15:0]:** PWM Generator x Period Register bits⁽¹⁾

Note 1: Period values less than '0x0010' should not be used ('0x0080' in High-Resolution mode).

REGISTER 11-27: PGxTRIGA: PWM GENERATOR x TRIGGER A REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGxT	RIGA[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PGx1	RIGA[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit		ad as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bi			iown	

PGxTRIGA[15:0]: PWM Generator x Trigger A Register bits bit 15-0

REGISTER 11-28: PGxTRIGB: PWM GENERATOR x TRIGGER B REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PGxT	RIGB[15:8]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PGx1	RIGB[7:0]				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR '1		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	

bit 15-0 PGxTRIGB[15:0]: PWM Generator x Trigger B Register bits

REGISTER 11-29: PGxTRIGC: PWM GENERATOR x TRIGGER C REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PGxT	RIGC[15:8]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PGx1	RIGC[7:0]				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	

PGxTRIGC[15:0]: PWM Generator x Trigger C Register bits bit 15-0

REGISTER 11-30: PGxDTL: PWM GENERATOR x DEAD-TIME REGISTER LOW

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—		DTL[13:8] ⁽¹⁾								
bit 15	t 15 bit 8										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			D	TL[7:0]							
bit 7							bit 0				
Legend:											
R = Readabl	adable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at	POR	'1' = Bit is set	set '0' = Bit is cleared x = Bit is unknown								

bit 15-14 **Unimplemented:** Read as '0'

bit 13-0 DTL[13:0]: PWMxL Dead-Time Delay bits⁽¹⁾

Note 1: DTL[13:11] bits are not available when HREN (PGxCONL[7]) = 0.

REGISTER 11-31: PGxDTH: PWM GENERATOR x DEAD-TIME REGISTER HIGH

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		DTH[13:8] ⁽¹⁾							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			DT	H[7:0]						
bit 7							bit 0			
Logond										

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 **DTH[13:0]:** PWMxH Dead-Time Delay bits⁽¹⁾

Note 1: DTH[13:11] bits are not available when HREN (PGxCONL[7]) = 0.

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PGxC/	AP[15:8]			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PGxCA	\P[7:0] ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemen	ted bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared	d	x = Bit is unkn	own

REGISTER 11-32: PGxCAP: PWM GENERATOR x CAPTURE REGISTER

bit 15-0 **PGxCAP[15:0]:** PGx Time Base Capture bits⁽¹⁾

Note 1: PGxCAP[1:0] will read as '0' in Standard Resolution mode. PGxCAP[4:0] will read as '0' in High-Resolution mode.

NOTES:

12.0 HIGH-SPEED, 12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (www.microchip.com/DS70005213) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33CK64MP105 devices have a high-speed, 12-bit Analog-to-Digital Converter (ADC) that features a low conversion latency, high resolution and oversampling capabilities to improve performance in AC/DC, DC/DC power converters. The devices implement the ADC with three SAR cores, two dedicated and one shared.

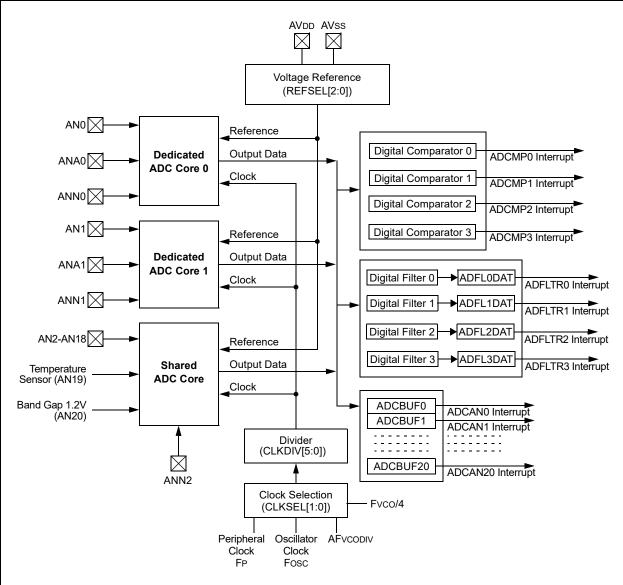
12.1 ADC Features Overview

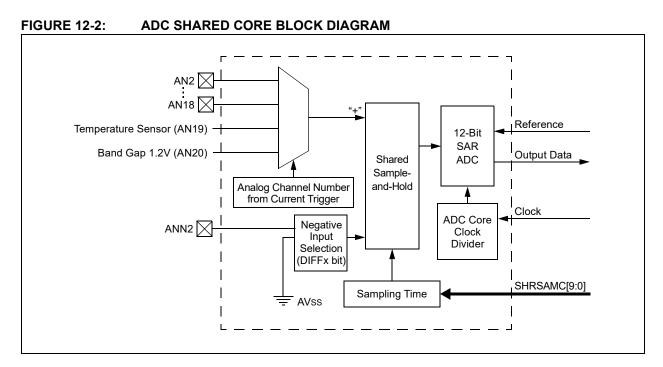
The High-Speed, 12-Bit Multiple SARs Analog-to-Digital Converter (ADC) includes the following features:

- Three ADC Cores: Two Dedicated Cores and One Shared (common) Core
- User-Configurable Resolution of up to 12 Bits for each Core
- Up to 3.5 Msps Conversion Rate per Channel at 12-Bit Resolution
- Low-Latency Conversion
- Up to 21 Analog Input Channels, with a Separate 16-Bit Conversion Result Register for each Input
- Conversion Result can be Formatted as Unsigned or Signed Data, on a per Channel Basis, for All Channels

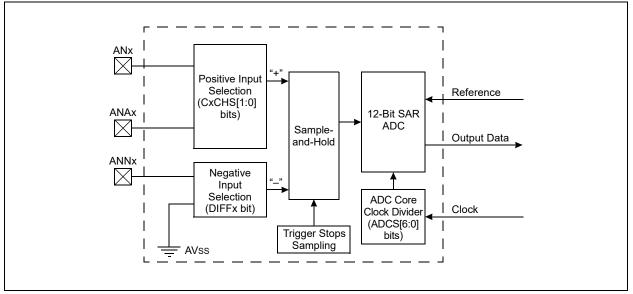
- Simultaneous Sampling of up to Three Analog
 Inputs
- · Channel Scan Capability
- Multiple Conversion Trigger Options for each Core, including:
 - PWM triggers from CPU cores
 - MCCP/SCCP modules triggers
 - CLC modules triggers
 - External pin trigger event (ADTRG31)
 - Software trigger
- Four Integrated Digital Comparators with Dedicated Interrupts:
 - Multiple comparison options
 - Assignable to specific analog inputs
- Four Oversampling Filters with Dedicated Interrupts:
 - Provide increased resolution
 - Assignable to a specific analog input

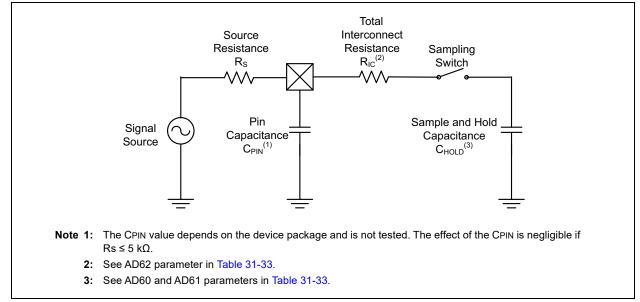
The module consists of three independent SAR ADC cores. Simplified block diagrams of the Multiple SARs 12-Bit ADC are shown in Figure 12-1 and Figure 12-2.


The analog inputs (channels) are connected through multiplexers and switches to the Sample-and-Hold (S&H) circuit of each ADC core. The core uses the channel information (the output format, the Measurement mode and the input number) to process the analog sample. When conversion is complete, the result is stored in the result buffer for the specific analog input, and passed to the digital filter and digital comparator if they were configured to use data from this particular channel.


The ADC module can sample up to five inputs at a time (four inputs from the dedicated SAR cores and one from the shared SAR core). If multiple ADC inputs request conversion on the shared core, the module will convert them in a sequential manner, starting with the lowest order input.

The ADC provides each analog input the ability to specify its own trigger source. This capability allows the ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.


dsPIC33CK64MP105 FAMILY



12.2 Sampling Time Requirements

The analog input model of the ADC is shown in Figure 12-4.

The total acquisition time for the Analog-to-Digital conversion is a function of the Holding Capacitor (CHOLD) charge time. For the ADC module to meet its specified accuracy, the Holding Capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The Signal Source Impedance (Rs) and the Interconnect Impedance (RIC) combine to affect the time required to charge the CHOLD. The total resistance (Rs + RIC) must therefore, be small enough to fully charge the holding capacitor within the selected sample time.

12.3 Temperature Sensor

The ADC channel, AN19, is connected to a forwardbiased diode. It can be used to measure a die temperature. This diode provides an output with a temperature coefficient of approximately -1.5 mV/C that can be monitored by the ADC. To get the exact gain and offset numbers, the two temperature points calibration is recommended.

12.4 Analog-to-Digital Converter Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

12.4.1 KEY RESOURCES

- "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (www.microchip.com/ DS70005213) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

12.5 ADC Control/Status Registers

		••••••					
R/W-0	U-0	R/W-0	U-0	r-0	U-0	U-0	U-0
ADON ⁽¹⁾	—	ADSIDL	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7			•	•			bit 0
Legend:		r = Reserved	bit				
D D 111	1.11	\A/ \A/!!!!!				(0)	

REGISTER 12-1: ADCON1L: ADC CONTROL REGISTER 1 LOW

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADON: ADC Enable bit ⁽¹⁾
	1 = ADC module is enabled

0 = ADC module is off

- bit 14 Unimplemented: Read as '0'
- bit 13 ADSIDL: ADC Stop in Idle Mode bit
 - 1 = Discontinues module operation when device enters Idle mode
 - 0 = Continues module operation in Idle mode
- bit 12 Unimplemented: Read as '0'
- bit 11 Reserved: Maintain as '0'
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** Set the ADON bit only after the ADC module has been configured. Changing ADC Configuration bits when ADON = 1 will result in unpredictable behavior.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0
FORM	SHRRES1	SHRRES0					_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
bit 15-8	Unimplement	ed: Read as '0)'				
bit 7	FORM: Fraction	onal Data Outp	ut Format bit				
	1 = Fractional						
	0 = Integer						
bit 6-5	SHRRES[1:0]	: Shared ADC	Core Resolution	on Selection bit	s		
	11 = 12-bit res						
	10 = 10-bit res						
	01 = 8-bit reso 00 = 6-bit reso						
bit 4-0		ed: Read as '0)'				
			-				

REGISTER 12-2: ADCON1H: ADC CONTROL REGISTER 1 HIGH

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
REFCIE	REFERCIE	—	EIEN	PTGEN ⁽³⁾	SHREISEL2 ⁽¹⁾	SHREISEL1 ⁽¹⁾	SHREISEL0 ⁽¹
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SHRADCS	6:0] ⁽²⁾		
bit 7					1		bit
Legend:	L. L. L. 14		1.14	11 11		(O'	
R = Reada		W = Writable		-	emented bit, read		
-n = Value	at POR	'1' = Bit is set		ʻ0' = Bit is cl	eared	x = Bit is unkno	own
bit 15	REFCIE: Ban	d Gap and Re	ference Volta	ide Readv Cor	nmon Interrupt	Enable bit	
-		-			d gap will becom		
		interrupt is dis	•		• •	,	
bit 14	REFERCIE: B	Band Gap or R	eference Vol	tage Error Cor	nmon Interrupt	Enable bit	
			U U		<i>,</i> ,	voltage error is	detected
	0 = Common	interrupt is dis	abled for the	band gap and	reference volta	ge error event	
bit 13	Unimplemen	ted: Read as '	0'				
bit 12	EIEN: Early I	nterrupts Enab	le bit				
						ts (when the EIS	
		-	-		ersion is done (v	when the ANxRD	Y flag is set)
bit 11		Conversion R	•	ace bit ⁽³⁾			
		ers are enable ers are disable					
bit 10-8	SHREISEL[2	:0]: Shared Co	ore Early Inte	rrupt Time Sel	ection bits ⁽¹⁾		
	111 = Early in	terrupt is set ar	nd interrupt is	generated eigh	nt TADCORE clock	s prior to when th	e data are rea
						s prior to when th	
						prior to when the	
						prior to when the prior to when the	
						s prior to when the	
						prior to when the	
						prior to when the o	
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-0	SHRADCS[6	:0]: Shared AD	C Core Inpu	t Clock Divide	r bits ⁽²⁾		
	These bits de	termine the nu	umber of Tcc	RESRC (Sourc	e Clock Periods) for one shared	TADCORE (Co
	Clock Period)						
	1111111 = 2	54 Source Clo	ck Periods				
		Source Clock	Periods				
		Source Clock					
		Source Clock					
	0000000 = 2	Source Clock	Periods				
Note 1:	For the 6-bit shar	red ADC core re	esolution (SH	IRRES[1:0] = (00), the SHREIS	EL[2:0] settinas.	
						ed ADC core reso	lution
						valid and should r	
			cted by the S	HRADCS[6:0]	bits, must not e	exceed the AD11	parameter
:	specified in Table	e 31-33.					
_							

REGISTER 12-3: ADCON2L: ADC CONTROL REGISTER 2 LOW

3: Other ADC trigger sources cannot be used if PTG triggers are enabled.

HSC/R-0	HSC/R-0	U-0	r-0	r-0	r-0	R/W-0	R/W-0	
REFRDY	REFERR	_	_				MC[9:8]	
bit 15							bit 8	
DAAUO	D /11/0	D /M/0	D /// 0	DAM 0	D /4/ 0	D /// 0	D 444 0	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
L:4 7			SHKSA	MC[7:0]			L:+ (
bit 7							bit (
Legend:		r = Reserved b	oit	U = Unimplem	ented bit, read	as '0'		
R = Readable	e bit	W = Writable b	bit	HSC = Hardwa	are Settable/Cl	earable bit		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 14	1 = Band gap	is not ready nd Gap or Refe	after the ADC r	Error Flag bit nodule was ena	bled (ADON =	·1)		
bit 13	Unimplement	ted: Read as '0	3					
bit 12-10	Reserved: Ma	aintain as '0'						
bit 9-0	These bits spe sample time.	ecify the numbe = 1025 Tadcof = 3 Tadcore	er of shared AI	e Time Selectior DC Core Clock I		DRE) for the sha	ared ADC core	

REGISTER 12-4: ADCON2H: ADC CONTROL REGISTER 2 HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	HSC/R-0	R/W-0	HSC/R-0
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH
bit 15							bit 8
DALO		DAMA	DAALO	DAMO	DAMA	DAALO	DAMA
R/W-0	HSC/R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSELC
							DILC
Legend:		U = Unimplen	nented bit, read	as '0'			
R = Readable	e bit	W = Writable	bit	HSC = Hardw	are Settable/C	learable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-13	REFSEL[2:0]	: ADC Referen	ce Voltage Sele	ection bits			
	Value	VREFH	VREFL				
	000	AVdd	AVss				
	001 - 111 = U	nimplemented	: Do not use				
bit 12	SUSPEND: A	II ADC Core Tri	iggers Disable I	oit			
		igger events for ores can be trig	r all ADC cores	are disabled			
bit 11			Cores Commo	n Interrupt Ena	able bit		
			e generated wh				PEND bit = 1)
			sions are finishe	•		et)	
L:1 40		-	generated for	-	cores event		
bit 10			Suspended Flag		baya na conya	reione in progr	000
			s conversions i		Thave no conve	rsions in progr	633
bit 9	SHRSAMP: S	Shared ADC Co	ore Sampling Di	rect Control bi	t		
			the individual of				
		U 1 7	specified by the . This bit is no				
			IVRTCH to '1').				
	1 = Shared A	DC core sampl	es an analog in / the shared AD	put specified b		SEL[5:0] bits	
bit 8		-	ual Channel Co				
	1 = Single tri	gger is generat	ed for an analo	g input specifi	ed by the CNV		s; when the bi
		-	cleared by hare conversion trigg			cycle	
bit 7			Sensitive Com				
			ly generated for			vare. level-sen	sitive commor
	trigger se	elected as a sou	urce in the ADT	RIGxL and AD	TRIGxH registe		
			tive common tr	iggers are gen	erated		
bit 6		oftware Commo					
	-		ed for all chann			n trigger select t is automatica	
				isters, when t			any cleared by
	hardware	e on the next in	struction cycle				any cleared by
bit 5-0	hardware 0 = Ready to	e on the next in generate the r		ommon trigger			

REGISTER 12-5: ADCON3L: ADC CONTROL REGISTER 3 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CLKSEL1 ⁽¹⁾	CLKSEL0 ⁽¹⁾	CLKDIV5 ⁽²⁾	CLKDIV4 ⁽²⁾	CLKDIV3 ⁽²⁾	CLKDIV2 ⁽²⁾	CLKDIV1 ⁽²⁾	CLKDIV0 ⁽²⁾
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
SHREN	—	—	—	—	—	C1EN	C0EN
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	nown
bit 15-14	CLKSEL[1:0]	: ADC Module	Clock Source S	Selection bits ⁽¹)		
	11 = Fvco/4 10 = AFvcod	N /					
	10 - AFVCODI 01 = Fosc	IV					
	00 = FP (Peri	pheral Clock)					
bit 13-8	CLKDIV[5:0]:	ADC Module	Clock Source E	Divider bits ⁽²⁾			
						edicated) from	
						core individuation (6:0) bits in the	
		SHRADCS[6:				[]	
	111111 = 64	Source Clock I	Periods				
	···	Source Clock P	arioda				
		Source Clock P					
		Source Clock P					
		Source Clock P					
bit 7	-	red ADC Core					
		DC core is ena DC core is disa					
bit 6-2		ted: Read as '					
bit 1	C1EN: Dedica	ated ADC Core	1 Enable bits				
	1 = Dedicated	ADC Core 1 is	s enabled				
		ADC Core 1 is					
bit 0		ated ADC Core					
		ADC Core 0 is ADC Core 0 is					
	e ADC input clo ecified in Table		elected by the	CLKSEL[1:0] b	its, must not ex	ceed the AD9 p	barameter
2. Th	e ADC clock fre	equency, after t	he first divider	selected by the	CI KDIV[5:0]	bits, must not e	exceed the

REGISTER 12-6: ADCON3H: ADC CONTROL REGISTER 3 HIGH

2: The ADC clock frequency, after the first divider selected by the CLKDIV[5:0] bits, must not exceed the AD10 parameter specified in Table 31-33.

REGISTER 12-7. ADCON4L: ADC CONTROL REGISTER 4 LOW	REGISTER 12-7:	ADCON4L: ADC CONTROL REGISTER 4 LOW
--	----------------	-------------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	r-0	r-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_		—	—	—	—	SAMC1EN	SAMC0EN
bit 7							bit 0
Legend:		r = Reserved	bit				
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			lown

- bit 15-10 Unimplemented: Read as '0'
- bit 9-8 **Reserved:** Must be written as '0'
- bit 7-2 Unimplemented: Read as '0'
- bit 1 SAMC1EN: Dedicated ADC Core 1 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC[9:0] bits in the ADCORE1L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle
- bit 0 SAMCOEN: Dedicated ADC Core 0 Conversion Delay Enable bit
 - 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC[9:0] bits in the ADCORE0L register
 - 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle

REGISTER 12-8: ADCON4H: ADC CONTROL REGISTER 4 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—		<u> </u>	C1CHS1	C1CHS0	C0CHS1	C0CHS0				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15-4	Unimplemen	ted: Read as ')'								
bit 3-2	C1CHS[1:0]:	Dedicated AD	C Core 1 Input	Channel Selec	tion bits						
	11 = Reserve	d									
	10 = Reserve	d									
	01 = ANA1 00 = AN1										
L:1 0					4: I- : 4 -						
bit 1-0			Core 0 Input	Channel Select	tion dits						
	10 = Reserve	11 = Reserved									
	01 = ANA0	iu -									
	00 = ANO										

HSC/R-0	U-0	U-0	U-0	U-0	U-0	HSC/R-0	HSC/R-0				
SHRRDY	_	—	_	—	_	C1RDY	CORDY				
bit 15							bit 8				
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
SHRPWR	—	—	—	—	_	C1PWR	C0PWR				
oit 7							bit 0				
Legend:		U = Unimplem	antad hit raa	1 22 (0)							
L egenu. R = Readabl	la hit	W = Writable b		HSC = Hardwa	oro Sottoblo/(Clearable bit					
			Л								
-n = Value at	IPUR	'1' = Bit is set		'0' = Bit is clea	irea	x = Bit is unkn	lown				
				:.							
bit 15	SHRRDY: Shared ADC Core Ready Flag bit 1 = ADC core is powered and ready for operation										
	1 - ADC core is powered and ready for operation 0 = ADC core is not ready for operation										
bit 14-10		ited: Read as '0	•								
oit 9	C1RDY: Dedi	C1RDY: Dedicated ADC Core 1 Ready Flag bit									
	1 = ADC Core 1 is powered and ready for operation										
	0 = ADC Core 1 is not ready for operation										
bit 8		CORDY: Dedicated ADC Core 0 Ready Flag bit									
	 1 = ADC Core 0 is powered and ready for operation 0 = ADC Core 0 is not ready for operation 										
.:. 7		•	-	- I-:4							
bit 7	1 = ADC core	hared ADC Core	Power Enabl	e dil							
	1 = ADC core 0 = ADC core										
bit 6-2	Unimplemen	ited: Read as '0	,								
bit 1	C1PWR: Dec	licated ADC Cor	e 1 Power En	able bit							
	1 = ADC Core 1 is powered										
	0 = ADC Core	e 1 is off									
oit 0		licated ADC Co	e 0 Power En	able bit							
	1 = ADC Core 0 is powered										
	0 = ADC Core	e u is off									

REGISTER 12-9: ADCON5L: ADC CONTROL REGISTER 5 LOW

REGISTER 12-10: ADCON5H: ADC CONTROL REGISTER 5 HIGH

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	_	_		WARM	TIME[3:0]					
bit 15							bit 8				
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
SHRCIE	_			_		C1CIE	COCIE				
bit 7							bit 0				
							1				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-12	Unimplemented: Read as '0'										
bit 11-8				x Power-up Dela	-		· /— ``				
	for all ADC c		wer-up delay	in the number of	of the Core Sou	urce Clock Perio	ds (ICORESRC)				
		68 Source Clock	Periods								
		34 Source Clock									
		2 Source Clock									
		Source Clock									
		3 Source Clock I Source Clock									
		Source Clock P									
		Source Clock P									
	0111 = 128	Source Clock P	eriods								
		ource Clock Pe									
		ource Clock Pe									
		ource Clock Pe									
bit 7		-		mon Interrupt E	nable bit						
			•	•		d ready for opera	ation				
		•	•	ADC core ready	•	, , , , , , , , , , , , , , , , , , ,					
bit 6-2	Unimpleme	nted: Read as '	0'								
bit 1	C1CIE: Dedi	icated ADC Cor	e 1 Ready C	ommon Interrup	t Enable bit						
						and ready for op	eration				
		-		ADC Core 1 rea	•						
bit 0			-	ommon Interrup							
	 1 = Common interrupt will be generated when ADC Core 0 is powered and ready for operation 0 = Common interrupt is disabled for an ADC Core 0 ready event 										
		i interrupt is dis	abled for an a	ADC Core o rea	uy eveni						

REGISTER 12-11: ADCOREXL: DEDICATED ADC CORE x CONTROL REGISTER LOW (x = 0 TO 1)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	_	_	—	—	SAM	C[9:8]
bit 15		·		÷			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SA	MC[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			own

bit 15-10 Unimplemented: Read as '0'

bit 9-0 SAMC[9:0]: Dedicated ADC Core x Conversion Delay Selection bits These bits determine the time between the trigger event and the start of conversion in the number of the Core Clock Periods (TADCORE). During this time, the ADC Core x still continues sampling. This feature is enabled by the SAMCxEN bits in the ADCON4L register. 1111111111 = 1025 TADCORE . . .

> 000000001 = 3 TADCORE 0000000000 = 2 TADCORE

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	—	EISEL2	EISEL1	EISEL0	RES1	RES2				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				ADCS[6:0] ⁽²⁾							
bit 7							bit 0				
Legend:											
R = Read	able bit	W = Writable b	bit	U = Unimpleme	ented bit, read	as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clear		x = Bit is unkno	own				
bit 15-13	Unimplement	ted: Read as '0	3								
bit 12-10	EISEL[2:0]: A	DC Core x Ear	ly Interrupt Tin	ne Selection bits							
	111 = Early int	errupt is set and	an interrupt is	generated eight	TADCORE clocks	prior to when the	e data are ready				
						prior to when the					
	101 = Early int	terrupt is set and	d an interrupt is	generated six T/	ADCORE clocks p	prior to when the	data are ready				
			101 = Early interrupt is set and an interrupt is generated six TADCORE clocks prior to when the data are read 100 = Early interrupt is set and an interrupt is generated five TADCORE clocks prior to when the data are read								
	011 = Early interrupt is set and an interrupt is generated four TADCORE clocks prior to when the data are real										
				U							
	011 = Early int	terrupt is set and	an interrupt is	generated four	ADCORE Clocks		e data are ready				
	011 = Early int 010 = Early int	terrupt is set and errupt is set and	d an interrupt is an interrupt is	generated four generated three	TADCORE <mark>clocks</mark> TADCORE <mark>clocks</mark>	, prior to when the	e data are ready e data are ready				
	011 = Early int 010 = Early int 001 = Early int	terrupt is set and errupt is set and terrupt is set and	d an interrupt is an interrupt is d an interrupt is	generated four generated three generated two T	TADCORE Clocks TADCORE Clocks TADCORE Clocks	prior to when the prior to when the	e data are ready e data are ready e data are ready				
bit 9-8	011 = Early int 010 = Early int 001 = Early int 000 = Early int	terrupt is set and errupt is set and terrupt is set and terrupt is set and	d an interrupt is l an interrupt is d an interrupt is d an interrupt is	generated four generated three generated two T generated one T	TADCORE Clocks TADCORE Clocks TADCORE Clocks	prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready				
bit 9-8	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD	terrupt is set and errupt is set and terrupt is set and terrupt is set and C Core x Reso	d an interrupt is l an interrupt is d an interrupt is d an interrupt is	generated four generated three generated two T generated one T	TADCORE Clocks TADCORE Clocks TADCORE Clocks	prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready				
bit 9-8	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit res	terrupt is set and errupt is set and terrupt is set and terrupt is set and C Core x Reso solution	d an interrupt is l an interrupt is d an interrupt is d an interrupt is	generated four generated three generated two T generated one T	TADCORE Clocks TADCORE Clocks TADCORE Clocks	prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready				
bit 9-8	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit res 10 = 10-bit res	terrupt is set and errupt is set and terrupt is set and terrupt is set and C Core x Reso solution solution	d an interrupt is l an interrupt is d an interrupt is d an interrupt is	generated four generated three generated two T generated one T	TADCORE Clocks TADCORE Clocks TADCORE Clocks	prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready				
bit 9-8	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit res	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Reso solution solution olution ⁽¹⁾	d an interrupt is l an interrupt is d an interrupt is d an interrupt is	generated four generated three generated two T generated one T	TADCORE Clocks TADCORE Clocks TADCORE Clocks	prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready				
	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit res 10 = 10-bit res 01 = 8-bit reso 00 = 6-bit reso	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Reso solution solution olution ⁽¹⁾	d an interrupt is an interrupt is d an interrupt is d an interrupt is lan interrupt is lution Selectio	generated four generated three generated two T generated one T	TADCORE Clocks TADCORE Clocks TADCORE Clocks	prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready				
bit 9-8 bit 7 bit 6-0	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit res 01 = 8-bit reso 00 = 6-bit reso Unimplement	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Resol solution solution polution ⁽¹⁾	d an interrupt is an interrupt is d an interrupt is d an interrupt is lution Selectio	generated four ⊺ generated three generated two T generated one ⊺ n bits	TADCORE Clocks TADCORE Clocks TADCORE Clocks	prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready				
bit 7	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit res 01 = 8-bit reso 00 = 6-bit reso Unimplement ADCS[6:0]: A	terrupt is set and terrupt is set and terrupt is set and C Core x Reso solution solution olution ⁽¹⁾ olution ⁽¹⁾ ted: Read as '0 DC Core x Inpu	d an interrupt is an interrupt is d an interrupt is d an interrupt is lution Selectio	er bits ⁽²⁾	TADCORE Clocks TADCORE Clocks TADCORE Clocks TADCORE Clock p	prior to when the prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready data are ready				
bit 7	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit res 10 = 10-bit res 01 = 8-bit resc 00 = 6-bit resc Unimplement ADCS[6:0]: A These bits dete	terrupt is set and terrupt is set and terrupt is set and C Core x Reso solution solution olution ⁽¹⁾ olution ⁽¹⁾ ted: Read as '0 DC Core x Inpu	an interrupt is an interrupt is an interrupt is an interrupt is an interrupt is lution Selectio	er bits ⁽²⁾	TADCORE Clocks TADCORE Clocks TADCORE Clocks TADCORE Clock p	prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready data are ready				
bit 7	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit res 10 = 10-bit res 01 = 8-bit resc 00 = 6-bit resc Unimplement ADCS[6:0]: A These bits dete	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Resol solution solution olution ⁽¹⁾ olution ⁽¹⁾ ted: Read as '0 DC Core x Inpu ermine the numl	an interrupt is an interrupt is an interrupt is an interrupt is an interrupt is lution Selectio	er bits ⁽²⁾	TADCORE Clocks TADCORE Clocks TADCORE Clocks TADCORE Clock p	prior to when the prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready data are ready				
bit 7	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit res 10 = 10-bit res 01 = 8-bit resc 00 = 6-bit resc Unimplement ADCS[6:0]: A These bits dete 1111111 = 25 	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Resol solution solution olution ⁽¹⁾ olution ⁽¹⁾ ted: Read as '0 DC Core x Inpu ermine the numl	an interrupt is an interrupt is an interrupt is an interrupt is an interrupt is lution Selection , t Clock Divide ber of Source (k Periods	er bits ⁽²⁾	TADCORE Clocks TADCORE Clocks TADCORE Clocks TADCORE Clock p	prior to when the prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready data are ready				
bit 7	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit resc 01 = 8-bit resc 00 = 6-bit resc Unimplement ADCS[6:0]: A These bits dete 1111111 = 25 0000011 = 6	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Resol solution solution (1) olution ⁽¹⁾ ted: Read as '0 DC Core x Inpu ermine the numl 54 Source Cloc	d an interrupt is an interrupt is d an interrupt is d an interrupt is d an interrupt is lution Selection , tt Clock Divide ber of Source (k Periods Periods	er bits ⁽²⁾	TADCORE Clocks TADCORE Clocks TADCORE Clocks TADCORE Clock p	prior to when the prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready data are ready				
bit 7	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit resc 01 = 8-bit resc 00 = 6-bit resc Unimplement ADCS[6:0]: A These bits dete 1111111 = 25 0000011 = 6 000010 = 4	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Resol solution solution colution ⁽¹⁾ ted: Read as '0 DC Core x Inpu ermine the numl 54 Source Clock F	d an interrupt is an interrupt is an interrupt is an interrupt is an interrupt is lution Selection , t Clock Divide ber of Source (k Periods Periods Periods	er bits ⁽²⁾	TADCORE Clocks TADCORE Clocks TADCORE Clocks TADCORE Clock p	prior to when the prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready data are ready				
bit 7	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit resc 01 = 8-bit resc 00 = 6-bit resc Unimplement ADCS[6:0]: A These bits dete 1111111 = 25 0000011 = 6 0000010 = 4 0000001 = 2	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Resol solution solution colution ⁽¹⁾ ted: Read as '0 .DC Core x Inpu ermine the numl 54 Source Clock F Source Clock F	d an interrupt is an interrupt is an interrupt is an interrupt is an interrupt is lution Selection , ut Clock Divide ber of Source C k Periods Periods Periods Periods	er bits ⁽²⁾	TADCORE Clocks TADCORE Clocks TADCORE Clocks TADCORE Clock p	prior to when the prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready data are ready				
bit 7 bit 6-0	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit resc 01 = 8-bit resc 00 = 6-bit resc Unimplement ADCS[6:0]: A These bits dete 1111111 = 25 0000011 = 6 0000010 = 4 0000001 = 2 0000000 = 2	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Resol solution solution (1) blution ⁽¹⁾ ted: Read as '0 DC Core x Inpu ermine the numl 54 Source Clock F Source Clock F Source Clock F Source Clock F	d an interrupt is an interrupt is an interrupt is an interrupt is an interrupt is lution Selection vertice Cock Divide ber of Source Cock Periods Periods Periods Periods Periods Periods	er bits ⁽²⁾	TADCORE clocks TADCORE clocks TADCORE clocks TADCORE clock p	prior to when the prior to when the prior to when the prior to when the	e data are ready e data are ready e data are ready data are ready riod (TADCORE).				
bit 7 bit 6-0	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit resc 01 = 8-bit resc 00 = 6-bit resc Unimplement ADCS[6:0]: A These bits dete 1111111 = 25 0000011 = 6 0000010 = 4 0000001 = 2 0000000 = 2 For the 6-bit AD	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Resol solution solution (1) blution ⁽¹⁾ ted: Read as '0 DC Core x Inpu ermine the numl 54 Source Clock F Source Clock F Source Clock F Source Clock F Source Clock F	d an interrupt is an interrupt is an interrupt is an interrupt is an interrupt is lution Selection veriods Periods Periods Periods Periods Periods Periods Periods Periods Periods Periods Periods	er bits ⁽²⁾ Clock Periods (To = 00), the EISEL	TADCORE clocks TADCORE clocks TADCORE clocks TADCORE clock p CORESRC) for on	prior to when the prior to when the prior to when the prior to when the orior to when the e Core Clock Per	e data are ready e data are ready data are ready data are ready riod (TADCORE).				
bit 7	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit resc 01 = 8-bit resc 00 = 6-bit resc Unimplement ADCS[6:0]: A These bits deta 1111111 = 25 0000011 = 6 0000010 = 4 0000001 = 2 0000000 = 2 For the 6-bit AD valid and should	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Resol solution solution blution ⁽¹⁾ ted: Read as '0 .DC Core x Inpu ermine the numl 54 Source Clock F Source Clock F	d an interrupt is an interrupt is an interrupt is an interrupt is an interrupt is lution Selection vit Clock Divide ber of Source C k Periods	er bits ⁽²⁾ Clock Periods (To DC core resolution	TADCORE clocks TADCORE clocks TADCORE clocks TADCORE clock p CORESRC) for on [2:0] bits settin on (RES[1:0] =	prior to when the prior to when the prior to when the prior to when the	e data are ready e data are ready data are ready data are ready riod (TADCORE).				
bit 7 bit 6-0	011 = Early int 010 = Early int 001 = Early int 000 = Early int RES[1:0]: AD 11 = 12-bit resc 01 = 8-bit resc 00 = 6-bit resc Unimplement ADCS[6:0]: A These bits deta 1111111 = 25 0000011 = 6 0000010 = 4 0000001 = 2 0000000 = 2 For the 6-bit AD valid and should	terrupt is set and terrupt is set and terrupt is set and terrupt is set and C Core x Resol solution solution olution ⁽¹⁾ ted: Read as '0 DC Core x Inpu ermine the numb 54 Source Clock F Source Clock F	d an interrupt is an interrupt is d an interrupt is d an interrupt is d an interrupt is lution Selection , ut Clock Divide ber of Source C k Periods	er bits ⁽²⁾ Clock Periods (To DC core resolutinould not be use	TADCORE clocks TADCORE clocks ADCORE clocks TADCORE clock p CORESRC) for on (2:0] bits settin on (RES[1:0] = d.	prior to when the prior to when the prior to when the prior to when the orior to when the e Core Clock Per gs, from '100' to 01), the EISEL[e data are ready e data are ready data are ready data are ready riod (TADCORE). 0 '111', are not [2:0] bits				

REGISTER 12-12: ADCOREXH: DEDICATED ADC CORE x CONTROL REGISTER HIGH (x = 0 TO 1)

REGISTER 12-13: ADLVLTRGL: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LVLE	N[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LVLE	EN[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 LVLEN[15:0]: Level Trigger for Corresponding Analog Input Enable bits

1 = Input trigger is level-sensitive

0 = Input trigger is edge-sensitive

REGISTER 12-14: ADLVLTRGH: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	_	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			LVLEN[20:16]		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 LVLEN[20:16]: Level Trigger for Corresponding Analog Input Enable bits

1 = Input trigger is level-sensitive

0 = Input trigger is edge-sensitive

REGISTER 12-15: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			EIE	N[15:8]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			EIE	EN[7:0]				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			t	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-0 EIEN[15:0]: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 12-16: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	—	—	—	—
bit 15						•	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—			EIEN[20:16]		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown			

bit 15-5 Unimplemented: Read as '0'

bit 4-0 EIEN[20:16]: Early Interrupt Enable for Corresponding Analog Inputs bits

1 = Early interrupt is enabled for the channel

0 = Early interrupt is disabled for the channel

REGISTER 12-17: ADEISTATL: ADC EARLY INTERRUPT STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			EISTA	T[15:8]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			EIST	AT[7:0]				
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable bit	U = Unimplemented bit_read as '0'					

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 EISTAT[15:0]: Early Interrupt Status for Corresponding Analog Inputs bits

1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

REGISTER 12-18: ADEISTATH: ADC EARLY INTERRUPT STATUS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15	bit 15						bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			EISTAT[20:16]		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable t	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR '1' = Bit is se			'0' = Bit is cleared x = Bit is unknown			nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 EISTAT[20:16]: Early Interrupt Status for Corresponding Analog Inputs bits

1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4
bit 15	·	•	•	•	•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0
bit 7	•	•	•	•	•	•	bit 0
Legend:							

REGISTER 12-19: ADMOD0L: ADC INPUT MODE CONTROL REGISTER 0 LOW

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 through **DIFF[7:0]:** Differential-Mode for Corresponding Analog Inputs bits

bit 1 (odd)	1 = Channel is differential
	0 = Channel is single-ended
bit 14 through	SIGN[7:0]: Output Data Sign for Corresponding Analog Inputs bits

bit 0 (even) 1 = Channel output data are signed

0 = Channel output data are unsigned

REGISTER 12-20: ADMOD0H: ADC INPUT MODE CONTROL REGISTER 0 HIGH

R/W-0 SIGN12 bit 8
-
bit 8
R/W-0
SIGN8
bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 through DIFF[15:8]: Differential-Mode for Corresponding Analog Inputs bits

bit 1 (odd) 1 = Channel is differential

0 = Channel is single-ended

bit 14 through SIGN[15:8]: Output Data Sign for Corresponding Analog Inputs bits

bit 0 (even) 1 = Channel output data are signed

0 = Channel output data are unsigned

REGISTER 12-21: ADMOD1L: ADC INPUT MODE CONTROL REGISTER 1 LOW

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
_			_	—	—	DIFF20	SIGN20		
bit 15				-		·	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DIFF19	SIGN19	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15 through	DIFF[20:16]:	DIFF[20:16]: Differential-Mode for Corresponding Analog Inputs bits							
bit 1 (odd)	1 = Channel i								
	0 = Channel i	s single-ended							
bit 14 through	SIGN[20-16]-	Output Data S	ian for Corres	nonding Analog	Innuts hits				

bit 14 through **SIGN[20:16]:** Output Data Sign for Corresponding Analog Inputs bits bit 0 (even)

1 = Channel output data are signed

0 = Channel output data are unsigned

REGISTER 12-22: ADIEL: ADC INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IE	[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IE	[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' =		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 IE[15:0]: Common Interrupt Enable bits

1 = Common and individual interrupts are enabled for the corresponding channel

0 = Common and individual interrupts are disabled for the corresponding channel

REGISTER 12-23: ADIEH: ADC INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			IE[20:16]		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 IE[20:16]: Common Interrupt Enable bits

1 = Common and individual interrupts are enabled for the corresponding channel

0 = Common and individual interrupts are disabled for the corresponding channel

REGISTER 12-24: ADSTATL: ADC DATA READY STATUS REGISTER LOW

HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	
			AN[15	:8]RDY				
bit 15 bi								
HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	
			AN[7:	0]RDY				
bit 7							bit 0	
Legend: U = Unimplemented bit, read as '0'								
R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit								

R – Readable bit		HSC - Haruware Sellable/C	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 AN[15:0]RDY: Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

REGISTER 12-25: ADSTATH: ADC DATA READY STATUS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
—	—	—			AN[20:16]RDY		
bit 7							bit 0

Legend:	U = Unimplemented b	U = Unimplemented bit, read as '0'				
R = Readable bit	W = Writable bit	HSC = Hardware Setta	ble/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-5 Unimplemented: Read as '0'

bit 4-0 AN[20:16]RDY: Common Interrupt Enable for Corresponding Analog Inputs bits

1 = Channel conversion result is ready in the corresponding ADCBUFx register

0 = Channel conversion result is not ready

REGISTER 12-26: ADTRIGnL/ADTRIGnH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 20; n = 0 TO 6)

					- /		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_	TRGSRC(x+1)4	TRGSRC(x+1)3	TRGSRC(x+1)2	TRGSRC(x+1)1	TRGSRC(x+1)
bit 15							bit
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		TRGSRCx4	TRGSRCx3	TRGSRCx2	TRGSRCx1	TRGSRCx0
bit 7							bit
Legend:						(O)	
R = Reada		W = Writab		•	nted bit, read as		
-n = Value	at POR	'1' = Bit is s	et	'0' = Bit is cleare	d	x = Bit is unknow	vn
bit 15-13	•	mented: Rea					
bit 12-8		(x+1)[4:0]: Ti C1 to TRGSR	rigger Source Sel C19 – Odd)	lection for Corres	ponding Analog	Inputs bits	
	11111 =	ADTRG31 (P	PS input)				
	11110 =		1 /				
	11101 =	CLC2					
	11100 =						
		Reserved					
		Reserved					
		Reserved MCCP5 CCP	Interrunt				
		SCCP4 CCP					
		SCCP3 CCP					
		SCCP2 CCP					
		SCCP1 CCP	•				
		Reserved					
		CLC4 Output					
	10001 =	CLC3 Output					
	10000 =	MCCP5 Trigg	er				
		SCCP4 Trigg					
		SCCP3 Trigg					
		SCCP2 Trigg					
		SCCP1 Trigg					
		PWM4 Trigge					
		PWM4 Trigge					
		PWM3 Trigge					
		PWM3 Trigge					
		PWM2 Trigge					
	00110 =	PWM2 Trigge					

00100 = PWM1 Trigger 1 00011 = Reserved 00010 = Level software trigger

00101 = PWM1 Trigger 2

- 00001 = Common software trigger
- 00000 = No trigger is enabled
- bit 7-5 **Unimplemented:** Read as '0'

REGISTER 12-26: ADTRIGnL/ADTRIGnH: ADC CHANNEL TRIGGER n(x) SELECTION REGISTERS LOW AND HIGH (x = 0 TO 20; n = 0 TO 6) (CONTINUED)

bit 4-0	TRGSRCx[4:0]: Common Interrupt Enable for Corresponding Analog Inputs bits (TRGSRC0 to TRGSRC20 – Even)
	11111 = ADTRG31 (PPS input)
	11110 = PTG12
	11101 = CLC2 11100 = CLC1
	11011 = Reserved 11010 = Reserved
	11010 - Reserved
	11000 = MCCP5 CCP Interrupt
	10111 = SCCP4 CCP Interrupt
	10110 = SCCP3 CCP Interrupt 10101 = SCCP2 CCP Interrupt
	10100 = SCCP1 CCP Interrupt
	10010 - Secrificer interrupt
	10011 - Reserved 10010 = CLC4 Output
	10001 = CLC3 Output
	10000 = MCCP5 Trigger
	01111 = SCCP4 Trigger
	01110 = SCCP3 Trigger
	01101 = SCCP2 Trigger
	01100 = SCCP1 Trigger
	01011 = PWM4 Trigger 2
	01010 = PWM4 Trigger 1
	01001 = PWM3 Trigger 2
	01000 = PWM3 Trigger 1
	00111 = PWM2 Trigger 2
	00110 = PWM2 Trigger 1
	00101 = PWM1 Trigger 2
	00100 = PWM1 Trigger 1
	00011 = Reserved
	00010 = Level software trigger
	00001 = Common software trigger
	00000 = No trigger is enabled

REGISTER 12-27: ADCMPxCON: ADC DIGITAL COMPARATOR x CONTROL REGISTER (x = 0, 1, 2, 3)

U-0	U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
	—	—			CHNL[4:0]		
bit 15							bit 8
R/W-0	R/W-0	HC/HS/R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMPEN	IE	STAT	BTWN	HIHI	HILO	LOHI	LOLO
bit 7	IL.	UIAI	DIWN		TILO	LOIN	bit 0
Legend:		HC = Hardware	-		ented bit, read		
R = Readabl		W = Writable b	it	-	are Settable/Cle		.
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	re Settable bit
bit 15-13	Unimplemen	ted: Read as '0					
bit 12-8	-	nput Channel Nu					
Dit 12-0		ator has detecte		a channel, this	channel numbe	er is written to t	hese bits.
	10011 = Tem	d gap, 1.2V (AN perature sensor					
	10010 = AN1	8					
	00011 = AN3 00010 = AN2 00001 = AN1 00000 = AN0						
bit 7			hit				
DIL 7	1 = Comparat	nparator Enable tor is enabled tor is disabled a		itus bit is cleare	ed		
bit 6	IE: Comparat	or Common AD	C Interrupt Enat	ole bit			
		ADC interrupt w ADC interrupt w				omparison eve	ent
bit 5	STAT: Compa	arator Event Stat	tus bit				
	1 = A compari	ared by hardwar ison event has b ison event has r	een detected s	ince the last re	ad of the CHN	L[4:0] bits	S.
bit 4		een Low/High C					
	1 = Generate	s a comparator o generate a digit	event when AD	CMPxLO ≤ AD			MPxHI
bit 3	HIHI: High/Hig	gh Comparator I	Event bit				
	1 = Generate	s a digital compa generate a digita	arator event wh			MPxHI	
bit 2	HILO: High/Lo	ow Comparator	Event bit				
		s a digital compa generate a digita				MPxHI	
bit 1	LOHI: Low/Hi	gh Comparator	Event bit				
		s a digital compa generate a digit				MPxLO	
bit 0	LOLO: Low/L	ow Comparator	Event bit				
		s a digital compa generate a digit				MPxLO	

REGISTER 12-28: ADCMPxENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER LOW (x = 0 or 3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CMPE	N[15:8]			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CMPE	N[7:0]			
						bit 0
			CMPE R/W-0 R/W-0 R/W-0	CMPEN[15:8]	CMPEN[15:8] R/W-0 R/W-0 R/W-0 R/W-0	CMPEN[15:8] R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CMPEN[15:0]:** Comparator Enable for Corresponding Input Channels bits

1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

REGISTER 12-29: ADCMPxENH: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER HIGH (x = 0 or 3)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	_	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			CMPEN[20:16]]	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0

CMPEN[20:16]: Comparator Enable for Corresponding Input Channels bits

1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

CONTROL DECIOTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	HSC/R-0
FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	IE	RDY
bit 15			1				bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	— — FLCHSEL[4:0]						
bit 7							bit (
Legend:		U = Unimpler	mented bit, read	as '0'			
R = Readable bit		W = Writable	V = Writable bit HSC = Hardware Settable/Clearable bit				
-n = Value at POR		'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15	FLEN: Filter	Enable bit					
	1 = Filter is enabled						
	0 = Filter is disabled and the RDY bit is cleared						
bit 14-13		Filter Mode bits	6				
	11 = Averaging mode 10 = Reserved						
	01 = Reserved						
	00 = Oversampling mode						
bit 12-10	OVRSAM[2:0]: Filter Averaging/Oversampling Ratio bits						
	<u>If MODE[1:0] = 00:</u>						
	111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format)						
	110 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.2 format)						
	101 - 0x (14-bit result in the ADFLxDAT register is in 12.2 format) 100 = 2x (13-bit result in the ADFLxDAT register is in 12.1 format)						
	011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format)						
	010 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format)						
	001 = 16x (14-bit result in the ADFLxDAT register is in 12.2 format)						
	000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) If MODE[1:0] = 11 (12-bit result in the ADFLxDAT register in all instances):						
	$\frac{1100DE[1.0] - 11}{12-bit result in the ADFLXDAT register in an instances).}$ $111 = 256x$						
	110 = 128x						
	101 = 64x						
	100 = 32x 011 = 16x						
	110 = 8x						
	001 = 4x						
	000 = 2x						
bit 9	IE: Filter Common ADC Interrupt Enable bit						
	 1 = Common ADC interrupt will be generated when the filter result will be ready 0 = Common ADC interrupt will not be generated for the filter 						
	0 = Common	ADC interrupt	will not be gene	rated for the fi	lter		
			will not be gene ata Ready Flag		lter		
bit 8	RDY: Oversa This bit is cle 1 = Data in tl	ampling Filter D ared by hardwa he ADFLxDAT r	ata Ready Flag are when the rea register are read	bit sult is read from ly	lter m the ADFLxDA in the ADFLxDA	-	

REGISTER 12-30: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER (x = 0 or 3) (CONTINUED)

bit 4-0 FLCHSEL[4:0]: Oversampling Filter Input Channel Selection bits

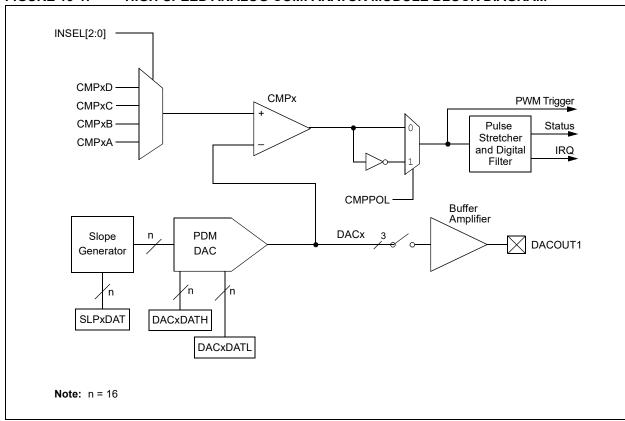
11111 = Reserved

... 10101 = Reserved 10100 = Band gap, 1.2V (AN20) 10011 = Temperature sensor (AN19) 10010 = AN18 ... 00011 = AN3 00010 = AN2 00001 = AN1 00000 = AN0 NOTES:

13.0 HIGH-SPEED ANALOG COMPARATOR WITH SLOPE COMPENSATION DAC

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator Module" (www.microchip.com/ DS70005280) in the "dsPIC33/PIC24 Family Reference Manual".

The high-speed analog comparator module provides a method to monitor voltage, current and other critical signals in a power conversion application that may be too fast for the CPU and ADC to capture. There are a total of three comparator modules. The analog comparator module can be used to implement Peak Current mode control, Critical Conduction mode (variable frequency) and Hysteretic Control mode.


13.1 Overview

The high-speed analog comparator module is comprised of a high-speed comparator, Pulse Density Modulation (PDM) DAC and a slope compensation unit. The slope compensation unit provides a user-defined slope which can be used to alter the DAC output. This feature is useful in applications, such as Peak Current mode control, where slope compensation is required to maintain the stability of the power supply. The user simply specifies the direction and rate of change for the slope compensation and the output of the DAC is modified accordingly. The DAC consists of a PDM unit, followed by a digitally controlled multiphase RC filter. The PDM unit uses a phase accumulator circuit to generate an output stream of pulses. The density of the pulse stream is proportional to the input data value, relative to the maximum value supported by the bit width of the accumulator. The output pulse density is representative of the desired output voltage. The pulse stream is filtered with an RC filter to yield an analog voltage. The output of the DAC is connected to the negative input of the comparator. The positive input of the comparator can be selected using a MUX from either of the input pins. The comparator provides a high-speed operation with a typical delay of 15 ns.

The output of the comparator is processed by the pulse stretcher and the digital filter blocks, which prevent comparator response to unintended fast transients in the inputs. Figure 13-1 shows a block diagram of the high-speed analog comparator module. The DAC module can be operated in one of three modes: Slope Generation mode, Hysteretic mode and Triangle Wave mode. Each of these modes can be used in a variety of power supply applications.

Note: The DACOUT1 pin can only be associated with a single DAC output at any given time. If more than one DACOEN bit is set, the DACOUT1 pin will be a combination of the signals.

dsPIC33CK64MP105 FAMILY

FIGURE 13-1: HIGH-SPEED ANALOG COMPARATOR MODULE BLOCK DIAGRAM

13.2 Features Overview

- Three Rail-to-Rail Analog Comparators
- Up to Four Selectable Input Sources per Comparator
- Programmable Comparator Hysteresis
- Programmable Output Polarity
- Interrupt Generation Capability
- Dedicated Pulse Density Modulation DAC for each Analog Comparator:
 - PDM unit followed by a digitally controlled multimode multipole RC filter
- Multimode Multipole RC Output Filter:
 - Transition mode: Provides the fastest response
 - Fast mode: For tracking DAC slopes
 - Steady-State mode: Provides 12-bit resolution
- Slope Compensation along with each DAC:
 - Slope Generation mode
 - Hysteretic Control mode
 - Triangle Wave mode
- Functional Support for the High-Speed PWM module which Includes:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detect

13.3 Control Registers

The DACCTRL1L and DACCTRL2H/L registers are common configuration registers for DAC modules.

The DACxCON, DACxDAT, SLPxCON and SLPxDAT registers specify the operation of individual modules.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DACON	—	DACSIDL	—	—	—	—	_
bit 15					·		bit
DAMA	DAMA	DAVA	DAMA		D 444 0	DAVA	D /// 0
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CLKSEL1 ^(1,3)	CLKSEL0 ^(1,3)	CLKDIV1 ^(1,3)	CLKDIV0 ^(1,3)		FCLKDIV2 ⁽²⁾	FCLKDIV1 ⁽²⁾	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimple	emented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is c	leared		
bit 15	DACON: Com	nmon DAC Mod	ule Enable bit				
	1 = Enables I						
		DAC modules and/or unde			to reduce powe	r consumptior	n; any pendin
bit 14	Unimplement	ted: Read as '0					
bit 13	DACSIDL: DAC Stop in Idle Mode bit						
		ues module ope			lle mode		
		module operat		;			
bit 12-8	-	ted: Read as '0					
bit 7-6	CLKSEL[1:0]: DAC Clock Source Select bits ^(1,3)						
	11 = Fpllo 10 = AFpllo						
	01 = Fvco/2						
	00 = AFvco/2						
bit 5-4	CLKDIV[1:0]:	DAC Clock Div	ider bits ^(1,3)				
	11 = Divide-b	y-4					
		y-3 (non-uniforn	n duty cycle)				
	01 = Divide-by	y-2					
1.11.0	00 = 1x						
bit 3	•	ted: Read as '0		(2)			
bit 2-0]: Comparator F	liter Clock Divid	der bits			
	111 = Divide- 110 = Divide-						
	101 = Divide-						
	100 = Divide-						
	011 = Divide- 010 = Divide-						
	010 - Divide- 001 - Divide-						
	000 = 1x	, <u>-</u>					
Note 1: Th	asa hite should	only be change		N = 0 to avoid	d unpredictable	hehavior	
					SEL[1:0], and th		two
4. 11				a input, OEN	SEE[1.0], and th	on alvided by	

3: Clock source and dividers should yield an effective DAC clock input to frequency defined by the CM09 parameter in Table 31-34.

REGISTER 13-2: DACCTRL2H: DAC CONTROL 2 HIGH REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	_	—	_	—	SSTIM	Ξ[9:8] ⁽¹⁾
bit 15							bit 8
R/W-1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0
			SSTIME	[7:0] ⁽¹⁾			
bit 7							bit 0
Legend:							
D D I I I I		\A/ \A/!!!!!	••				

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 15-10 Unimplemented: Read as '0'

bit 9-0 SSTIME[9:0]: Time from Start of Transition Mode until Steady-State Filter is Enabled bits⁽¹⁾

Note 1: The value for SSTIME[9:0] should be greater than the TMODTIME[9:0] value.

REGISTER 13-3: DACCTRL2L: DAC CONTROL 2 LOW REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	TMODTIME[9:8] ⁽¹⁾	
bit 15							bit 8

R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1
TMODTIME[7:0] ⁽¹⁾							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 15-10 Unimplemented: Read as '0'

bit 9-0 TMODTIME[9:0]: Transition Mode Duration bits⁽¹⁾

Note 1: The value for TMODTIME[9:0] should be less than the SSTIME[9:0] value.

REGISTER 13-4: DACXCONH: DACX CONTROL HIGH REGISTER
--

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	_	—	—	TMCI	B[9:8]
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TMC	B[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplen	nented bit, read	l as '0'	

bit 15-10 **Unimplemented:** Read as '0'

-n = Value at POR

bit 9-0 **TMCB[9:0]:** DACx Leading-Edge Blanking bits These register bits specify the blanking period for the comparator, following changes to the DAC output during Change-of-State (COS), for the input signal selected by the HCFSEL[3:0] bits in Register 13-9.

'0' = Bit is cleared

REGISTER 13-5: DACxCONL: DACx CONTROL LOW REGISTER

'1' = Bit is set

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DACEN	IRQM1 ^(1,2)	IRQM0 ^(1,2)	—	—	CBE	DACOEN	FLTREN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMPSTAT	CMPPOL	INSEL2	INSEL1	INSEL0	HYSPOL	HYSSEL1	HYSSEL0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	

bit 15 DACEN: Individual DACx Module Enable bit

- 1 = Enables DACx module
- 0 = Disables DACx module to reduce power consumption; any pending Slope mode and/or underflow conditions are cleared
- bit 14-13 **IRQM[1:0]:** Interrupt Mode select bits^(1,2)
 - 11 = Generates an interrupt on either a rising or falling edge detect
 - 10 = Generates an interrupt on a falling edge detect
 - 01 = Generates an interrupt on a rising edge detect
 - 00 = Interrupts are disabled
- bit 12-11 Unimplemented: Read as '0'

Note 1: Changing these bits during operation may generate a spurious interrupt.

2: The edge selection is a post-polarity selection via the CMPPOL bit.

REGISTER 13-5: DACxCONL: DACx CONTROL LOW REGISTER (CONTINUED)

bit 10	CBE: Comparator Blank Enable bit 1 = Enables the analog comparator output to be blanked (gated off) during the recovery transition following the completion of a slope operation
	 0 = Disables the blanking signal to the analog comparator; therefore, the analog comparator output is always active
bit 9	DACOEN: DACx Output Buffer Enable bit
	 1 = DACx analog voltage is connected to the DACOUT pin 0 = DACx analog voltage is not connected to the DACOUT pin
bit 8	FLTREN: Comparator Digital Filter Enable bit
	1 = Digital filter is enabled 0 = Digital filter is disabled
bit 7	CMPSTAT: Comparator Status bits
	The current state of the comparator output including the CMPPOL selection.
bit 6	CMPPOL: Comparator Output Polarity Control bit
	1 = Output is inverted
	0 = Output is noninverted
bit 5-3	INSEL[2:0]: Comparator Input Source Select bits
	111 = Reserved
	110 = Reserved
	101 = Reserved 100 = Reserved
	011 = CMPxD input pin
	010 = CMPxC input pin
	001 = CMPxB input pin
	000 = CMPxA input pin
bit 2	HYSPOL: Comparator Hysteresis Polarity Select bit
	 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 1-0	HYSSEL[1:0]: Comparator Hysteresis Select bits
	11 = 45 mv hysteresis
	10 = 30 mv hysteresis
	01 = 15 mv hysteresis
	00 = No hysteresis is selected
Note 1:	Changing these bits during operation may generate a spurious interrupt.
2:	The edge selection is a post-polarity selection via the CMPPOL bit.

REGISTER 13-6: DACxDATH: DACx DATA HIGH REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	_		DACDA	.TH[11:8]	
bit 15				-			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACD	ATH[7:0]			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared		

bit 15-12 Unimplemented: Read as '0'

bit 11-0 DACDATH[11:0]: DACx Data bits

This register specifies the high DACx data value. Valid values are from 205 to 3890.

REGISTER 13-7: DACxDATL: DACx DATA LOW REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—		DACDA	TL[11:8]	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DACDATL[7:0]							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 15-12 Unimplemented: Read as '0'

bit 11-0 DACDATL[11:0]: DACx Low Data bits

In Hysteretic mode, Slope Generator mode and Triangle mode, this register specifies the low data value source for the DACx module. Valid values are from 205 to 3890.

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
SLOPEN	—	—	—	HME ⁽¹⁾	TWME ⁽²⁾	PSE	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			t	U = Unimpler	mented bit, read	as '0'	
-n = Value at	alue at POR '1' = Bit is set '0' = Bit is cleared						
bit 15	SLOPEN: SI	ope Function Ena	able/On bit				
		slope function					
		slope function; s	-	ator is disabled	to reduce powe	er consumption	
bit 14-12	•	nted: Read as '0'					
bit 11	,	etic Mode Enable					
		Hysteretic mode					
		Hysteretic mode					
bit 10		ngle Wave Mode					
		Triangle Wave m					
		Triangle Wave m		x			
bit 9		e Slope Mode En					
	 Slope mode is positive (increasing) Slope mode is negative (decreasing) 						
bit 8-0	-	nted: Read as '0'					
Note 1: HN	/IE mode requ	ires the user to d	isable the slo	pe function (SL	OPEN = 0).		

REGISTER 13-8: SLPxCONH: DACx SLOPE CONTROL HIGH REGISTER

- **Note 1:** HME mode requires the user to disable the slope function (SLOPEN = 0).
 - 2: TWME mode requires the user to enable the slope function (SLOPEN = 1).

dsPIC33CK64MP105 FAMILY

REGISTER 13-9: SLPxCONL: DACx SLOPE CONTROL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
HCFSEL3	HCFSEL2	HCFSEL1	HCFSEL0	SLPSTOPA3	SLPSTOPA2	SLPSTOPA1	SLPSTOPA0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SLPSTOPB3	SLPSTOPB2	SLPSTOPB1	SLPSTOPB0	SLPSTRT3	SLPSTRT2	SLPSTRT1	SLPSTRT0
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set0	'0' = Bit is cleared	

bit 15-12 HCFSEL[3:0]: Hysteretic Comparator Function Input Select bits

The selected input signal controls the switching between the DACx high limit (DACxDATH) and the DACx low limit (DACxDATL) as the data source for the PDM DAC. It modifies the polarity of the comparator, and the rising and falling edges initiate the start of the LEB counter (TMCB[9:0] bits in Register 13-4).

Input Selection	Source
0101-1111	1
0100	PWM4H
0011	PWM3H
0010	PWM2H
0001	PWM1H
0000	0

bit 11-8 SLPSTOPA[3:0]: Slope Stop A Signal Select bits

The selected Slope Stop A signal is logically OR'd with the selected Slope Stop B signal to terminate the slope function.

Slope Stop A Signal Selection	Source
0101-1111	1
0100	PWM4 Trigger 2
0011	PWM3 Trigger 2
0010	PWM2 Trigger 2
0001	PWM1 Trigger 2
0000	0

REGISTER 13-9: SLPxCONL: DACx SLOPE CONTROL LOW REGISTER (CONTINUED)

The selected Slope Stop B signal is logically OR'd with the selected Slope Stop A signal to terminate the slope function.

Slope Start B Signal Selection	Source
0100-1111	1
0011	CMP3 Out
0010	CMP2 Out
0001	CMP1 Out
0000	0

bit 3-0

SLPSTRT[3:0]: Slope Start Signal Select bits

Slope Start Signal Selection	Source
0101-1111	1
0100	PWM4 Trigger 1
0011	PWM3 Trigger 1
0010	PWM2 Trigger 1
0001	PWM1 Trigger 1
0000	0

REGISTER 13-10: SLPxDAT: DACx SLOPE DATA REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				AT[15:8]			
bit 15				L J			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SLPE	DAT[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared							

bit 15-0 **SLPDAT[15:0]:** Slope Ramp Rate Value bits The SLPDATx value is in 12.4 format.

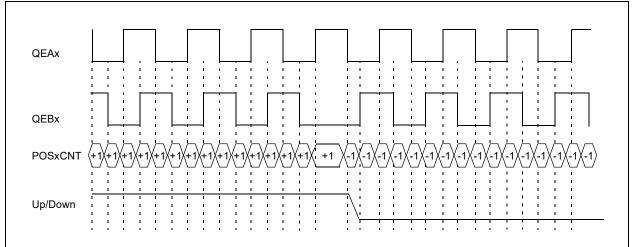
Note 1: Register data are left justified.

bit 7-4 SLPSTOPB[3:0]: Slope Stop B Signal Select bits

NOTES:

14.0 QUADRATURE ENCODER INTERFACE (QEI)

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive resource. For more information, refer to "Quadrature Encoder Interface (QEI)" (www.microchip.com/ DS70000601) in the "dsPIC33/PIC24 Family Reference Manual".


The Quadrature Encoder Interface (QEI) module provides the interface to incremental encoders for obtaining mechanical position data. The dsPIC33CK64MP105 family implements two instances of the QEI. Quadrature Encoders, also known as incremental encoders or optical encoders, detect position and speed of rotating motion systems. Quadrature Encoders enable closed-loop control of motor control applications, such as Switched Reluctance (SR) and AC Induction Motors (ACIM).

A typical Quadrature Encoder includes a slotted wheel attached to the shaft of the motor and an emitter/ detector module that senses the slots in the wheel. Typically, three output channels, Phase A (QEAx), Phase B (QEBx) and Index (INDXx), provide information on the movement of the motor shaft, including distance and direction.

The two channels, Phase A (QEAx) and Phase B (QEBx), are typically 90 degrees out of phase with respect to each other. The Phase A and Phase B channels have a unique relationship. If Phase A leads Phase B, the direction of the motor is deemed positive or forward. If Phase A lags Phase B, the direction of the motor is deemed negative or reverse. The Index pulse occurs once per mechanical revolution and is used as a reference to indicate an absolute position. Figure 14-1 illustrates the Quadrature Encoder Interface signals.

The Quadrature signals from the encoder can have four unique states ('01', '00', '10' and '11') that reflect the relationship between QEAx and QEBx. Figure 14-1 illustrates these states for one count cycle. The order of the states get reversed when the direction of travel changes.

The Quadrature Decoder increments or decrements the 32-bit up/down Position x Counter (POSxCNTH/L) registers for each Change-of-State (COS). The counter increments when QEAx leads QEBx and decrements when QEBx leads QEAx.

FIGURE 14-1: QUADRATURE ENCODER INTERFACE SIGNALS

 Table 14-1 shows the truth table that describes how

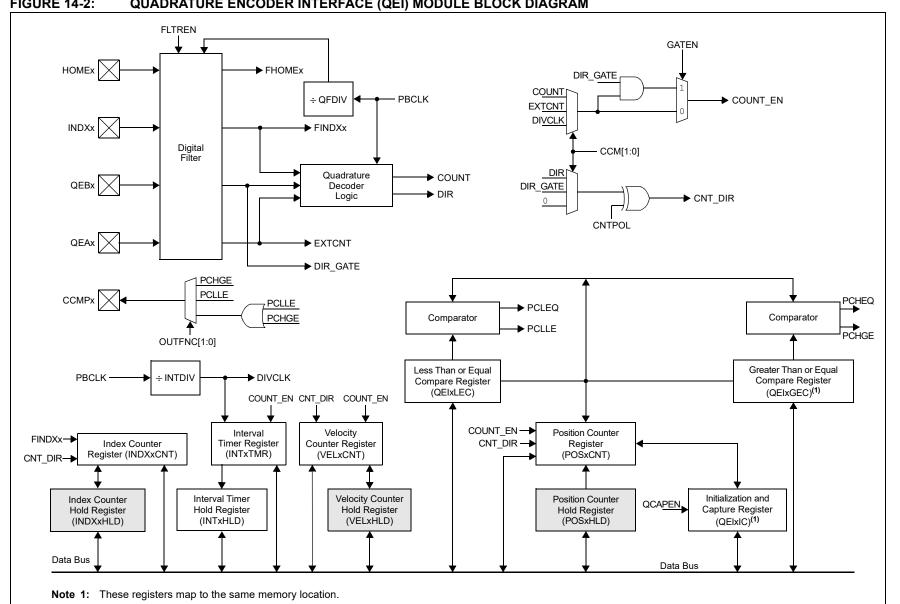

 the Quadrature signals are decoded.

TABLE 14-1:TRUTH TABLE FOR
QUADRATURE ENCODER

Quad	rent rature ate	Quad	rious rature ate	Action
QEA	QEB	QEA	QEB	
1	1	1	1	No count or direction change
1	1	1	0	Count up
1	1	0	1	Count down
1	1	0	0	Invalid state change; ignore
1	0	1	1	Count down
1	0	1	0	No count or direction change
1	0	0	1	Invalid state change; ignore
1	0	0	0	Count up
0	1	1	1	Count up
0	1	1	0	Invalid state change; ignore
0	1	0	1	No count or direction change
0	1	0	0	Count down
0	0	1	1	Invalid state change; ignore
0	0	1	0	Count down
0	0	0	1	Count up
0	0	0	0	No count or direction change

Figure 14-2 illustrates the simplified block diagram of the QEI module. The QEI module consists of decoder logic to interpret the Phase A (QEAx) and Phase B (QEBx) signals, and an up/down counter to accumulate the count. The counter pulses are generated when the Quadrature state changes. The count direction information must be maintained in a register until a direction change is detected. The module also includes digital noise filters, which condition the input signal. The QEI module consists of the following major features:

- Four Input Pins: Two Phase Signals, an Index Pulse and a Home Pulse
- Programmable Digital Noise Filters on Inputs
- Quadrature Decoder providing Counter Pulses
 and Count Direction
- Count Direction Status
- 4x Count Resolution
- Index (INDXx) Pulse to Reset the Position Counter
- General Purpose 32-Bit Timer/Counter mode
- · Interrupts generated by QEI or Counter Events
- 32-Bit Velocity Counter
- 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 32-Bit Position Initialization/Capture Register
- 32-Bit Compare Less Than and Greater Than Registers
- External Up/Down Count mode
- External Gated Count mode
- External Gated Timer mode
- Interval Timer mode

FIGURE 14-2: QUADRATURE ENCODER INTERFACE (QEI) MODULE BLOCK DIAGRAM

dsPIC33CK64MP105 FAMIL

14.1 QEI Control/Status Registers

REGISTER 14-1: QEIxCON: QEIx CONTROL REGISTER

R/W-0) U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
QEIEN	<u>ا</u> ا	QEISIDL	PIMOD2 ^(1,5)	PIMOD1 ^(1,5)	PIMOD0 ^(1,5)	IMV1 ⁽²⁾	IM∨0 ⁽²⁾	
bit 15		•		·	·		bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	INTDIV2 ⁽³⁾	INTDIV1 ⁽³⁾	INTDIV0 ⁽³⁾	CNTPOL	GATEN	CCM1	CCM0	
bit 7							bit 0	
Legend:								
R = Read	able bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown	
bit 15	QEIEN: Quad	Irature Encode	r Interface Mod	lule Enable bit				
	1 = Module co	ounters are ena	abled					
	0 = Module co	ounters are dis	abled, but SFR	s can be read	or written			
bit 14	Unimplemen	ted: Read as '	0'					
bit 13	QEISIDL: QE	I Stop in Idle M	lode bit					
			eration when d		le mode			
			ation in Idle mod					
bit 12-10			er Initialization					
	110 = Module 101 = Resets 100 = Second 011 = First In 010 = Next Ir 001 = Every	b Count mode to the position co d Index event a dex event afte ndex input even Index input even	for position cou ounter when the fter Home ever r Home event ii	nter e position coun it initializes pos nitializes positio position counter osition counter		QEIxGEC regis th contents of C contents of QE	ster QEIxIC register EIxIC register	
bit 9-8	IMV[1:0]: Inde	ex Match Value	e bits ⁽²⁾					
	10 = Index m 01 = Index m	atch occurs wh atch occurs wh	nen QEBx = 1 a nen QEBx = 1 a nen QEBx = 0 a nen QEBx = 0 a	and QEAx = 0 and QEAx = 1				
bit 7	Unimplemen	ted: Read as '	0'					
Note 1:	When CCMx = 10 ignored.) or CCMx = 1	1, all of the QE	l counters oper	ate as timers a	nd the PIMOD	[2:0] bits are	
2:	When CCMx = 00 POSxCNTL regist		nd QEBx values	s match the Ind	lex Match Value	e (IMV), the PC	SxCNTH and	
3:	The selected cloc	k rate should b	e at least twice	e the expected	maximum quad	Irature count ra	ate.	
4:	Not all devices support this mode.							

- **4:** Not all devices support this mode.
- **5:** The QCAPEN and HCAPEN bits must be cleared during PIMODx Modes 2 through 7 to ensure proper functionality. Not all devices support HCAPEN.

REGISTER 14-1: QEIXCON: QEIX CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV[2:0]: Timer Input Clock Prescale Select bits ⁽³⁾ (interval timer, main timer (position counter), velocity counter and Index counter internal clock divider select) 111 = 1:256 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit
	 1 = Counter direction is negative unless modified by external up/down signal 0 = Counter direction is positive unless modified by external up/down signal
bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter operation
bit 1-0	CCM[1:0]: Counter Control Mode Selection bits
	 11 = Internal Timer mode 10 = External Clock Count with External Gate mode 01 = External Clock Count with External Up/Down mode 00 = Quadrature Encoder mode
Note 1:	When CCMx = 10 or CCMx = 11, all of the QEI counters operate as timers and the PIMOD[2:0] bits are ignored.
2:	When CCMx = 00, and QEAx and QEBx values match the Index Match Value (IMV), the POSxCNTH and POSxCNTL registers are reset.
3:	The selected clock rate should be at least twice the expected maximum quadrature count rate.

- **4:** Not all devices support this mode.
- **5:** The QCAPEN and HCAPEN bits must be cleared during PIMODx Modes 2 through 7 to ensure proper functionality. Not all devices support HCAPEN.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB				
bit 15							bit 8				
D 444 0	D /// 0	D 444 0	D 444 0								
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x				
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own				
bit 15				•	Event Enable b	bit					
		tch event (posit			capture event position capture	event					
bit 14		Ax/QEBx/INDX	e ,		•	event					
		digital filter is e	•		o bit						
		digital filter is d		sed)							
bit 13-11	QFDIV[2:0]:	QEAx/QEBx/IN	DXx/HOMEx D	igital Input Filt	er Clock Divide	Select bits					
	111 = 1:256 clock divide 110 = 1:64 clock divide										
	100 = 1.04 clock divide $101 = 1.32 clock divide$										
	100 = 1:16 clock divide										
	011 = 1:8 clock divide 010 = 1:4 clock divide										
	010 = 1:4 clock divide 001 = 1:2 clock divide										
	000 = 1:1 clo										
bit 10-9	OUTFNC[1:0]: QEIx Module	Output Function	on Mode Selec	ct bits						
						CNT <u>></u> QEIxGE	С				
		ICMPx pin goe: ICMPx pin goe:									
	00 = Output i				XOE0						
bit 8	SWPAB: Swa	ap QEAx and C	EBx Inputs bit								
		d QEBx are sw		Quadrature De	coder logic						
		d QEBx are not									
bit 7		OMEx Input Po	larity Select bit								
	1 = Input is in 0 = Input is n										
bit 6	 Input is not inverted IDXPOL: INDXx Input Polarity Select bit 										
	1 = Input is in	-	•								
	0 = Input is n										
bit 5		EBx Input Polar	ity Select bit								
	1 = Input is in 0 = Input is n										
bit 4	•	EAx Input Polar	itv Select bit								
	1 = Input is in	-									
	0 = Input is n										
bit 3	HOME: Statu	s of HOMEx In	put Pin After Po	plarity Control	bit (read-only)						
	1 = Pinis at	logic '1' if the H	OMPOL bit is s	set to ' 0 ' nin is	at logic '∩' if th	A HOMPOL bit i	is set to '1'				

REGISTER 14-2: QEIxIOC: QEIx I/O CONTROL REGISTER

REGISTER 14-2: QEIxIOC: QEIx I/O CONTROL REGISTER (CONTINUED)

bit 2	INDEX: Status of INDXx Input Pin After Polarity Control bit (read-only)
	1 = Pin is at logic '1' if the IDXPOL bit is set to '0'; pin is at logic '0' if the IDXPOL bit is set to '1'
	0 = Pin is at logic '0' if the IDXPOL bit is set to '0'; pin is at logic '1' if the IDXPOL bit is set to '1'
bit 1	QEB: Status of QEBx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only)
	1 = Physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'
	0 = Physical pin, QEBx, is at logic '0' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '0' if the QEBPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEAx, is at logic '1' if the QEBPOL bit is set to '1' and the SWPAB bit is set to '1'
bit 0	QEA: Status of QEAx Input Pin After Polarity Control and SWPAB Pin Swapping bit (read-only)
	1 = Physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0'; physical pin, QEBx, is at logic '1' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1'; physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1';
	0 = Physical pin, QEAx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '0'; physical pin, QEAx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '0';
	physical pin, QEBx, is at logic '0' if the QEAPOL bit is set to '0' and the SWPAB bit is set to '1';
	physical pin, QEBx, is at logic '1' if the QEAPOL bit is set to '1' and the SWPAB bit is set to '1'

REGISTER 14-3: QEIXIOCH: QEIX I/O CONTROL HIGH REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—		—	—	—		—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	HCAPEN
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0

HCAPEN: Position Counter Input Capture by Home Event Enable bit

1 = HOMEx input event (positive edge) triggers a position capture event

0 = HOMEx input event (positive edge) does not trigger a position capture event

U-0	U-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0
_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
			1.11		0 11 11		
Legend:		C = Clearable		HS = Hardwa			
R = Readabl		W = Writable	oit	•	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
			.1				
bit 15-14	-	nted: Read as '(4 I. 14		
bit 13	1 = POSxCN	Position Counter $T \ge QEIxGEC$	er Greater Tha	n Compare Sta	itus dit		
bit 12		T < QEIxGEC	r Creator Tha	- Compore Inte	munt Enchla h	:+	
DIL 12	1 = Interrupt	Position Counter	er Greater Than	i Compare inte	irupt Enable b	п	
	0 = Interrupt						
bit 11	PCLEQIRQ:	Position Counte	er Less Than C	ompare Status	bit		
		$T \leq QEIxLEC$		·			
		T > QEIxLEC					
bit 10		Position Counte	r Less Than C	ompare Interru	pt Enable bit		
	1 = Interrupt 0 = Interrupt						
bit 9	•	Position Counter	er Overflow Sta	atus bit			
	•	has occurred					
	0 = No overfl	ow has occurre	b				
bit 8		Position Counter	er Overflow Inte	errupt Enable b	it		
	1 = Interrupt						
bit 7	0 = Interrupt	is disabled ition Counter (H	omina) Initialia	votion Dropper	Complete Stati	ic hit(1)	
		T was reinitializ	•	auon Flocess	Complete Statt	us Dir, i	
		T was not reinit					
bit 6		ition Counter (H		ation Process (Complete Interi	rupt Enable bit	
	1 = Interrupt						
	0 = Interrupt						
bit 5		Velocity Counte	r Overflow Sta	tus bit			
		has occurred ow has occurre	4				
bit 4		Velocity Counte		rrunt Enabla bi	+		
	1 = Interrupt	-		nupi Enable bi	ι		
	0 = Interrupt						
bit 3	HOMIRQ: St	atus Flag for Ho	me Event Stat	us bit			
		ent has occurre					
	0 = No Home	e event has occu	urred				
Note 1. Th	his status hit is	only applicable		modes '011's	and '100'		

REGISTER 14-4: QEIxSTAT: QEIx STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD[2:0] modes, '011' and '100'.

REGISTER 14-4: QEIxSTAT: QEIx STATUS REGISTER (CONTINUED)

- bit 2 **HOMIEN:** Home Input Event Interrupt Enable bit
 - 1 = Interrupt is enabled0 = Interrupt is disabled
- bit 1 **IDXIRQ:** Status Flag for Index Event Status bit
 - 1 = Index event has occurred
 - 0 = No Index event has occurred
- bit 0 IDXIEN: Index Input Event Interrupt Enable bit
 - 1 = Interrupt is enabled
 - 0 = Interrupt is disabled
- Note 1: This status bit is only applicable to PIMOD[2:0] modes, '011' and '100'.

REGISTER 14-5: POSxCNTL: POSITION x COUNTER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		POSC	CNT[15:8]				
						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		POS	CNT[7:0]				
						bit 0	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
	R/W-0	R/W-0 R/W-0	POSC R/W-0 R/W-0 R/W-0 POS bit W = Writable bit	POSCNT[15:8] R/W-0 R/W-0 POSCNT[7:0] bit W = Writable bit	POSCNT[15:8] R/W-0 R/W-0 R/W-0 POSCNT[7:0] POSCNT[7:0]	POSCNT[15:8] R/W-0 R/W-0 R/W-0 R/W-0 POSCNT[7:0] POSCNT[7:0] POSCNT[7:0]	

bit 15-0 **POSCNT[15:0]:** Low Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 14-6: POSxCNTH: POSITION x COUNTER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT[23:16]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **POSCNT[31:16]:** High Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 14-7: POSxHLD: POSITION x COUNTER HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSI	HLD[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POS	HLD[7:0]			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplem	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	iown

bit 15-0 **POSHLD[15:0]:** Hold Register for Reading/Writing Position x Counter High Word Register (POSxCNTH) bits

REGISTER 14-8: VELxCNT: VELOCITY x COUNTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELO	CNT[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea		x = Bit is unkr	nown

bit 15-0 VELCNT[15:0]: Velocity Counter bits

REGISTER 14-9: VELxCNTH: VELOCITY x COUNTER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT[23:16]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplerr	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	x = Bit is unknown	

bit 15-0 VELCNT[31:16]: Velocity Counter bits

REGISTER 14-10: VELxHLD: VELOCITY x COUNTER HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELH	LD[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELH	HLD[7:0]			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimpleme	ented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown

bit 15-0 VELHLD[15:0]: Hold for Reading/Writing Velocity Counter Register (VELxCNT) bits

© 2018-2020 Microchip Technology Inc.

REGISTER 14-11: INTxTMRL: INTERVAL x TIMER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTI	MR[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTT	MR[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at I	POR	'1' = Bit is set		ʻ0' = Bit is clea	red	x = Bit is unkn	nown

bit 15-0 INTTMR[15:0]: Low Word Used to Form 32-Bit Interval Timer Register (INTxTMR) bits

REGISTER 14-12: INTxTMRH: INTERVAL x TIMER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTN	/IR[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTT	/IR[23:16]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-0 INTTMR[31:16]: High Word Used to Form 32-Bit Interval Timer Register (INTxTMR) bits

REGISTER 14-13: INTXxHLDL: INTERVAL x TIMER HOLD REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	LD[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	ILD[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INTHLD[15:0]: Low Word Used to Form 32-Bit Interval Timer Hold Register (INTxHLD) bits

REGISTER 14-14: INTXxHLDH: INTERVAL x TIMER HOLD REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	_D[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	_D[23:16]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INTHLD[31:16]: High Word Used to Form 32-Bit Interval Timer Hold Register (INTxHLD) bits

REGISTER 14-15: INDXxCNTL: INDEX x COUNTER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDX	CNT[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDX	CNT[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimplem	ented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INDXCNT[15:0]: Low Word Used to Form 32-Bit Index x Counter Register (INDXxCNT) bits

REGISTER 14-16: INDXxCNTH: INDEX x COUNTER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INDXC	NT[31:24]			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INDXC	NT[23:16]			
						bit 0
bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	R/W-0	R/W-0 R/W-0	R/W-0 R/W-0 R/W-0 INDXC bit W = Writable bit	INDXCNT[31:24] R/W-0 R/W-0 INDXCNT[23:16] bit W = Writable bit	INDXCNT[31:24] R/W-0 R/W-0 R/W-0 R/W-0 INDXCNT[23:16]	INDXCNT[31:24] R/W-0 R/W-0 R/W-0 R/W-0 INDXCNT[23:16]

bit 15-0 INDXCNT[31:16]: High Word Used to Form 32-Bit Index x Counter Register (INDXxCNT) bits

REGISTER 14-17: INDXxHLD: INDEX x COUNTER HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDX	HLD[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDX	HLD[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown

bit 15-0 INDXHLD[15:0]: Hold Register for Reading/Writing Index x Counter High Word Register (INDXxCNTH) bits

REGISTER 14-18: QEIxICL: QEIx INITIALIZATION/CAPTURE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEI	IC[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QE	IIC[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplem	ented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	iown

bit 15-0 **QEIIC[15:0]:** Low Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 14-19: QEIxICH: QEIx INITIALIZATION/CAPTURE REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEII	C[31:24]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEII	C[23:16]				
bit 7							bit C	
Legend:								
_		L:4	[1]					
R = Readable bit W =		vv = vvritable i	W = Writable bit		U = Unimplemented bit, re			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-0 **QEIIC[31:16]:** High Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 14-20: QEIxLECL: QEIx LESS THAN OR EQUAL COMPARE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIL	EC[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIL	EC[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		t POR '1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **QEILEC[15:0]:** Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEIxLEC) bits

REGISTER 14-21: QEIxLECH: QEIx LESS THAN OR EQUAL COMPARE REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILI	EC[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILI	EC[23:16]			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, r		read as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **QEILEC[31:16]:** High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEIxLEC) bits

© 2018-2020 Microchip Technology Inc.

REGISTER 14-22: QEIXGECL: QEIX GREATER THAN OR EQUAL COMPARE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIG	EC[15:8]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIC	GEC[7:0]				
bit 7							bit 0	
Legend:								
-			.,					
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-0 **QEIGEC[15:0]:** Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEIxGEC) bits

REGISTER 14-23: QEIXGECH: QEIX GREATER THAN OR EQUAL COMPARE REGISTER HIGH

R/W-0		-				
1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIG	EC[31:24]			
bit 15						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIG	EC[23:16]			
bit 7						bit 0
R = Readable bit W = Writable bit		:	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is se			'0' = Bit is cleared x = Bit is unk		x = Bit is unkn	iown
		W = Writable bit	R/W-0 R/W-0 QEIG W = Writable bit	QEIGEC[23:16] W = Writable bit U = Unimpleme	R/W-0 R/W-0 R/W-0 R/W-0 QEIGEC[23:16] W = Writable bit U = Unimplemented bit, rea	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 QEIGEC[23:16] W = Writable bit U = Unimplemented bit, read as '0'

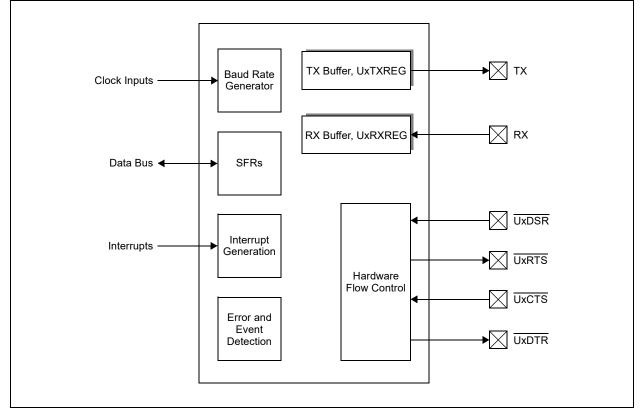
bit 15-0 **QEIGEC[31:16]:** High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEIxGEC) bits

15.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Multiprotocol Universal Asynchronous Receiver Transmitter (UART) Module" (www.microchip.com/DS70005288) in the "dsPIC33/PIC24 Family Reference Manual".

The Universal Asynchronous Receiver Transmitter (UART) is a flexible serial communication peripheral used to interface dsPIC[®] microcontrollers with other equipment, including computers and peripherals. The UART is a full-duplex, asynchronous communication channel that can be used to implement protocols, such as RS-232 and RS-485. The UART also supports the following hardware extensions:

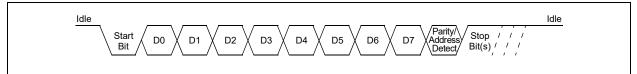
- LIN/J2602
- IrDA[®]
- Direct Matrix Architecture (DMX)
- Smart Card


The primary features of the UART are:

- Full or Half-Duplex Operation
- Up to 8-Deep TX and RX First In, First Out (FIFO) Buffers
- 8-Bit or 9-Bit Data Width
- Configurable Stop Bit Length
- Flow Control
- Auto-Baud Calibration
- Parity, Framing and Buffer Overrun Error Detection
- Address Detect
- Break Transmission
- Transmit and Receive Polarity Control
- Manchester Encoder/Decoder
- Operation in Sleep mode
- Wake from Sleep on Sync Break Received Interrupt

15.1 Architectural Overview

The UART transfers bytes of data, to and from device pins, using First-In First-Out (FIFO) buffers up to eight bytes deep. The status of the buffers and data is made available to user software through Special Function Registers (SFRs). The UART implements multiple interrupt channels for handling transmit, receive and error events. A simplified block diagram of the UART is shown in Figure 15-1.



15.2 Character Frame

A typical UART character frame is shown in Figure 15-2. The Idle state is high with a 'Start' condition indicated by a falling edge. The Start bit is followed by the number of data, parity/address detect and Stop bits defined by the MOD[3:0] (UxMODE[3:0]) bits selected.

FIGURE 15-2: UART CHARACTER FRAME

15.3 Data Buffers

Both transmit and receive functions use buffers to store data shifted to/from the pins. These buffers are FIFOs and are accessed by reading the SFRs, UxTXREG and UxRXREG, respectively. Each data buffer has multiple flags associated with its operation to allow software to read the status. Interrupts can also be configured based on the space available in the buffers. The transmit and receive buffers can be cleared and their pointers reset using the associated TX/RX Buffer Empty Status bits, UTXBE (UxSTAH[5]) and URXBE (UxSTAH[1]).

15.4 Protocol Extensions

The UART provides hardware support for LIN/J2602, IrDA[®], DMX and smart card protocol extensions to reduce software overhead. A protocol extension is enabled by writing a value to the MOD[3:0] (UxMODE[3:0]) selection bits and further configured using the UARTx Timing Parameter registers, UxP1 (Register 15-9), UxP2 (Register 15-10), UxP3 (Register 15-11) and UxP3H (Register 15-12). Details regarding operation and usage are discussed in their respective chapters.

15.5 UART Control/Status Registers

REGISTER 15-1: UXMODE: UARTX CONFIGURATION REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	HC/R/W-0 ⁽¹⁾			
UARTEN	—	USIDL	WAKE	RXBIMD	—	BRKOVR	UTXBRK			
bit 15							bit 8			
R/W-0	HC/R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BRGH	ABAUD	UTXEN	URXEN	MOD3	MOD2	MOD1	MOD0			
bit 7							bit (
Legend:		HC = Hardwar	e Clearable bit							
R = Readable	bit	W = Writable	-	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown			
bit 15	1 = UART is r	RT Enable bit ready to transm te machine, FIF		rs and counters	are reset; regi	sters are reada	ble and writable			
bit 14	Unimplemented: Read as '0'									
bit 13	USIDL: UART Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode									
					e mode					
bit 12	0 = Continues module operation in Idle mode									
	 WAKE: Wake-up Enable bit 1 = Module will continue to sample the RX pin – interrupt generated on falling edge, bit cleared in hardware on following rising edge; if ABAUD is set, Auto-Baud Detection (ABD) will begin immediately 0 = RX pin is not monitored nor rising edge detected 									
bit 11		ceive Break Inte	• •							
	1 = RXBKIF detected	flag when a mi	nimum of 23 (DMX)/11 (asyn Iow-to-high tra			-			
bit 10	Unimplemen	ted: Read as ')'							
bit 9	BRKOVR: Se	end Break Softw	vare Override b	bit						
	1 = Makes the	TX Data Line: TX line active driven by the s		n UTXINV = 0,	Output 1 whe	n UTXINV = 1)	1			
bit 8	UTXBRK: UA	RT Transmit B	reak bit ⁽¹⁾							
	1 = Sends Sy	nc Break on ne	ext transmissior	n; cleared by ha has completed		completion				
bit 7	BRGH: High Baud Rate Select bit									
	• •	ed: Baud rate is ed: Baud rate is								
bit 6	ABAUD: Auto	-Baud Detect I	Enable bit (read	d-only when MC	DD[3:0] = 1xxx	<)				
	1 = Enables cleared ir		surement on th	e next characte	er – requires re	eception of a S	ync field (55h			

Note 1: R/HS/HC in DMX and LIN mode.

REGISTER 15-1: UxMODE: UARTx CONFIGURATION REGISTER (CONTINUED)

- bit 5 UTXEN: UART Transmit Enable bit
 - 1 = Transmit enabled except during Auto-Baud Detection
 - 0 = Transmit disabled all transmit counters, pointers and state machines are reset; TX buffer is not flushed, status bits are not reset

bit 4 URXEN: UART Receive Enable bit

- 1 = Receive enabled except during Auto-Baud Detection
- 0 = Receive disabled all receive counters, pointers and state machines are reset; RX buffer is not flushed, status bits are not reset

bit 3-0 **MOD[3:0]:** UART Mode bits

- Other = Reserved
- 1111 = Smart card
- 1110 = IrDA[®]
- 1101 = Reserved
- 1100 = LIN Master/Slave
- 1011 = LIN Slave only
- 1010 **= DMX**
- 1001 = Reserved
- 1000 = Reserved
- 0111 = Reserved
- 0110 = Reserved
- 0101 = Reserved
- 0100 = Asynchronous 9-bit UART with address detect, ninth bit = 1 signals address
- 0011 = Asynchronous 8-bit UART without address detect, ninth bit is used as an even parity bit
- 0010 = Asynchronous 8-bit UART without address detect, ninth bit is used as an odd parity bit
- 0001 = Asynchronous 7-bit UART
- 0000 = Asynchronous 8-bit UART

Note 1: R/HS/HC in DMX and LIN mode.

R/W-0	R-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
SLPEN	ACTIVE			BCLKMOD	BCLKSEL1	BCLKSEL0	HALFDPLX			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
RUNOVF	URXINV	STSEL1	STSEL0	C0EN	UTXINV	FLO1	FLO0			
bit 7	URAINV	SISELI	SISELU	CUEIN	UTAINV	FLUT				
							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
L# 45										
bit 15		n During Sleep E								
		RG clock runs du RG clock is turne		eep						
bit 14	ACTIVE: UA	ART Running Sta	tus bit							
		lock request is ac lock request is no								
bit 13-12		nted: Read as '0	•	·		5	/			
bit 11	-	Baud Clock Ger		Select bit						
		actional Baud Rat		d clock generati	ion (x = 4 or 16	depending on	the BRGH bit			
bit 10-9	 0 = Uses legacy divide-by-x counter for baud clock generation (x = 4 or 16 depending on the BRGH bit BCLKSEL[1:0]: Baud Clock Source Selection bits 									
	11 = AFvco/3									
	10 = Fosc									
	01 = Reserv 00 = Fosc/2									
bit 8	HALFDPLX	: UART Half-Dup	lex Selection I	Mode bit						
		olex mode: UxTX olex mode: UxTX		•	•					
bit 7		Run During Overfl		-						
	1 = When a remain	an Overflow Error synchronized wit	· (OERR) cond h incoming RX	dition is detecte (data; data are						
	 (i.e., no UxRXREG data are overwritten) When an Overflow Error (OERR) condition is detected, the RX shifter stops accepting new data (Legacy mode) 									
bit 6		ART Receive Pol	aritv bit							
	1 = Inverts F	RX polarity; Idle s not inverted; Idle	tate is low							
bit 5-4	•	: Number of Stop	•	n bits						
		bits sent, 1 chec								
		bits sent, 2 chec								
		op bits sent, 1.5 c bit sent, 1 check		eive						
bit 3	-	ble Legacy Check		amit and Rasa	ive hit					
	UULIN: LIIA									
DIL 3		um Mode 1 (enha				RX worde in all	other modes			

REGISTER 15-2: UxMODEH: UARTx CONFIGURATION REGISTER HIGH

REGISTER 15-2: UXMODEH: UARTX CONFIGURATION REGISTER HIGH (CONTINUED)

- bit 2 UTXINV: UART Transmit Polarity bit
 - 1 = Inverts TX polarity; TX is low in Idle state
 - 0 = Output data are not inverted; TX output is high in Idle state
- bit 1-0 **FLO[1:0]:** Flow Control Enable bits (only valid when MOD[3:0] = 0xxx)

11 = Reserved

- 10 = RTS-DSR (for TX side)/CTS-DTR (for RX side) hardware flow control
- 01 = XON/XOFF software flow control
- 00 = Flow control off

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
TXMTIE	PERIE	ABDOVE	CERIE	FERIE	RXBKIE	OERIE	TXCIE			
bit 15							bit 8			
R-1	R-0	HS/R/W-0	HS/R/W-0	R-0	HS/R/W-0	HS/R/W-0	R/W-0			
TRMT	PERR	ABDOVF	CERIF	FERR	RXBKIF	OERR	TXCIF			
bit 7	T ERR	ABBOM	OLINI	TERR	TOXDIXII	OLIN	bit (
Legend:		HS = Hardwar	e Settable bit							
R = Readable	e bit	W = Writable		U = Unimpler	nented bit, read	as '0'				
-n = Value at		'1' = Bit is set	5 T	'0' = Bit is cle		x = Bit is unkno	own			
	TOR				arcu		JWII			
bit 15	TXMTIE: Tran	smit Shifter En	npty Interrupt E	nable bit						
	1 = Interrupt is 0 = Interrupt is									
bit 14	•	Error Interrupt	Enable bit							
	1 = Interrupt is 0 = Interrupt is									
bit 13	•	 Interrupt is disabled ABDOVE: Auto-Baud Rate Acquisition Interrupt Enable bit 								
	1 = Interrupt is 0 = Interrupt is	s enabled		·						
bit 12	•	sum Error Inte	rrupt Enable bi	it						
	1 = Interrupt is enabled 0 = Interrupt is disabled									
bit 11	FERIE: Framing Error Interrupt Enable bit									
	1 = Interrupt is 0 = Interrupt is	senabled								
bit 10	RXBKIE: Receive Break Interrupt Enable bit									
	1 = Interrupt is 0 = Interrupt is									
bit 9	•	OERIE: Receive Buffer Overflow Interrupt Enable bit								
	1 = Interrupt is 0 = Interrupt is									
bit 8	•		errupt Enable	bit						
	TXCIE: Transmit Collision Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled									
bit 7	-	0 = Interrupt is disabled TRMT: Transmit Shifter Empty Interrupt Flag bit (read-only)								
	1 = Transmit bit when S	-	rSR) is empty (p bit when STPI	MD = 1 or middl	e of first Stop			
bit 6	PERR: Parity	Error/Address	Received/Forw	ard Frame Inte	errupt Flag bit					
	LIN and Parity 1 = Parity erro 0 = No parity e	r detected								
	Address Mode	<u>):</u>								
	1 = Address re 0 = No addres									
	0 = No address detected <u>All Other Modes:</u> Not used.									

REGISTER 15-3: UxSTA: UARTx STATUS REGISTER

REGISTER 15-3: UxSTA: UARTx STATUS REGISTER (CONTINUED)

bit 5	ABDOVF: Auto-Baud Rate Acquisition Interrupt Flag bit (must be cleared by software)
	 1 = BRG rolled over during the auto-baud rate acquisition sequence (must be cleared in software) 0 = BRG has not rolled over during the auto-baud rate acquisition sequence
bit 4	CERIF: Checksum Error Interrupt Flag bit (must be cleared by software)
	1 = Checksum error 0 = No checksum error
bit 3	FERR: Framing Error Interrupt Flag bit
	 1 = Framing Error: Inverted level of the Stop bit corresponding to the topmost character in the buffer; propagates through the buffer with the received character 0 = No framing error
bit 2	RXBKIF: Receive Break Interrupt Flag bit (must be cleared by software)
	1 = A Break was received 0 = No Break was detected
bit 1	OERR: Receive Buffer Overflow Interrupt Flag bit (must be cleared by software)
	1 = Receive buffer has overflowed0 = Receive buffer has not overflowed
bit 0	TXCIF: Transmit Collision Interrupt Flag bit (must be cleared by software)
	1 = Transmitted word is not equal to the received word0 = Transmitted word is equal to the received word

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
—	UTXISEL2	UTXISEL1	UTXISEL0	—	URXISEL2 ⁽¹⁾	URXISEL1(1)	URXISEL0 ⁽¹⁾			
bit 15							bit 8			
HS/R/W-0	R/W-0	R/S-1	R-0	R-1	R-1	R/S-1	R-0			
TXWRE	STPMD	UTXBE	UTXBF	RIDLE	XON	URXBE	URXBF			
bit 7		OTABL	OTABI	TUDEE	Хон	OTOLDE	bit (
Legend:		HS = Hardwar	o Sottabla bit	S = Settable	hit					
R = Readable	- hit	W = Writable			mented bit, read					
-n = Value at		'1' = Bit is set		$0^{\circ} = \text{Bit is cle}$		x = Bit is unki	2014/2			
	FUR	I – DILIS SEL			eareu		IOWII			
bit 15	Unimplement	ed: Read as ')'							
bit 14-12	UTXISEL[2:0]	: UART Transr	nit Interrupt Se	lect bits						
	111 = Sets transmit interrupt when there is one empty slot left in the buffer									
	010 = Sets transmit interrupt when there are six empty slots or more in the buffer 001 = Sets transmit interrupt when there are seven empty slots or more in the buffer									
					slots in the buffe		empty			
bit 11	Unimplement	ed: Read as ')'							
bit 10-8	URXISEL[2:0]	: UART Recei	ve Interrupt Sel	ect bits ⁽¹⁾						
	111 = Triggers	s receive interr	upt when there	are eight wor	ds in the buffer;	RX buffer is fu	II			
	 001 = Triggers receive interrupt when there are two words or more in the buffer 000 = Triggers receive interrupt when there is one word or more in the buffer 									
bit 7					or more in the bu	mer				
	TXWRE: TX Write Transmit Error Status bit LIN and Parity Modes:									
			vhen the buffer	was full or wh	en P2[8:0] = 0 (must be cleare	d by software			
	<u>Address Detect Mode:</u> 1 = A new byte was written when the buffer was full or to P1[8:0] when P1x was full (must be cleared by software)									
	0 = No error									
	<u>Other Modes:</u> 1 = A new byte was written when the buffer was full (must be cleared by software) 0 = No error									
bit 6	STPMD: Stop Bit Detection Mode bit									
	1 = Triggers R	XIF at the end	of the last Stop		pending on the S	STSEL[1:0] set	ting) Stop bit			
bit 5		T TX Buffer Em					0, 1			
		ouffer is empty; ouffer is not em	-	n UTXEN = 0	will reset the TX	FIFO Pointers	and counter			
bit 4	UTXBF: UAR	T TX Buffer Ful	Il Status bit							
	1 = Transmit b 0 = Transmit b	ouffer is full ouffer is not full								
bit 3	RIDLE: Recei	ve Idle bit								
	1 = UART RX		le state							

REGISTER 15-4: UxSTAH: UARTx STATUS REGISTER HIGH

Note 1: The receive watermark interrupt is not set if PERR or FERR is set and the corresponding IE bit is set.

REGISTER 15-4: UxSTAH: UARTx STATUS REGISTER HIGH (CONTINUED)

- bit 2 XON: UART in XON Mode bit Only valid when FLO[1:0] control bits are set to XON/XOFF mode. 1 = UART has received XON 0 = UART has not received XON or XOFF was received
- bit 1 URXBE: UART RX Buffer Empty Status bit
 - 1 = Receive buffer is empty; writing '1' when URXEN = 0 will reset the RX FIFO Pointers and counters 0 = Receive buffer is not empty
- bit 0 URXBF: UART RX Buffer Full Status bit
 - 1 =Receive buffer is full
 - 0 = Receive buffer is not full
- Note 1: The receive watermark interrupt is not set if PERR or FERR is set and the corresponding IE bit is set.

REGISTER 15-5: UxBRG: UARTx BAUD RATE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			BRO	G[15:8]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			BR	G[7:0]				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		t	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkno			nown		

bit 15 BRG[15:0]: Baud Rate Divisor bits

REGISTER 15-6: UxBRGH: UARTx BAUD RATE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	—		BRG[19:16]	
bit 7							bit 0

Legend:					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-4 Unimplemented: Read as '0'

bit 3-0 **BRG[19:16]:** Baud Rate Divisor bits

REGISTER 15-7: UXRXREG: UARTX RECEIVE BUFFER REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—	—	—	_			
bit 15									
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x		
			RXRE	G[7:0]					
bit 7							bit 0		
Legend:									

Ecgenia.				
R = Readable bit	Readable bit W = Writable bit		, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **RXREG[7:0]:** Received Character Data bits 7-0

REGISTER 15-8: UXTXREG: UARTX TRANSMIT BUFFER REGISTER

W-x	U-0	U-0	U-0	U-0	U-0	U-0	U-0
LAST	—	—	_	—	—	—	—
bit 15							bit 8
W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
			TXRE	EG[7:0]			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable k	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow						nown	

bit 15	LAST: Last Byte Indicator for Smart Card Support bit

bit 14-8 Unimplemented: Read as '0'

bit 7-0 TXREG[7:0]: Transmitted Character Data bits 7-0

If the buffer is full, further writes to the buffer are ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
	—	_	—	—		—	P1[8]		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			P1[7:0]					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unkno			iown		
bit 15-9	Unimplement	ted: Read as '0	,						
bit 8-0	P1[8:0]: Para	meter 1 bits							
	DMX TX:	_							
	•	tes to Transmit	– 1 (not includ	ing Start code)					
	LIN Master TX PID to transm								
		TX with Addre	ss Detect:						
		insmit. A '1' is a		serted into bit §) (bits[7:0]).				
	Smart Card M		,						
	Guard Time Counter bits. This counter is operated on the bit clock whose period is always equal to one ETU (bits[8:0]).								
	Other Modes:								
	Not used.								

REGISTER 15-9: UxP1: UARTx TIMING PARAMETER 1 REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
_	—	—	_	—	_	—	P2[8]		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			P2	[7:0]					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			oit	U = Unimplen	nented bit, read	as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-9	Unimplement	ted: Read as '0	,						
bit 8-0	P2[8:0]: Para	meter 2 bits							
	DMX RX:								
	The first byte	number to recei	ive – 1, not inc	cluding Start co	de (bits[8:0]).				
	LIN Slave TX:								
	Number of by	tes to transmit (bits[7:0]).						
		RX with Addre							
		art matching (bit	:s[7:0]).						
	Smart Card M								
	Block Time Counter bits. This counter is operated on the bit clock whose period is always equal to one ETU (bits[8:0]).								
	Other Modes:								
	Not used.								

REGISTER 15-10: UxP2: UARTx TIMING PARAMETER 2 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			P3[15:8]					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			P3	[7:0]					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-0	DMX RX: The last byte LIN Slave RX Number of by Asynchronol Used to mas (bits[7:0]). Smart Card I	ytes to receive (b <u>is RX:</u> sk the UxP2 addr <u>Mode:</u> e Counter bits (bit	its[7:0]). ress bits; 1 =	-		P2 address bit	is masked off		

REGISTER 15-11: UxP3: UARTx TIMING PARAMETER 3 REGISTER

REGISTER 15-12: UxP3H: UARTx TIMING PARAMETER 3 REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	_	—	—	_		_		
bit 15	Ŀ			·			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			P3[2	23:16]					
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	N = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-8	Unimplement	ted: Read as '0	,						
bit 7-0	P3[23:16]: Pa	arameter 3 High	bits						
	<u>Smart Card Mode:</u> Waiting Time Counter bits (bits[23:16]).								
	<u>Other Modes:</u> Not used.								

REGISTER 15-13: UxTXCHK: UARTx TRANSMIT CHECKSUM REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—			—			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
TXCHK[7:0]										
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplem	ented bit, read	as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown			
bit 15-8	Unimplemen	ted: Read as '0	,							
bit 7-0	TXCHK[7:0]:	Transmit Check	sum bits (calc	ulated from TX	words)					
	LIN Modes:									
		im of all transmi			•					
		um of all transmi	tted data + ado	dition carries, e	xcluding PID.					
	LIN Slave: Cleared when Break is detected.									
LIN Master/Slave: Cleared when Break is detected.										
	Other Modes: C0EN = 1: Sum of every byte transmitted + addition carries.									

COEN = 0: Value remains unchanged.

REGISTER 15-14: UXRXCHK: UARTX RECEIVE CHECKSUM REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	_	_		—	_		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			RXCH	IK[7:0]					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-8	Unimplemen	ted: Read as '0	,						
bit 7-0	RXCHK[7:0]:	Receive Check	sum bits (calc	ulated from RX	words)				
	LIN Modes:								
		Im of all receive Im of all receive			•				
	<u>LIN Slave:</u> Cleared wher	Break is detect	ted.						
	LIN Master/Slave: Cleared when Break is detected.								
	<u>Other Modes:</u> C0EN = 1: Sum of every byte received + addition carries. C0EN = 0: Value remains unchanged.								

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
_	<u> </u>	TXRPT1	TXRPT0	CONV	TOPD	PRTCL	_			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U =					nented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-6	Unimplement	Unimplemented: Read as '0'								
bit 5-4	TXRPT[1:0]: 1	Transmit Repea	at Selection bits	S						
		nit the error by								
		nit the error by nit the error by								
		nit the error by								
bit 3		Convention Se								
	1 = Inverse log									
	0 = Direct logi	c convention								
bit 2	TOPD: Pull-Do	own Duration fo	or T = 0 Error H	landling bit						
	1 = Two ETUs	;								
	0 = One ETU									
bit 1		t Card Protoco	I Selection bit							
	1 = T = 1 0 = T = 0									
bit 0	0 = 1 = 0 Unimplemented: Read as '0'									
	ommplement		J							

REGISTER 15-15: UxSCCON: UARTx SMART CARD CONFIGURATION REGISTER

U-0	U-0	HS/R/W-0	HS/R/W-0	U-0	HS/R/W-0	HS/R/W-0	HS/R/W-0		
—	—	RXRPTIF	TXRPTIF	_	BTCIF	WTCIF	GTCIF		
bit 15							bit 8		
		5 .444.6	-		-				
U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
		RXRPTIE	TXRPTIE		BTCIE	WTCIE	GTCIE		
bit 7							bit (
Legend:		HS = Hardwa	re Settable bit						
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown		
bit 15-14	Unimpleme	nted: Read as '0	3						
bit 13	RXRPTIF : R	eceive Repeat I	nterrupt Flag bit	t					
		ror has persisted	l after the same	character ha	s been received	five times (fou	ir retransmits)		
	0 = Flag is c	leared							
bit 12		ansmit Repeat I							
	1 = Line erro 0 = Flag is c	or has been dete leared	cted after the la	st retransmit p	per TXRPT[1:0]				
bit 11	-	Unimplemented: Read as '0'							
bit 10	-	BTCIF: Block Time Counter Interrupt Flag bit							
	1 = Block Time Counter has reached 0								
	0 = Block Tir	ne Counter has	not reached 0						
bit 9		ting Time Counte		ı bit					
		Time Counter ha Time Counter ha)					
bit 8	-	rd Time Counter							
	-	me Counter has me Counter has							
bit 7-6		nted: Read as '0							
bit 5	-	leceive Repeat I		bit					
		rupt is invoked			sisted after the	e same charac	ter has beer		
	received	five times (four							
	0 = Interrup	t is disabled							
bit 4		ransmit Repeat I	-		6				
	1 = An inter been co	rupt is invoked v	hen a line erro	or is detected a	after the last ret	ransmit per 17	(RPT[1:0] has		
	0 = Interrup								
bit 3		nted: Read as '0	,						
bit 2	-	k Time Counter		e bit					
	1 = Block Tir	ne Counter inter ne Counter inter	rupt is enabled						
bit 1		ting Time Counter	-						
		Time Counter int	•						
		Time Counter Int							
bit 0	GTCIE: Gua	rd Time Counter	interrupt enabl	e bit					
		me Counter inte							
		me Counter inte							

REGISTER 15-16: UxSCINT: UARTx SMART CARD INTERRUPT REGISTER

REGISTER 15-17: UxINT: UARTx INTERRUPT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—		—
bit 15							bit 8

HS/R/W-0	HS/R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0
WUIF	ABDIF	—	—	—	ABDIE	—	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	WUIF: Wake-up Interrupt Flag bit
	1 = Sets when WAKE = 1 and RX makes a '1'-to-'0' transition; triggers event interrupt (must be cleared by software)
	0 = WAKE is not enabled or WAKE is enabled, but no wake-up event has occurred
bit 6	ABDIF: Auto-Baud Completed Interrupt Flag bit
	1 = Sets when ABD sequence makes the final '1'-to-'0' transition; triggers event interrupt (must be cleared by software)
	0 = ABAUD is not enabled or ABAUD is enabled but auto-baud has not completed
bit 5-3	Unimplemented: Read as '0'
bit 2	ABDIE: Auto-Baud Completed Interrupt Enable Flag bit
	1 = Allows ABDIF to set an event interrupt
	0 = ABDIF does not set an event interrupt
bit 1-0	Unimplemented: Read as '0'

NOTES:

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note 1:	This data sheet summarizes the features
	of the dsPIC33CK64MP105 family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to "Serial Peripheral Inter-
	face (SPI) with Audio Codec Support"
	(www.microchip.com/DS70005136) in the
	"dsPIC33/PIC24 Family Reference
	Manual".

The Serial Peripheral Interface (SPI) module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. All devices in the dsPIC33CK64MP105 family include three SPI modules. On 48-pin devices, SPI instance SPI2 can operate at higher speeds when selected as a non-PPS pin. The selection is done using the SPI2PIN bit (FDEVOPT[13]). If the bit for SPI2PIN is '1', the PPS pin will be used. When SPI2PIN is '0', the SPI signals are routed to dedicated pins.

The module supports operation in two Buffer modes. In Standard mode, data are shifted through a single serial buffer. In Enhanced Buffer mode, data are shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Note: FIFO depth for this device is four (in 8-Bit Data mode).

Variable length data can be transmitted and received, from 2 to 32 bits.

Note: Do not perform Read-Modify-Write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- Left Justified mode
- Right Justified mode
- PCM/DSP mode

In each of these modes, the serial clock is free-running and audio data are always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the Master and the other is the Slave. However, audio data can be transferred between two Secondaries. Because the audio protocols require free-running clocks, the Master can be a third-party controller. In either case, the Master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC).

The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using two, three or four pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - SPIRBE = 1

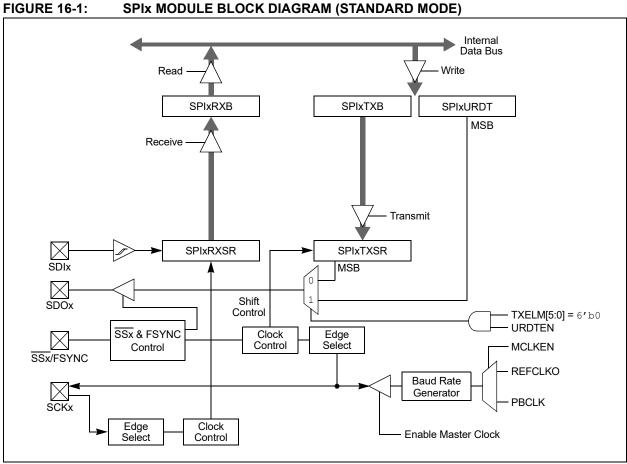
provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxGIF. This event occurs when:
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.


Block diagrams of the module in Standard and Enhanced modes are shown in Figure 16-1 and Figure 16-2.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules. To set up the SPIx module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L and SPIxCON1H registers with the MSTEN bit (SPIxCON1L[5]) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL[6]).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L[15]).
- 5. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data are written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF registers.
- 2. If using interrupts:
 - a) Clear the SPIxBUFL and SPIxBUFH registers.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L[5]) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1L[8]) is set, then the SSEN bit (SPIxCON1L[7]) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL[6]).
- 7. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L[15]).



To set up the SPIx module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with MSTEN (SPIxCON1L[5]) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL[6]).
- 4. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L[0]).
- 5. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L[15]).
- Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data are written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L[5]) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL[6]).
- 7. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L[0]).
- 8. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L[15]).

FIGURE 16-2: SPIX MODULE BLOCK DIAGRAM (ENHANCED MODE)

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - a) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H[15]) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL[6]).
- 5. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L[15]).
- 6. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data are written to the SPIxBUFL and SPIxBUFH registers.

16.1 SPI Control/Status Registers

REGISTER 16-1: SPIx CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPIEN	—	SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	СКР	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF
bit 7							bit 0

Legena:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 SPIEN: SPIx On bit

.

1 = Enables module

0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications

bit 14 Unimplemented: Read as '0'

- bit 13 **SPISIDL:** SPIx Stop in Idle Mode bit
 - 1 = Halts in CPU Idle mode
 - 0 = Continues to operate in CPU Idle mode

bit 12 **DISSDO:** Disable SDOx Output Port bit

- 1 = SDOx pin is not used by the module; pin is controlled by port function
- 0 = SDOx pin is controlled by the module

bit 11-10 MODE32 and MODE16: Serial Word Length Select bits^(1,4)

MODE32	MODE16	AUDEN	Communication			
1	Х		32-Bit			
0	1	0	16-Bit			
0	0		8-Bit			
1	1		24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame			
1	0	1	32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame			
0	1	L	16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame			
0	0		16-Bit FIFO, 16-Bit Channel/32-Bit Frame			

```
bit 9 SMP: SPIx Data Input Sample Phase bit
```

Master Mode:

 $\ensuremath{\mathtt{1}}$ = Input data are sampled at the end of data output time

0 = Input data are sampled at the middle of data output time

Slave Mode:

Input data are always sampled at the middle of data output time, regardless of the SMP setting.

- bit 8 CKE: SPIx Clock Edge Select bit⁽¹⁾
 - $\ensuremath{\mathtt{1}}$ = Transmit happens on transition from active clock state to Idle clock state

0 = Transmit happens on transition from Idle clock state to active clock state

Note 1: When AUDEN (SPIxCON1H[15]) = 1, this module functions as if CKE = 0, regardless of its actual value.

- **2:** When FRMEN = 1, SSEN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 16-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾
	1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the Slave select input 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)
bit 6	CKP: Clock Polarity Select bit
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level
bit 5	MSTEN: Master Mode Enable bit
	1 = Master mode 0 = Slave mode
bit 4	DISSDI: Disable SDIx Input Port bit
	 1 = SDIx pin is not used by the module; pin is controlled by port function 0 = SDIx pin is controlled by the module
bit 3	DISSCK: Disable SCKx Output Port bit
	 1 = SCKx pin is not used by the module; pin is controlled by port function 0 = SCKx pin is controlled by the module
bit 2	MCLKEN: Master Clock Enable bit ⁽³⁾
	 1 = Reference Clock (REFCLKO) is used by the BRG 0 = Peripheral Clock (FP = FOSC/2) is used by the BRG
bit 1	SPIFE: Frame Sync Pulse Edge Select bit
	 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock
bit 0	ENHBUF: Enhanced Buffer Enable bit
	 1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled
Note 1:	When AUDEN (SPIxCON1H[15]) = 1, this module functions as if CKE = 0, regardless of its actual value.

- **2:** When FRMEN = 1, SSEN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

AUDEN ^{(*} bit 15 R/W-0 FRMEN bit 7	R/W-0	IGNROV	IGNTUR	AUDMONO ⁽²⁾	URDTEN ⁽³⁾	AUDMOD1 ⁽⁴⁾	AUDMOD0(4)		
R/W-0 FRMEN bit 7									
FRMEN bit 7							bit 8		
FRMEN bit 7									
bit 7	I FRMSYNC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0		
							bit C		
Legend:	abla bit		:1		unted bit wood	'0'			
R = Reada		W = Writable b	oit	U = Unimpleme					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkn	iown		
bit 15	this modul	ocol is enabled le functions as of their actual	l; MSTEN con if FRMEN = 1 values	1) ntrols the direction 1, FRMSYNC = N					
bit 14	1 = Data from	SPISGNEXT: SPIx Sign-Extend RX FIFO Read Data Enable bit 1 = Data from RX FIFO are sign-extended 0 = Data from RX FIFO are not sign-extended							
oit 13	IGNROV: Igno	re Receive Ov	erflow bit						
	1 = A Receive by the rec 0 = A ROV is a	eive data	,	ritical error; durin I operation	g ROV, data ir	n the FIFO are r	not overwritter		
bit 12	IGNTUR: Igno								
	1 = A Transmi	t Underrun (TL PIxTXB is not (IR) is NOT a empty	critical error and I operation	data indicated	l by URDTEN a	re transmitted		
bit 11	AUDMONO: A	udio Data Forr	nat Transmit	bit ⁽²⁾					
	1 = Audio data 0 = Audio data		, each data w	vord is transmitted	d on both left a	and right chann	els)		
bit 10		data out of SPI	xURDT regis	e bit ⁽³⁾ iter during Transn g Transmit Under					
bit 9-8	AUDMOD[1:0]	: Audio Protoc	ol Mode Sele	ection bits ⁽⁴⁾					
	01 = Left Justi	tified mode: Th	s module fund	nctions as if SPIF ctions as if SPIFE f SPIFE = 0, rega	= 1, regardle	ss of its actual			
bit 7	FRMEN: Fram	ed SPIx Suppo	ort bit						
	1 = Framed SF 0 = Framed SF			pin is used as the	e FSYNC inpu	t/output)			
Note 1: 2: 3: 4:	AUDEN can only I AUDMONO can o URDTEN is only v AUDMOD[1:0] car	nly be written v alid when IGN	when the SPI TUR = 1.	EN bit = 0 and is					

REGISTER 16-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH

REGISTER 16-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit 6	FRMSYNC: Frame Sync Pulse Direction Control bit
	1 = Frame Sync pulse input (Slave) 0 = Frame Sync pulse output (Master)
bit 5	FRMPOL: Frame Sync/Slave Select Polarity bit
	1 = Frame Sync pulse/Slave select is active-high0 = Frame Sync pulse/Slave select is active-low
bit 4	MSSEN: Master Mode Slave Select Enable bit
	 1 = SPIx Slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically driven during transmission in Master mode) 2 Support of the state of the
	0 = Slave select SPIx support is disabled (SSx pin will be controlled by port I/O)
bit 3	FRMSYPW: Frame Sync Pulse-Width bit
	 1 = Frame Sync pulse is one serial word length wide (as defined by MODE[32,16]/WLENGTH[4:0]) 0 = Frame Sync pulse is one clock (SCKx) wide
bit 2-0	FRMCNT[2:0]: Frame Sync Pulse Counter bits
	Controls the number of serial words transmitted per Sync pulse. 111 = Reserved 110 = Reserved
	101 = Generates a Frame Sync pulse on every 32 serial words
	100 = Generates a Frame Sync pulse on every 16 serial words
	011 = Generates a Frame Sync pulse on every 8 serial words
	010 = Generates a Frame Sync pulse on every 4 serial words
	001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)000 = Generates a Frame Sync pulse on each serial word

- **Note 1:** AUDEN can only be written when the SPIEN bit = 0.
 - 2: AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
 - **3:** URDTEN is only valid when IGNTUR = 1.
 - **4:** AUDMOD[1:0] can only be written when the SPIEN bit = 0 and is only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

REGISTER 16-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	-	_	—	_	—	—	—
bit 15		I			•	•	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_		W	/LENGTH[4:0] ⁽	1,2)	
bit 7							bit 0
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkn	own
ii valuo							
bit 15-5	Unimpleme	ented: Read as	'∩'				
bit 10-0	=	[4:0]: Variable \		ite(1,2)			
DIL 4-0	11111 = 32			15.77			
	11111 - 32						
	1110 = 30						
	11100 = 29						
	11011 = 28	3-bit data					
	11010 = 27						
	11001 = 26						
	11000 = 25						
	10111 = 24 10110 = 23						
	10110 = 22						
	10100 = 21						
	10011 = 20)-bit data					
	10010 = 1 9						
	10001 = 18						
	10000 = 17 01111 = 16						
	01111 - 10 01110 = 15						
	01101 = 14						
	01100 = 13						
	01011 = 12						
	01010 = 11						
	01001 = 10						
	01000 = 9- 00111 = 8-						
	00110 = 7-						
	00101 = 6-						
	00100 = 5-						
	00011 = 4-						
	00010 = 3-						
	00001 = 2-		l hite in SPIVO				
	00000 - 36	e MODE[32,16					

- **Note 1:** These bits are effective when AUDEN = 0 only.
 - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

U-0	U-0	U-0	HS/R/C-0	HSC/R-0	U-0	U-0	HSC/R-0
—	—	—	FRMERR	SPIBUSY	—	—	SPITUR ⁽¹⁾
bit 15							bit 8

HSC/R-0	HS/R/C-0	HSC/R-1	U-0	HSC/R-1	U-0	HSC/R-0	HSC/R-0
SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF
bit 7							bit 0

Legend: C = Clearable bit		U = Unimplemented, read as '0'			
R = Readable bit W = Writable bit		HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	HS = Hardware Settable bit		

bit 15-13	Unimplemented: Read as '0'
bit 12	FRMERR: SPIx Frame Error Status bit
	1 = Frame error is detected
	0 = No frame error is detected
bit 11	SPIBUSY: SPIx Activity Status bit
	 1 = Module is currently busy with some transactions 0 = No ongoing transactions (at time of read)
bit 10-9	Unimplemented: Read as '0'
bit 8	SPITUR: SPIx Transmit Underrun Status bit ⁽¹⁾
	1 = Transmit buffer has encountered a Transmit Underrun condition
	0 = Transmit buffer does not have a Transmit Underrun condition
bit 7	SRMT: Shift Register Empty Status bit
	1 = No current or pending transactions (i.e., neither SPIxTXB or SPIxTXSR contains data to transmit)0 = Current or pending transactions
bit 6	SPIROV: SPIx Receive Overflow Status bit
	 1 = A new byte/half-word/word has been completely received when the SPIxRXB was full 0 = No overflow
bit 5	SPIRBE: SPIx RX Buffer Empty Status bit
	1 = RX buffer is empty 0 = RX buffer is not empty
	Standard Buffer Mode:
	Automatically set in hardware when SPIxBUF is read from, reading SPIxRXB. Automatically cleared in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB.
	Enhanced Buffer Mode: Indicates RXELM[5:0] = 000000.
bit 4	Unimplemented: Read as '0'

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 16-4: SPIxSTATL: SPIx STATUS REGISTER LOW (CONTINUED)

- bit 3 SPITBE: SPIx Transmit Buffer Empty Status bit 1 = SPIxTXB is empty 0 = SPIxTXB is not empty Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically cleared in hardware when SPIxBUF is written, loading SPIxTXB. Enhanced Buffer Mode: Indicates TXELM[5:0] = 000000. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = SPIxTXB is full 0 = SPIxTXB not full Standard Buffer Mode: Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Enhanced Buffer Mode: Indicates TXELM[5:0] = 111111. SPIRBF: SPIx Receive Buffer Full Status bit bit 0 1 = SPIxRXB is full 0 = SPIxRXB is not full Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. Enhanced Buffer Mode: Indicates RXELM[5:0] = 111111.
- **Note 1:** SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 16-5: SPIxSTATH: SPIx STATUS REGISTER HIGH

U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
	—	RXELM5 ⁽³⁾	RXELM4 ⁽²⁾	RXELM3 ⁽¹⁾	RXELM2	RXELM1	RXELM0
bit 15							bit 8

U-0	U-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
—	—	TXELM5 ⁽³⁾	TXELM4 ⁽²⁾	TXELM3 ⁽¹⁾	TXELM2	TXELM1	TXELM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RXELM[5:0]:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

bit 7-6 Unimplemented: Read as '0'

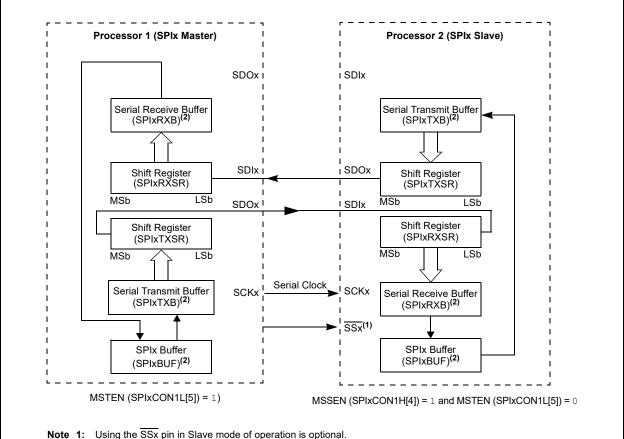
bit 5-0 **TXELM[5:0]:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

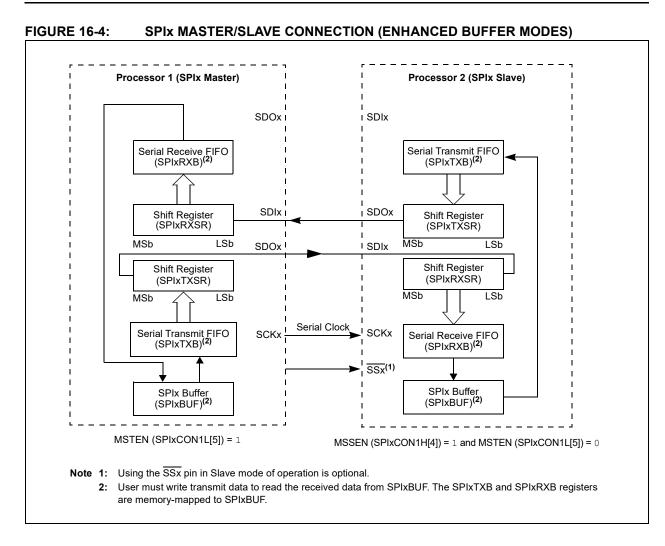
3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0			
—	—		FRMERREN	BUSYEN	—	—	SPITUREN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0			
SRMTEN	SPIROVEN	SPIRBEN		SPITBEN		SPITBFEN	SPIRBFEN			
bit 7							bit 0			
Legend:										
R = Readable	• bit	W = Writable	bit	II = Unimplem	nented bit, read	d as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
				0 2000 000						
bit 15-13	Unimplement	ted: Read as '	כ'							
bit 12	FRMERREN:	Enable Interru	pt Events via F	RMERR bit						
		U U	n interrupt ever							
		•	nerate an interr							
bit 11	BUSYEN: Enable Interrupt Events via SPIBUSY bit 1 = SPIBUSY generates an interrupt event									
			interrupt event erate an interrup	ot event						
bit 10-9		ted: Read as '								
bit 8	SPITUREN: Enable Interrupt Events via SPITUR bit									
			l) generates an not generate a							
bit 7	 0 = Transmit Underrun does not generate an interrupt event SRMTEN: Enable Interrupt Events via SRMT bit 									
	1 = Shift Regi	ster Empty (SF	RMT) generates es not generate	interrupt even						
bit 6	SPIROVEN: Enable Interrupt Events via SPIROV bit									
			ROV) generate loes not genera							
bit 5	SPIRBEN: En	SPIRBEN: Enable Interrupt Events via SPIRBE bit								
			enerates an inte bes not generat		event					
bit 4	Unimplement	ted: Read as '	כ'							
bit 3	SPITBEN: En	able Interrupt I	Events via SPIT	BE bit						
			oty generates a oty does not ger							
bit 2	Unimplemented: Read as '0'									
bit 1	SPITBFEN: E	nable Interrup	t Events via SP	ITBF bit						
	 1 = SPIx transmit buffer full generates an interrupt event 0 = SPIx transmit buffer full does not generate an interrupt event 									
bit 0	SPIRBFEN: E	Enable Interrup	t Events via SP	IRBF bit						
		-								
	 1 = SPIx receive buffer full generates an interrupt event 0 = SPIx receive buffer full does not generate an interrupt event 									


REGISTER 16-6: SPIxIMSKL: SPIx INTERRUPT MASK REGISTER LOW

			-				
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RXWIE	v —	RXMSK5 ⁽¹⁾	RXMSK4 ^(1,4)	RXMSK3 ^(1,3)	RXMSK2 ^(1,2)	RXMSK1 ⁽¹⁾	RXMSK0 ⁽¹⁾
bit 15	·						bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TXWIEN	- N	TXMSK5 ⁽¹⁾	TXMSK4 ^(1,4)	TXMSK3 ^(1,3)	TXMSK2 ^(1,2)	TXMSK1 ⁽¹⁾	TXMSK0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	own
bit 14	0 = Disable	s receive buffer e s receive buffer e ented: Read as '	element waterm		ien RXMSK[5:()] ≤ RXELM[5:()]
bit 13-8	-)]: RX Buffer Mas ts; used in conju					
bit 7		ransmit Waterma					
	1 = Triggers	s transmit buffer e s transmit buffer	element waterm	nark interrupt w	hen TXMSK[5:	0] = TXELM[5:	0]
bit 6	Unimpleme	ented: Read as '	o'				
bit 5-0	TXMSK[5:0]: TX Buffer Mas	k bits ^(1,2,3,4)				
	TX mask bit	ts; used in conjur	nction with the T	TXWIEN bit.			
Note 1:	Mask values hig this case.	gher than FIFOD	EPTH are not	valid. The mod	ule will not trig	ger a match fo	r any value in
2.		XMSK2 hits are	only present wh	nen FIFODEPT	H = 8 or higher		

REGISTER 16-7: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH


- 2: RXMSK2 and TXMSK2 bits are only present when FIFODEPTH = 8 or higher.
- **3:** RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher.
- **4:** RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.

dsPIC33CK64MP105 FAMILY

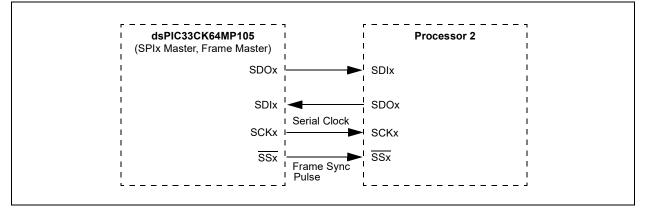
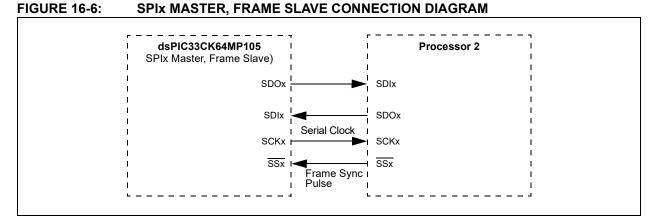
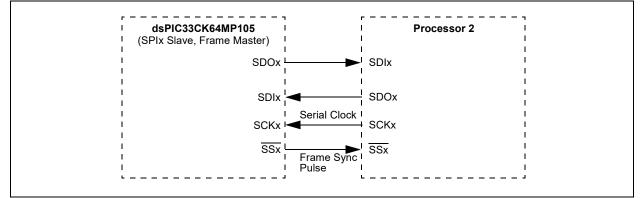


FIGURE 16-3: SPIX MASTER/SLAVE CONNECTION (STANDARD MODE)


2: User must write transmit data to read the received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory-mapped to SPIxBUF.


FIGURE 16-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM

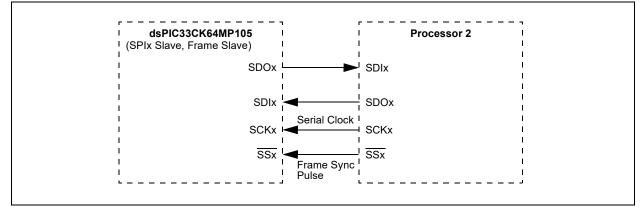

dsPIC33CK64MP105 FAMILY

FIGURE 16-7: SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM

FIGURE 16-8: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM

EQUATION 16-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

$$Baud Rate = \frac{FP}{(2 * (SPIxBRG + 1))}$$

Where:

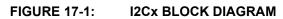
FP is the Peripheral Bus Clock Frequency.

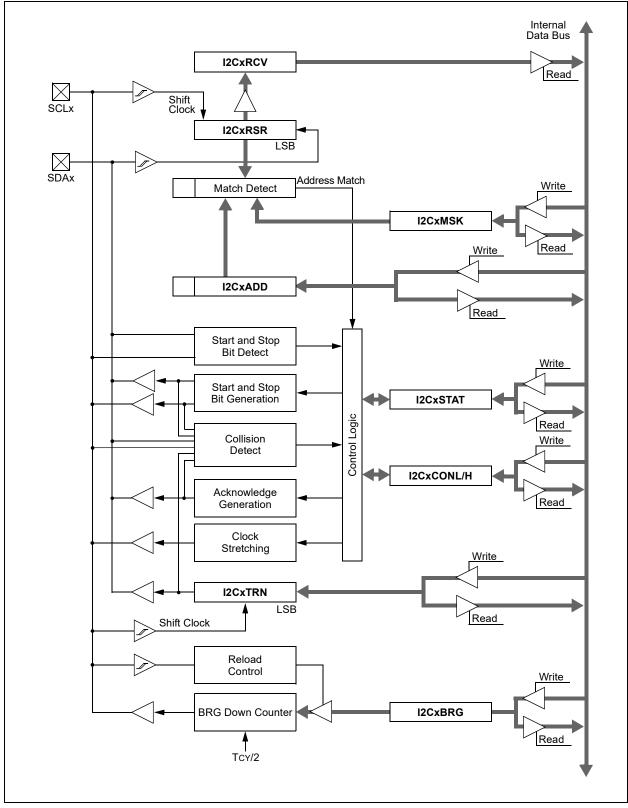
17.0 INTER-INTEGRATED CIRCUIT (I²C)

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "Inter-Integrated Circuit (I²C)" (www.microchip.com/DS70000195) in the "dsPIC33/PIC24 Family Reference Manual".

The Inter-Integrated Circuit (I^2C) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:


- Independent Master and Slave Logic
- · 7-Bit and 10-Bit Device Addresses
- General Call Address as Defined in the $\ensuremath{\mathsf{I}}^2\ensuremath{\mathsf{C}}$ Protocol
- Clock Stretching to Provide Delays for the Processor to Respond to a Slave Data Request
- Both 100 kHz and 400 kHz Bus Specifications
- Configurable Address Masking
- Multi-Host modes to Prevent Loss of Messages in Arbitration
- Bus Repeater mode, Allowing the Acceptance of All Messages as a Slave, regardless of the Address
- Automatic SCL
- A block diagram of the module is shown in Figure 17-1.


17.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communication protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the Slave with a write indication.
- 3. Wait for and verify an Acknowledge from the Slave.
- 4. Send the first data byte (sometimes known as the command) to the Slave.
- 5. Wait for and verify an Acknowledge from the Slave.
- 6. Send the serial memory address low byte to the Slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the Slave with a read indication.
- 10. Wait for and verify an Acknowledge from the Slave.
- 11. Enable Master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

dsPIC33CK64MP105 FAMILY

17.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2,3,4)

 $I2CxBRG = ((1/FSCL - Delay) \bullet FP/2) - 2$

Note 1: Based on FP = Fosc/2.

- 2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.
- **3:** Typical value of delay varies from 110 ns to 150 ns.
- 4: I2CxBRG values of 0 to 3 are expressly forbidden. The user should never program the I2CxBRG with a value of 0x0, 0x1, 0x2 or 0x3 as indeterminate results may occur.

17.3 Slave Address Masking

The I2CxMSK register (Register 17-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the Slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the Slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL[11]).

Note: As a result of changes in the I²C protocol, the addresses in Table 17-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

For	Fact	l2CxB	RG Value
Fcy	FSCL	Decimal	Hexadecimal
100 MHz	1 MHz	41	29
100 MHz	400 kHz	116	74
100 MHz	100 kHz	491	1EB
80 MHz	1 MHz	32	20
80 MHz	400 kHz	92	5C
80 MHz	100 kHz	392	188
60 MHz	1 MHz	24	18
60 MHz	400 kHz	69	45
60 MHz	100 kHz	294	126
40 MHz	1 MHz	15	0F
40 MHz	400 kHz	45	2D
40 MHz	100 kHz	195	C3
20 MHz	1 MHz	7	7
20 MHz	400 kHz	22	16
20 MHz	100 kHz	97	61

TABLE 17-1: I2Cx CLOCK RATES^(1,2)

Note 1: Based on FP = Fosc/2.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 0000	1	Start Byte
0000 001	х	Cbus Address
0000 01x	х	Reserved
0000 1xx	х	HS Mode Master Code
1111 Oxx	х	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	х	Reserved

TABLE 17-2: I2Cx RESERVED ADDRESSES⁽¹⁾

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

17.4 I²C Control/Status Registers

REGISTER 17-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

R/W-0	U-0	HC/R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN ⁽³⁾
oit 15							bit 8
R/W-0	R/W-0	R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit (
Legend:		HC = Hardwar	e Clearable bit				
R = Readab	le bit	W = Writable I		U = Unimplem	nented bit, read	l as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15 bit 14	1 = Enables t 0 = Disables	Enable bit (writa the I2Cx module the I2Cx module t ted: Read as '0	e, and configure e; all I ² C pins a	s the SDAx and		serial port pin	S
bit 13	-	x Stop in Idle M					
bit 12	0 = Continue SCLREL: SC 1 = Releases 0 = Holds the If STREN = 1 User softward at the beginr address byte If STREN = 0	e may write '0' to hing of every SI reception. Harc	tion in Idle mod ntrol bit (I ² C Sla (v (clock stretch) o initiate a clock ave data byte t lware clears at t	e ave mode only) ⁽ stretch and wr transmission. H the end of ever	ite '1' to release lardware clears y Slave data by	s at the end of /te reception.	f every Slav
	byte transmis	sion. Hardware	clears at the end	d of every Slave	address byte re	eception.	
bit 11	1 = Strict res (In Slave that cate (In Maste 0 = Reserve (In Slave When th	x Strict Reserve erved addressin gory are NACK er Mode) – The d addressing wo Mode) – The ere is a match v er Mode) – Rese	ng is enforced; i evice doesn't re ed. device is allowe buld be Acknow device will resp vith any of the re	for reserved ad espond to reserved ed to generate a ledged. ond to an addr	ved address sp addresses with ess falling in th	ace and addre reserved addr ne reserved ad	ess space. Idress space
bit 10		Slave Address					
	1 = I2CxADD) is a 10-bit Slav) is a 7-bit Slave	e address				
	Automatically cle of Slave receptio		e beginning of S	Blave transmiss	ion; automatica	ally cleared to '	0' at the end
	Automatically cle		e beginning of S	Slave transmiss	ion.		

3: The SMB3EN Configuration bit (FDEVOPT[10]) selects between normal and SMBus 3.0 levels.

REGISTER 17-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

bit 9	DISSLW: Slew Rate Control Disable bit
	 1 = Slew rate control is disabled for Standard Speed mode (100 kHz, also disabled for 1 MHz mode) 0 = Slew rate control is enabled for High-Speed mode (400 kHz)
bit 8	SMEN: SMBus Input Levels Enable bit ⁽³⁾
	 1 = Enables input logic so thresholds are compliant with the SMBus specification 0 = Disables SMBus-specific inputs
bit 7	GCEN: General Call Enable bit (I ² C Slave mode only)
	 1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception 0 = General call address is disabled
bit 6	STREN: SCLx Clock Stretch Enable bit
	In I ² C Slave mode only; used in conjunction with the SCLREL bit. 1 = Enables clock stretching 0 = Disables clock stretching
bit 5	ACKDT: Acknowledge Data bit
	 In I²C Master mode during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive. In I²C Slave mode when AHEN = 1 or DHEN = 1. The value that the Slave will transmit when it initiates an Acknowledge sequence at the end of an address or data reception. 1 = NACK is sent 0 = ACK is sent
bit 4	ACKEN: Acknowledge Sequence Enable bit
	In I ² C Master mode only; applicable during Master Receive mode. 1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits ACKDT data bit 0 = Acknowledge sequence is Idle
bit 3	RCEN: Receive Enable bit (I ² C Master mode only)
	1 = Enables Receive mode for I^2C ; automatically cleared by hardware at end of 8-bit receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Stop condition on SDAx and SCLx pins 0 = Stop condition is Idle
bit 1	RSEN: Restart Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Restart condition on SDAx and SCLx pins 0 = Restart condition is Idle
bit 0	SEN: Start Condition Enable bit (I ² C Master mode only)
	 1 = Initiates Start condition on SDAx and SCLx pins 0 = Start condition is Idle
Note 1:	Automatically cleared to '0' at the beginning of Slave transmission; automatically cleared to '0' at the end

- **2:** Automatically cleared to '0' at the beginning of Slave transmission.
- 3: The SMB3EN Configuration bit (FDEVOPT[10]) selects between normal and SMBus 3.0 levels.

of Slave reception.

REGISTER 17-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
_	PCIE	SCIE	BOEN	SDAHT	_	AHEN	DHEN
bit 7							bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
bit 5 bit 4	0 = Stop dete SCIE: Start C 1 = Enables i 0 = Start dete BOEN: Buffe 1 = I2CxRCV of the I2C	ection interrupts Condition Interru Interrupt on det ection interrupts r Overwrite Ena / is updated an COV bit only if l	upt Enable bit (l ection of Start d are disabled able bit (l ² C Sla d an ACK is ger	² C Slave mode or Restart condi ve mode only) nerated for a ree	tions	s/data byte, ign	oring the stat
bit 3	1 = Minimum		time on SDAx	after the falling after the falling			
bit 2		ted: Read as '					
bit 1	AHEN: Addre	ess Hold Enable	e bit (I ² C Slave	mode only)			
bit 0	(I2CxCO 0 = Address	NL[12]) will be holding is disal	cleared and the	Lx for a mato SCLx will be h de only)		address byte	; SCLREL b
-	1 = Following bit (I2Cx	g the 8th falling	edge of SCLx fo SCLx is held lo	or a received da	ta byte; Slave	hardware clear	s the SCLRE

REGISTER 17-3: I2CxSTAT: I2Cx STATUS REGISTER

HSC/R-0	HSC/R-0	HSC/R-0	U-0	U-0	HSC/R/C-0	HSC/R-0	HSC/R-0
ACKSTAT	TRSTAT	ACKTIM	—	_	BCL	GCSTAT	ADD10
bit 15							bit 8
HS/R/C-0	HS/R/C-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
IWCOL	I2COV	D/Ā	Р	S	R/W	RBF	TBF
bit 7							bit 0
Legend:		C = Clearable			/are Settable/C		
R = Readable		W = Writable	oit		nented bit, reac		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	re Settable bit
bit 15	ACKSTAT: Ad	cknowledge Sta	itus bit (undate	ed in all Master	and Slave mor	les)	
bit to		dge was not re				(00)	
		dge was receiv					
bit 14	TRSTAT: Trar	nsmit Status bit	(when operati	ing as I ² C Mast	er; applicable t	o Master transr	nit operation)
		ansmit is in prog		ts + ACK)			
L:1 1 0		ansmit is not in					
bit 13		knowledge Time I ² C bus is in ar	•		• /	dae of SCI v d	lock
		knowledge seq					IOCK
bit 12-11		ted: Read as '		Ũ	0		
bit 10	BCL: Bus Co	llision Detect bi	t (cleared whe	n I ² C module is	s disabled, I2CI	EN = 0)	
		ision has been		ng a transmit op	peration		
		ollision has bee					
bit 9		neral Call Statu		after Stop deteo	ction)		
	-	all address was all address was					
bit 8		it Address Stat		after Stop dete	ection)		
		lress was matc	•	·	,		
	0 = 10-bit add	lress was not n	natched				
bit 7		Write Collision					
	1 = An attem in softwa	pt to write to the	e I2CxTRN reg	ister failed beca	ause the I ² C mo	dule is busy; m	ust be cleared
	0 = No collisi						
bit 6	12COV: 12Cx	Receive Overflo	ow Flag bit				
		as received whi			I holding the pre	evious byte; I20	COV is a "don't
		Fransmit mode,	must be clear	ed in software			
L:1 F	0 = No overfl			20 01			
bit 5		dress bit (when that the last by					
		that the last by			s an address		
bit 4	P: I2Cx Stop	-					
		n Start, Reset o			hen the I ² C mo	dule is disable	d, I2CEN = 0.
		that a Stop bit I		cted last			
	0 - 500 bit W	as not detected	มเสรเ				

REGISTER 17-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: I2Cx Start bit Updated when Start, Reset or Stop is detected; cleared when the I ² C module is disabled, I2CEN = 0. 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
bit 2	R/W : Read/Write Information bit (when operating as I ² C Slave)
	 1 = Read: Indicates the data transfer is output from the Slave 0 = Write: Indicates the data transfer is input to the Slave
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit is in progress, I2CxTRN is full (eight bits of data) 0 = Transmit is complete, I2CxTRN is empty

REGISTER 17-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	MSK[9:8]	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	MSK[7:0]										
bit 7 bit											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

MSK[9:0]: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position

0 = Disables masking for bit x; bit match is required in this position

NOTES:

18.0 SINGLE-EDGE NIBBLE TRANSMISSION (SENT)

Note 1: This data sheet summarizes the features of this group of dsPIC33CK64MP105 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Single-Edge Nibble Transmission (SENT) Module" (www.microchip.com/ DS70005145) in the "dsPIC33/PIC24 Family Reference Manual".

The Single-Edge Nibble Transmission (SENT) module is based on the SAE J2716, "SENT – Single-Edge Nibble Transmission for Automotive Applications". The SENT protocol is a one-way, single wire time modulated serial communication, based on successive falling edges. It is intended for use in applications where high-resolution sensor data need to be communicated from a sensor to an Engine Control Unit (ECU).

The SENTx module has the following major features:

- · Selectable Transmit or Receive mode
- Synchronous or Asynchronous Transmit modes
- Automatic Data Rate Synchronization
- Optional Automatic Detection of CRC Errors in Receive mode
- Optional Hardware Calculation of CRC in Transmit mode
- · Support for Optional Pause Pulse Period
- Data Buffering for One Message Frame
- Selectable Data Length for Transmit/Receive from Three to Six Nibbles
- · Automatic Detection of Framing Errors

SENT protocol timing is based on a predetermined time unit, TTICK. Both the transmitter and receiver must be preconfigured for TTICK, which can vary from 3 to 90 μ s.

A SENT message frame starts with a Sync pulse. The purpose of the Sync pulse is to allow the receiver to calculate the data rate of the message encoded by the transmitter. The SENT specification allows messages to be validated with up to a 20% variation in TTICK. This allows for the transmitter and receiver to run from different clocks that may be inaccurate, and drift with time and temperature. The data nibbles are 4 bits in length and are encoded as the data value + 12 ticks. This yields a 0 value of 12 ticks and the maximum value, 0xF, of 27 ticks.

A SENT message consists of the following:

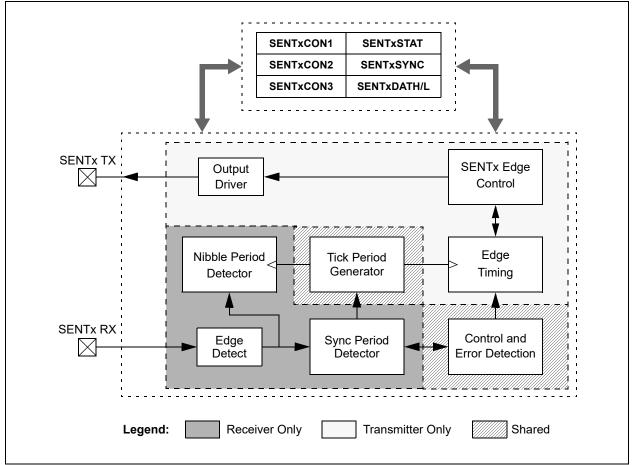

- A synchronization/calibration period of 56 tick times
- A status nibble of 12-27 tick times
- Up to six data nibbles of 12-27 tick times
- A CRC nibble of 12-27 tick times
- An optional pause pulse period of 12-768 tick times

Figure 18-1 shows a block diagram of the SENTx module.

Figure 18-2 shows the construction of a typical 6-nibble data frame, with the numbers representing the minimum or maximum number of tick times for each section.

dsPIC33CK64MP105 FAMILY

FIGURE 18-2: SENTx PROTOCOL DATA FRAMES

Sync Period	Status	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC	Pause (optional)	/
56	12-27	12-27	12-27	12-27	12-27	12-27	12-27	12-27	12-768	

18.1 Transmit Mode

By default, the SENTx module is configured for transmit operation. The module can be configured for continuous asynchronous message frame transmission, or alternatively, for Synchronous mode triggered by software. When enabled, the transmitter will send a Sync, followed by the appropriate number of data nibbles, an optional CRC and optional pause pulse. The tick period used by the SENTx transmitter is set by writing a value to the TICKTIME[15:0] (SENTxCON2[15:0]) bits. The tick period calculations are shown in Equation 18-1.

EQUATION 18-1: TICK PERIOD CALCULATION

 $TICKTIME[15:0] = \frac{TTICK}{TCLK} - 1$

An optional pause pulse can be used in Asynchronous mode to provide a fixed message frame time period. The frame period used by the SENTx transmitter is set by writing a value to the FRAMETIME[15:0] (SENTxCON3[15:0]) bits. The formulas used to calculate the value of frame time are shown in Equation 18-2.

EQUATION 18-2: FRAME TIME CALCULATIONS

FRAMETIME[15:0] = TTICK/TFRAME

 $FRAMETIME[15:0] \ge 122 + 27N$

 $FRAMETIME[15:0] \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6

Note: The module will not produce a pause period with less than 12 ticks, regardless of the FRAMETIME[15:0] value. FRAMETIME[15:0] values beyond 2047 will have no effect on the length of a data frame.

18.1.1 TRANSMIT MODE CONFIGURATION

18.1.1.1 Initializing the SENTx Module

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1[11]) = 0 for Transmit mode.
- Write TXM (SENTxCON1[10]) = 0 for Asynchronous Transmit mode or TXM = 1 for Synchronous mode.
- 3. Write NIBCNT[2:0] (SENTxCON1[2:0]) for the desired data frame length.
- 4. Write CRCEN (SENTxCON1[8]) for hardware or software CRC calculation.
- 5. Write PPP (SENTxCON1[7]) for optional pause pulse.
- 6. If PPP = 1, write TFRAME to SENTxCON3.
- 7. Write SENTxCON2 with the appropriate value for the desired tick period.
- 8. Enable interrupts and set interrupt priority.
- 9. Write initial status and data values to SENTxDATH/L.
- 10. If CRCEN = 0, calculate CRC and write the value to CRC[3:0] (SENTxDATL[3:0]).
- 11. Set the SNTEN (SENTxCON1[15]) bit to enable the module.

User software updates to SENTxDATH/L must be performed after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt to trigger data writes.

18.2 Receive Mode

The module can be configured for receive operation by setting the RCVEN (SENTxCON1[11]) bit. The time between each falling edge is compared to SYNCMIN[15:0] (SENTxCON3[15:0]) and SYNCMAX[15:0] (SENTxCON2[15:0]), and if the measured time lies between the minimum and maximum limits, the module begins to receive data. The validated Sync time is captured in the SENTxSYNC register and the tick time is calculated. Subsequent falling edges are verified to be within the valid data width and the data are stored in the SENTxDATL/H registers. An interrupt event is generated at the completion of the message and the user software should read the SENTx Data registers before the reception of the next nibble. The equation for SYNCMIN[15:0] and SYNCMAX[15:0] is shown in Equation 18-3.

EQUATION 18-3: SYNCMIN[15:0] AND SYNCMAX[15:0] CALCULATIONS

 $TTICK = TCLK \bullet (TICKTIME[15:0] + 1)$

FRAMETIME[15:0] = TTICK/TFRAME

SyncCount = 8 x *FRCV* x *TTICK*

SYNCMIN[15:0] = 0.8 x SyncCount

SYNCMAX[15:0] = 1.2 x SyncCount

 $FRAMETIME[15:0] \ge 122 + 27N$

 $FRAMETIME[15:0] \ge 848 + 12N$

Where:

 T_{FRAME} = Total time of the message from ms N = The number of data nibbles in message, 1-6 F_{RCV} = FCY x Prescaler T_{CLK} = FCY/Prescaler

For TTICK = 3.0 μ s and FCLK = 4 MHz, SYNCMIN[15:0] = 76.

Note:			•	•		be identifi				
	the value written to SYNCMIN[15:0] must									
	be less than the value written to									
	SYI	NCMA	X[15:0]].						

18.2.1 RECEIVE MODE CONFIGURATION

18.2.1.1 Initializing the SENTx Module

Perform the following steps to initialize the module:

- 1. Write RCVEN (SENTxCON1[11]) = 1 for Receive mode.
- 2. Write NIBCNT[2:0] (SENTxCON1[2:0]) for the desired data frame length.
- 3. Write CRCEN (SENTxCON1[8]) for hardware or software CRC validation.
- 4. Write PPP (SENTxCON1[7]) = 1 if pause pulse is present.
- 5. Write SENTxCON2 with the value of SYNCMAXx (Nominal Sync Period + 20%).
- Write SENTxCON3 with the value of SYNCMINx (Nominal Sync Period – 20%).
- 7. Enable interrupts and set interrupt priority.
- 8. Set the SNTEN (SENTxCON1[15]) bit to enable the module.

The data should be read from the SENTxDATL/H registers after the completion of the CRC and before the next message frame's status nibble. The recommended method is to use the message frame completion interrupt trigger.

18.3 SENT Control/Status Registers

REGISTER 18-1: SENTxCON1: SENTx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
SNTEN	—	SNTSIDL	—	RCVEN	TXM ⁽¹⁾	TXPOL ⁽¹⁾	CRCEN	
bit 15				•			bit 8	
R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
PPP	SPCEN ⁽²⁾	—	PS		NIBCNT2	NIBCNT1	NIBCNT0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkı	nown	
bit 15	SNTEN: SEN	ITx Enable bit						
	1 = SENTx is							
	0 = SENTx is							
bit 14	-	ted: Read as						
bit 13		ENTx Stop in Id						
		ues module op s module opera			ers Idle mode			
bit 12	Unimplemented: Read as '0'							
bit 11	RCVEN: SEN	NTx Receive E	nable bit					
	 1 = SENTx operates as a receiver 0 = SENTx operates as a transmitter (sensor) 							
bit 10	TXM: SENTx	(M: SENTx Transmit Mode bit ⁽¹⁾						
		ansmits data fr ansmits data fr	•		ing the SYNCT> ITEN = 1	KEN status bit		
bit 9	TXPOL: SEN	ITx Transmit P	olarity bit ⁽¹⁾					
		ata output pin i ata output pin i						
bit 8	CRCEN: CR		5					
	Module in Re	ceive Mode (R	CVEN = 1):					
	1 = SENTx performs CRC verification on received data using the preferred J2716 method							
	0 = SENTx does not perform CRC verification on received data							
	Module in Transmit Mode (RCVEN = 1): 1 = SENTx automatically calculates CRC using the preferred J2716 method							
		oes not calcula		using the pren		liiluu		
bit 7	PPP: Pause	Pulse Present	bit					
					sages with paus sages without pa			
bit 6	SPCEN: Sho	rt PWM Code	Enable bit ⁽²⁾					
	1 = SPC cont	trol from exterr	al source is er	nabled				
	0 = SPC cont	trol from exterr	al source is di	sabled				
bit 5	Unimplemen	ted: Read as	0'					
Note 1: Th	is bit has no fun	iction in Receiv	e mode (RCVI	EN = 1).				
2: Th	is bit has no fun	ction in Transr	nit mode (RCV	(FN = 0)				

2: This bit has no function in Transmit mode (RCVEN = 0).

REGISTER 18-1: SENTxCON1: SENTx CONTROL REGISTER 1 (CONTINUED)

- bit 4 **PS:** SENTx Module Clock Prescaler (divider) bits 1 = Divide-by-4
 - 0 = Divide-by-1
- bit 3 Unimplemented: Read as '0'
- bit 2-0 NIBCNT[2:0]: Nibble Count Control bits
 - 111 = Reserved; do not use
 - 110 = Module transmits/receives six data nibbles in a SENT data pocket
 - 101 = Module transmits/receives five data nibbles in a SENT data pocket
 - ${\tt 100}$ = Module transmits/receives four data nibbles in a SENT data pocket
 - ${\tt 011}$ = Module transmits/receives three data nibbles in a SENT data pocket
 - ${\tt 010}$ = Module transmits/receives two data nibbles in a SENT data pocket
 - ${\tt 001}$ = Module transmits/receives one data nibble in a SENT data pocket
 - 000 = Reserved; do not use
- **Note 1:** This bit has no function in Receive mode (RCVEN = 1).
 - 2: This bit has no function in Transmit mode (RCVEN = 0).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
0-0				<u> </u>			
bit 15							bit 8
							511.0
R-0	R-0	R-0	R-0	R/C-0	R/C-0	R-0	HC/R/W-0
PAUSE	NIB2	NIB1	NIB0	CRCERR	FRMERR	RXIDLE	SYNCTXEN ⁽¹⁾
bit 7							bit 0
Legend:		C = Clearable	e bit	HC = Hardwa	are Clearable b	it	
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-8	Unimplemen	ted: Read as	ʻ0'				
bit 7	PAUSE: Paus	se Period Stat	us bit				
			ing/receiving a		icd		
bit 6-4		ble Status bits		ng a pause per	100		
DIL 0-4		insmit Mode (F					
			g a CRC nibble	Э			
			g Data Nibble				
			g Data Nibble				
			g Data Nibble				
			g Data Nibble : g Data Nibble :				
			g Data Nibble				
			-		riod, or is not t	ransmitting	
		ceive Mode (R					
					g this nibble wh		
					g this nibble wh g this nibble wh		
					g this nibble wh		
		•			g this nibble wh		
		-			g this nibble wh		
				or was receiving or waiting for S	g this nibble wh Sync	ien an error o	ccurred
bit 3		•	Receive mode	•	5yno		
Sit 0					SENTxDATL/H	4	
		ror has not oc					
bit 2	FRMERR: Fra	aming Error St	atus bit (Rece	ive mode only)			
		ble was receiv error has not o		nan 12 tick per	iods or greater	than 27 tick p	eriods
bit 1	-			Receive mode	only)		
					d of SYNCMA	K[15:0] or grea	ater
	0 = The SEN	Tx data bus is	not Idle				

REGISTER 18-2: SENTxSTAT: SENTx STATUS REGISTER

Note 1: In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

REGISTER 18-2: SENTxSTAT: SENTx STATUS REGISTER (CONTINUED)

- bit 0
- **SYNCTXEN:** SENTx Synchronization Period Status/Transmit Enable bit⁽¹⁾ Module in Receive Mode (RCVEN = 1):
 - 1 = A valid synchronization period was detected; the module is receiving nibble data

0 = No synchronization period has been detected; the module is not receiving nibble data

Module in Asynchronous Transmit Mode (RCVEN = 0, TXM = 0):

The bit always reads as '1' when the module is enabled, indicating the module transmits SENTx data frames continuously. The bit reads '0' when the module is disabled.

Module in Synchronous Transmit Mode (RCVEN = 0, TXM = 1):

1 = The module is transmitting a SENTx data frame

- 0 = The module is not transmitting a data frame, user software may set SYNCTXEN to start another data frame transmission
- Note 1: In Receive mode (RCVEN = 1), the SYNCTXEN bit is read-only.

REGISTER 18-3: SENTxDATL: SENTx RECEIVE DATA REGISTER LOW⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DATA	4[3:0]			DATA	5[3:0]	
bit 15				·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA6[3:0]				CRC	[3:0]		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	DATA4[3:0]: Data Nibble 4 Data bits
bit 11-8	DATA5[3:0]: Data Nibble 5 Data bits
bit 7-4	DATA6[3:0]: Data Nibble 6 Data bits
bit 3-0	CRC[3:0]: CRC Nibble Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC[3:0] bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

REGISTER 18-4: SENTxDATH: SENTx RECEIVE DATA REGISTER HIGH⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	STA	T[3:0]			DAT	A1[3:0]	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DAT	\2[3:0]			DAT	A3[3:0]	
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set		'0' = Bit is clear	red	x = Bit is unki	nown		

bit 15-12 **STAT[3.0].** Status Nibble Data bits

bit 11-8 **DATA1[3:0]:** Data Nibble 1 Data bits

bit 7-4 **DATA2[3:0]:** Data Nibble 2 Data bits

bit 3-0 DATA3[3:0]: Data Nibble 3 Data bits

Note 1: Register bits are read-only in Receive mode (RCVEN = 1). In Transmit mode, the CRC[3:0] bits are read-only when automatic CRC calculation is enabled (RCVEN = 0, CRCEN = 1).

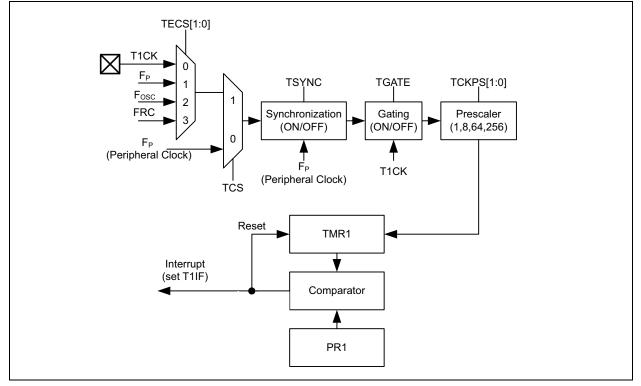
NOTES:

19.0 TIMER1

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timer1 Module" (www.microchip.com/DS70005279) in the "dsPIC33/PIC24 Family Reference Manual".

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:


- · Can be Operated in Asynchronous Counter mode
- Asynchronous Timer
- Operational during CPU Sleep mode
- Software Selectable Prescalers 1:1, 1:8, 1:64 and 1:256
- External Clock Selection Control
- The Timer1 External Clock Input (T1CK) can Optionally be Synchronized to the Internal Device Clock and the Clock Synchronization is Performed after the Prescaler

If Timer1 is used for SCCP, the timer should be running in Synchronous mode.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode
- A block diagram of Timer1 is shown in Figure 19-1.

19.1 Timer1 Control Register

REGISTER 1	9-1: T1CO	N: TIMER1 C	ONTROL RE	GISTER					
R/W-0	U-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0		
TON ⁽¹⁾		SIDL	TMWDIS	TMWIP	PRWIP	TECS1	TECS0		
bit 15							bit 8		
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0		
TGATE	—	TCKPS1	TCKPS0	_	TSYNC ⁽¹⁾	TCS ⁽¹⁾			
bit 7							bit (
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	TON: Timer1	On bit ⁽¹⁾							
	1 = Starts 16-	-bit Timer1							
	0 = Stops 16-	bit Timer1							
bit 14	Unimplemen	ted: Read as '	כ'						
bit 13	SIDL: Timer1	Stop in Idle Mo	ode bit						
	1 = Discontinues module operation when device enters Idle mode								
	0 = Continues module operation in Idle mode								
bit 12	TMWDIS: Asy	ynchronous Tin	ner1 Write Dis	able bit					
	1 = Timer wri clock dor		while a posted	d write to TMR	1 or PR1 is sync	hronized to the	asynchronou		
	0 = Back-to-l	back writes are	enabled in As	synchronous m	ode				
bit 11	TMWIP: Asynchronous Timer1 Write in Progress bit								
		he timer in Asyr he timer in Asyr			•				
bit 10	PRWIP: Asynchronous Period Write in Progress bit								
	1 = Write to the Period register in Asynchronous mode is pending								
	0 = Write to the	he Period regis	ter in Asynchr	onous mode is	complete				
bit 9-8	TECS[1:0]: ⊤	imer1 Extende	d Clock Selec	t bits					
	11 = FRC Clock								
	10 = Fosc Oscillator Clock 01 = Fp = Fosc/2 Peripheral Clock								
				nin					
bit 7	00 = External Clock comes from the T1CK pin								
	TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1:								
	This bit is ign								
	-								
	When TCS =	<u>when $ICS = 0$:</u> 1 = Gated time accumulation is enabled							
	1 = Gated tim	ne accumulatior							
	1 = Gated tim 0 = Gated tim		n is disabled						

REGISTER 19-1: T1CON: TIMER1 CONTROL REGISTER

Note 1: When Timer1 is enabled in External Synchronous Counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register are ignored.

REGISTER 19-1: T1CON: TIMER1 CONTROL REGISTER (CONTINUED)

bit 5-4	TCKPS[1:0]: Timer1 Input Clock Prescale Select bits 11 = 1:256
	10 = 1:64
	01 = 1:8
	00 = 1:1
bit 3	Unimplemented: Read as '0'
bit 2	TSYNC: Timer1 External Clock Input Synchronization Select bit ⁽¹⁾
	When TCS = 1:
	1 = Synchronizes the External Clock input
	0 = Does not synchronize the External Clock input
	When TCS = 0:
	This bit is ignored.
bit 1	TCS: Timer1 Clock Source Select bit ⁽¹⁾
	1 = External Clock source selected by TECS[1:0]
	0 = Internal peripheral clock (FP)
bit 0	Unimplemented: Read as '0'

Note 1: When Timer1 is enabled in External Synchronous Counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register are ignored.

NOTES:

20.0 CAPTURE/COMPARE/PWM/ TIMER MODULES (SCCP/MCCP)

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. For more information on the MCCP/SCCP modules, refer to "Capture/Compare/ PWM/Timer (MCCP and SCCP)" (www.microchip.com/DS30003035) in the "dsPIC33/PIC24 Family Reference Manual".

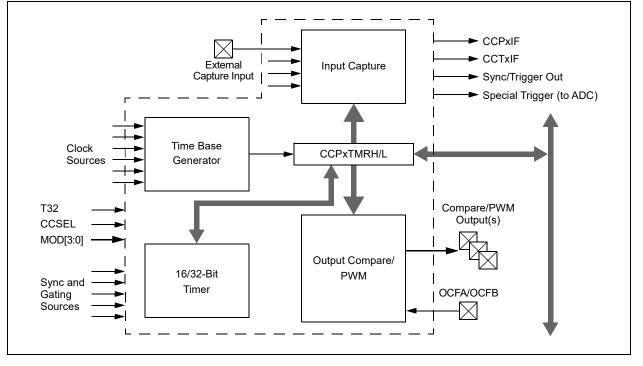
dsPIC33CK64MP105 family devices include four SCCP and one MCCP Capture/Compare/PWM/Timer base modules, which provide the functionality of three different peripherals from earlier PIC24F devices. The module can operate in one of three major modes:

- · General Purpose Timer
- Input Capture
- Output Compare/PWM

The module is provided in two different forms, distinguished by the number of PWM outputs that the module can generate. Single Capture/Compare/PWM (SCCP) output modules provide only one PWM output.

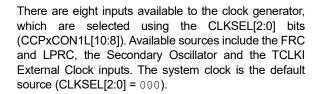
Multiple Capture/Compare/PWM (MCCP) output modules can provide up to six outputs and an extended range of power control features, depending on the pin count of the particular device. All other features of the modules are identical. The SCCPx and MCCPx modules can be operated in only one of the three major modes at any time. The other modes are not available unless the module is reconfigured for the new mode.

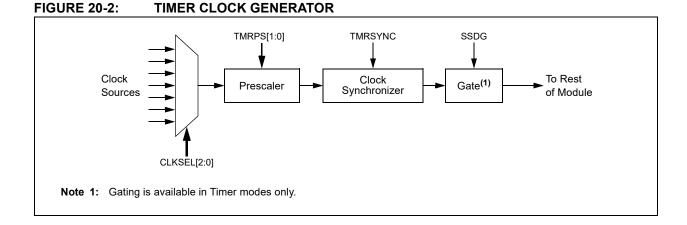
A conceptual block diagram for the module is shown in Figure 20-1. All three modes share a time base generator and a common Timer register pair (CCPxTMRH/L); other shared hardware components are added as a particular mode requires.


Each module has a total of six control and status registers:

- CCPxCON1L (Register 20-1)
- CCPxCON1H (Register 20-2)
- CCPxCON2L (Register 20-3)
- CCPxCON2H (Register 20-4)
- CCPxCON3H (Register 20-6)
- CCPxSTATL (Register 20-7)

Each module also includes eight buffer/counter registers that serve as Timer Value registers or data holding buffers:


- CCPxTMRH/CCPxTMRL (CCPx Timer High/Low Counters)
- CCPxPRH/CCPxPRL (CCPx Timer Period High/Low)
- CCPxRA (CCPx Primary Output Compare Data Buffer)
- CCPxRB (CCPx Secondary Output Compare Data Buffer)
- CCPxBUFH/CCPxBUFL (CCPx Input Capture High/Low Buffers)


FIGURE 20-1: SCCPx CONCEPTUAL BLOCK DIAGRAM

20.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base, using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 20-2.

20.2 General Purpose Timer

Timer mode is selected when CCSEL = 0 and MOD[3:0] = 0000. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 20-1).

T32 (CCPxCON1L[5])	Operating Mode
0	Dual Timer Mode (16-bit)
1	Timer Mode (32-bit)

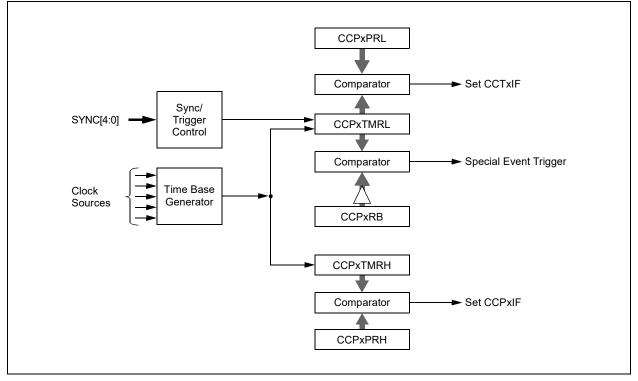
TABLE 20-1: TIMER OPERATION MODE

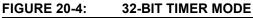
Dual 16-Bit Timer mode provides a simple timer function with two independent 16-bit timer/counters. The primary timer uses CCPxTMRL and CCPxPRL. Only the primary timer can interact with other modules on the device. It generates the SCCPx sync out signals for use by other SCCP modules. It can also use the SYNC[4:0] bits signal generated by other modules.

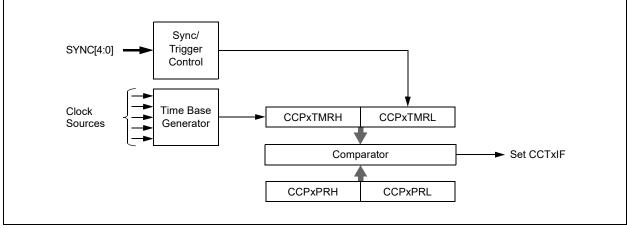
The secondary timer uses CCPxTMRH and CCPxPRH. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an output sync/trigger signal like the primary time base. In Dual Timer mode, the CCPx Secondary Timer Period register, CCPxPRH, generates the SCCP compare event (CCPxIF) used by many other modules on the device.

The 32-Bit Timer mode uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments by one. This mode provides a simple timer function when it is important to track long time periods. Note that the T32 bit (CCPxCON1L[5]) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

20.2.1 SYNC AND TRIGGER OPERATION

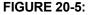

In both 16-bit and 32-bit modes, the timer can also function in either synchronization ("sync") or trigger operation. Both use the SYNC[4:0] bits (CCPxCON1H[4:0]) to determine the input signal source. The difference is how that signal affects the timer.


In sync operation, the timer Reset or clear occurs when the input selected by SYNC[4:0] is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H[7]) is cleared. SYNC[4:0] can have any value, except '11111'.


In trigger operation, the timer is held in Reset until the input selected by SYNC[4:0] is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a trigger event as long as the CCPTRIG bit (CCPxSTATL[7]) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL[5]) must be set to clear the trigger event, reset the timer and hold it at zero until another trigger event occurs. On dsPIC33CK64MP105 family devices, trigger operation can only be used when the system clock is the time base source (CLKSEL[2:0] = 000).

dsPIC33CK64MP105 FAMILY

FIGURE 20-3: DUAL 16-BIT TIMER MODE


20.3 Output Compare Mode

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module, on compare match events, has the ability to generate a single output transition or a train of output pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

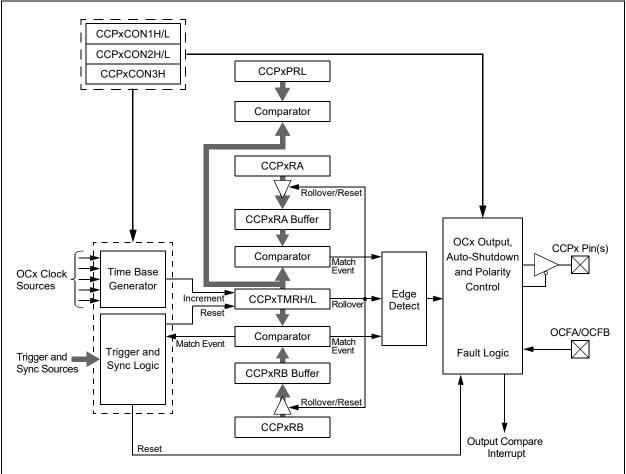
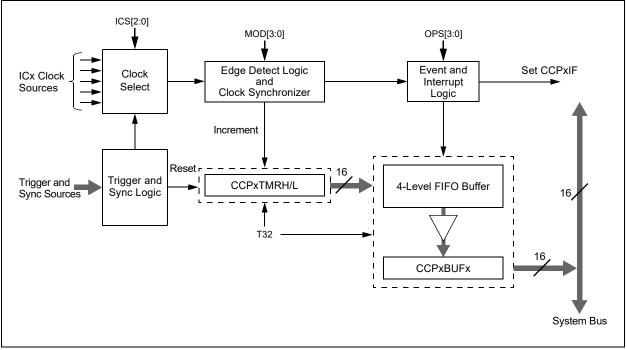

Table 20-2shows the various modes available inOutput Compare modes.

TABLE 20-2:	OUTPUT COMPARE x/PWMx MODES
--------------------	-----------------------------

MOD[3:0] (CCPxCON1L[3:0])	T32 (CCPxCON1L[5])	Operating Mode	
0001	0	Output High on Compare (16-bit)	
0001	1	Output High on Compare (32-bit)	
0010	0	Output Low on Compare (16-bit)	Single Edge Mede
0010	1	Output Low on Compare (32-bit)	Single Edge Mode
0011	0	Output Toggle on Compare (16-bit)	
0011	1	Output Toggle on Compare (32-bit)	
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode

OUTPUT COMPARE x BLOCK DIAGRAM

20.4 Input Capture Mode


Input Capture mode is used to capture a timer value from an independent timer base, upon an event, on an input pin or other internal trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 20-6 depicts a simplified block diagram of Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L register.

To use Input Capture mode, the CCSEL bit (CCPxCON1L[4]) must be set. The T32 and the MOD[3:0] bits are used to select the proper Capture mode, as shown in Table 20-3.

MOD[3:0] (CCPxCON1L[3:0])	T32 (CCPxCON1L[5])	Operating Mode
0000	0	Edge Detect (16-bit capture)
0000	1	Edge Detect (32-bit capture)
0001	0	Every Rising (16-bit capture)
0001	1	Every Rising (32-bit capture)
0010	0	Every Falling (16-bit capture)
0010	1	Every Falling (32-bit capture)
0011	0	Every Rising/Falling (16-bit capture)
0011	1	Every Rising/Falling (32-bit capture)
0100	0	Every 4th Rising (16-bit capture)
0100	1	Every 4th Rising (32-bit capture)
0101	0	Every 16th Rising (16-bit capture)
0101	1	Every 16th Rising (32-bit capture)

TABLE 20-3: INPUT CAPTURE x MODES

operating mode.

The type of output signal is selected using the AUXOUT[1:0] control bits (CCPxCON2H[4:3]). The

type of output signal is also dependent on the module

20.5 Auxiliary Output

The SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other SCCP modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

AUXOUT[1:0]	CCSEL	MOD[3:0]	Comments	Signal Description			
00	х	XXXX	Auxiliary output disabled	No Output			
01	0	0000 Time Base modes		Time Base Period Reset or Rollover			
10				Special Event Trigger Output			
11				No Output			
01	0	0001	Output Compare modes	Time Base Period Reset or Rollover			
10		through		Output Compare Event Signal			
11		1111		Output Compare Signal			
01	1	XXXX	Input Capture modes	Time Base Period Reset or Rollover			
10				Reflects the Value of the ICDIS bit			
11				Input Capture Event Signal			

TABLE 20-4: AUXILIARY OUTPUT

20.6 SCCP/MCCP Control/Status Registers

REGISTER 20-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CCPON	—	CCPSIDL	CCPSLP	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0		
bit 7							bit (
Legend:									
∟egenu. R = Readabl	e hit	W = Writable	hit	II – Unimplem	nented bit, read	1 25 '0'			
-n = Value at		'1' = Bit is set	UIL	$0^{\circ} = \text{Bit is clear}$		x = Bit is unkr			
	FUR	I – DILIS SEL			areu	X – DILIS ULIKI	IOWII		
bit 15	CCPON: CC	Px Module Enal	ole bit						
				node specified b	v the MOD[3:0)] control bits			
	 1 = Module is enabled with an operating mode specified by the MOD[3:0] control bits 0 = Module is disabled 								
bit 14	Unimplemer	nted: Read as ')'						
bit 13	CCPSIDL: C	CPx Stop in Idle	e Mode Bit						
	1 = Discontinues module operation when device enters Idle mode								
	0 = Continues module operation in Idle mode								
bit 12	CCPSLP: CCPx Sleep Mode Enable bit								
	1 = Module continues to operate in Sleep modes								
	0 = Module does not operate in Sleep modes								
bit 11	TMRSYNC: Time Base Clock Synchronization bit								
	 1 = Asynchronous module time base clock is selected and synchronized to the internal system clocks (CLKSEL[2:0] ≠ 000) 								
	0 = Synchronous module time base clock is selected and does not require synchronization								
	•	L[2:0] = 000)					,		
bit 10-8	CLKSEL[2:0]: CCPx Time B	ase Clock Sel	ect bits					
	111 = PPS TxCK input								
	110 = CLC4								
	101 = CLC3 100 = CLC2								
	011 = CLC1								
	010 = Reserved								
	001 = Reference Clock (REFCLKO) 000 = Peripheral Clock (FP = Fosc/2)								
bit 7-6	-	: Time Base Pre		ite					
DIL 7-0			scale Select b	115					
	11 = 1:64 Prescaler 10 = 1:16 Prescaler								
	01 = 1:4 Prescaler								
	00 = 1:1 Pres	scaler							
bit 5		ïme Base Selec							
	 1 = Uses 32-bit time base for timer, single edge output compare or input capture function 0 = Uses 16-bit time base for timer, single edge output compare or input capture function 								
			,	5					
bit 4	CCSEL: Can	ture/Compare M	lode Select hi	t					
bit 4	•	oture/Compare N pture periphera		t					

REGISTER 20-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

bit 3-0 MOD[3:0]: CCPx Mode Select bits

For CCSEL = 1 (Input Capture modes):

- 1xxx = Reserved
- 011x = Reserved
- 0101 = Capture every 16th rising edge
- 0100 = Capture every 4th rising edge
- 0011 = Capture every rising and falling edge
- 0010 = Capture every falling edge
- 0001 = Capture every rising edge
- 0000 = Capture every rising and falling edge (Edge Detect mode)

For CCSEL = 0 (Output Compare/Timer modes):

- 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS[2:0]
- 1110 = Reserved
- 110x = Reserved
- 10xx = Reserved
- 0111 = Reserved
- 0110 = Reserved
- 0101 = Dual Edge Compare mode, buffered
- 0100 = Dual Edge Compare mode
- 0011 = 16-Bit/32-Bit Single Edge mode, toggles output on compare match
- 0010 = 16-Bit/32-Bit Single Edge mode, drives output low on compare match
- 0001 = 16-Bit/32-Bit Single Edge mode, drives output high on compare match
- 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
OPSSRC ⁽¹⁾	RTRGEN ⁽²⁾		_	OPS3 ⁽³⁾	OPS2 ⁽³⁾	OPS1 ⁽³⁾	OPS0 ⁽³⁾		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0		
bit 7							bit 0		
Legend:									
R = Readable		W = Writable I	oit		nented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown		
		_		(1)					
bit 15		Itput Postscaler							
		ostscaler scales ostscaler scales			S				
bit 14				enupt events					
DICIT	RTRGEN: Retrigger Enable bit ⁽²⁾ 1 = Time base can be retriggered when TRIGEN bit = 1								
	0 = Time base may not be retriggered when TRIGEN bit = 1								
bit 13-12	Unimplemen	ted: Read as ')'						
bit 11-8	OPS3[3:0]: CCPx Interrupt Output Postscale Select bits ⁽³⁾								
	1111 = Interrupt every 16th time base period match								
	1110 = Interrupt every 15th time base period match								
	0100 = Intern	upt every 5th tir	ne base perio	d match					
	0100 = Interrupt every 5th time base period match 0011 = Interrupt every 4th time base period match or 4th input capture event								
	0010 = Interrupt every 3rd time base period match or 3rd input capture event								
	0001 = Interrupt every 2nd time base period match or 2nd input capture event 0000 = Interrupt after each time base period match or input capture event								
bit 7		Px Trigger Enat				it in			
Sit 1		peration of time		ed					
	0 = Trigger operation of time base is disabled								
bit 6	ONESHOT: One-Shot Trigger Mode Enable bit								
	1 = One-Shot Trigger mode is enabled; trigger duration is set by OSCNT[2:0]								
		t Trigger mode							
bit 5	ALTSYNC: CCPx Alternate Synchronization Output Signal Select bit 1 = An alternate signal is used as the module synchronization output signal								
		ate signal is us ule synchroniza							
bit 4-0	SYNC[4:0]: C	CPx Synchron	ization Source	e Select bits					
	See Table 20-	-5 for the definit	ion of inputs.						
Note 1: Th	is control bit ha	as no function ir	Input Capture	e modes.					
		as no function w							

REGISTER 20-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

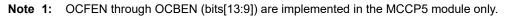
 3: Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

SYNC[4:0]	Synchronization Source	
00000	None; Timer with Rollover on CCPxPR Match or FFFFh	
00001	Sync Output SCCP1	
00010	Sync Output SCCP2	
00011	Sync Output SCCP3	
00100	Sync Output SCCP4	
00101-01000	Reserved	
01001	INTO	
01010	INT1	
01011	INT2	
01100	UART1 RX Edge Detect	
01101	UART1 TX Edge Detect	
01110	UART2 RX Edge Detect	
01111	UART2 TX Edge Detect	
10000	CLC1 Output	
10001	CLC2 Output	
10010	CLC3 Output	
10011	CLC4 Output	
10100	UART3 RX Edge Detect	
10101	UART3 TX Edge Detect	
10110	Sync Output MCCP5	
10111	Comparator 1 Output	
11000	Comparator 2 Output	
11001	Comparator 3 Output	
11010-11110	Reserved	
11111	None; Timer with Auto-Rollover (FFFFh \rightarrow 0000h)	

TABLE 20-5: SYNCHRONIZATION SOURCES

	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
PWMRSEN	I ASDGM	_	SSDG	_			_
bit 15							bit 8
R/W-0	DAMO	DAMA	DAMO	R/W-0	DAMO	DAMA	
R/W-U	R/W-0	R/W-0	R/W-0	G[7:0]	R/W-0	R/W-0	R/W-0
bit 7			AGD	6[7.0]			bit (
							Ditte
Legend:							
R = Readab	le bit	W = Writable t	oit	U = Unimplem	ented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own
bit 15	PWMRSEN: (CCPx PWM Re	start Enable b	it			
			atically at the l	peginning of the	next PWM pe	riod, after the s	hutdown inpu
	has ende		od in coftward	e to resume PWI	M activity on a	utput pipe	
bit 14		Px Auto-Shutdo			vi activity on o	utput pins	
DIL 14				or rollover for shi	utdown to occi	ır	
		n event occurs i					
	Unimplemented: Read as '0'						
bit 13	Unimplement	SSDG: CCPx Software Shutdown/Gate Control bit					
bit 13 bit 12	•			ontrol bit			
	SSDG: CCPx 1 = Manually	Software Shute forces auto-sh	down/Gate Co	ontrol bit ^r clock gate or i	input capture	signal gate eve	ent (setting o
	SSDG: CCPx 1 = Manually ASDGM I	Software Shute forces auto-sh bit still applies)	down/Gate Co utdown, timei		input capture	signal gate eve	ent (setting o
bit 12	SSDG: CCPx 1 = Manually ASDGM I 0 = Normal m	Software Shute forces auto-sh bit still applies) nodule operation	down/Gate Co utdown, timei n		input capture	signal gate eve	ent (setting c
bit 12	SSDG: CCPx 1 = Manually ASDGM B 0 = Normal m Unimplement	Software Shute forces auto-sh bit still applies) nodule operation ted: Read as '0	down/Gate Cc utdown, timer n	r clock gate or i		signal gate eve	ent (setting c
bit 12	SSDG: CCPx 1 = Manually ASDGM B 0 = Normal m Unimplement ASDG[7:0]: C	Software Shute forces auto-sh bit still applies) hodule operation ted: Read as '0 CCPx Auto-Shute	down/Gate Co utdown, timer n ,		bits		ent (setting c

REGISTER 20-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS


TABLE 20-6: AUTO-SHUTDOWN AND GATING SOURCES

		Auto-	Shutdown/Gating S	ource	
ASDG[x] Bit	SCCP1	SCCP2	SCCP3	SCCP4	MCCP5
0		(Comparator 1 Output	t	
1			Comparator 2 Output	t	
2			OCFC		
3			OCFD		
4	ICM1 ⁽¹⁾	ICM2 ⁽¹⁾	ICM3 ⁽¹⁾	ICM4 ⁽¹⁾	ICM5 ⁽¹⁾
5			CLC1 ⁽¹⁾		
6			OCFA ⁽¹⁾		
7			OCFB ⁽¹⁾		

Note 1: Selected by Peripheral Pin Select (PPS).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OENSYNC	—	OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN
bit 15							bit
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	D/M/ O
	1	0-0		1			R/W-0
ICGSM1 bit 7	ICGSM0		AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0 bit
							DIL
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	1 = Update b 0 = Update b	y output enable	e bits occurs or e bits occurs in	n the next Time	Base Reset o	r rollover	
bit 14	•	ted: Read as '					
bit 13-8	1 = OCMx pir 0 = OCMx pir		by the CCPx m led by the CCI	odule and prod		t compare or P le to the port lo	
bit 7-6	<pre>ICGSM[1:0]: Input Capture Gating Source Mode Control bits 11 = Reserved 10 = One-Shot mode: Falling edge from gating source disables future capture events (ICDIS = 1) 01 = One-Shot mode: Rising edge from gating source enables future capture events (ICDIS = 0) 00 = Level-Sensitive mode: A high level from gating source will enable future capture events; a level will disable future capture events</pre>						DIS = 0)
bit 5	Unimplemen	ted: Read as ')'				
bit 4-3	AUXOUT[1:0]	: Auxiliary Out	put Signal on E	Event Selection	bits		
	10 = Signal o	utput is defined se rollover eve	l by module op	t; no signal in T erating mode ()	
bit 2-0	111 = CLC4 c 110 = CLC3 c 101 = CLC2 c 100 = CLC1 c 011 = Compa 010 = Compa 001 = Compa	output output					

REGISTER 20-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

REGISTER 20-5: CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—		—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			DT[[5:0]		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	

'0' = Bit is cleared

bit 15-6 Unimplemented: Read as '0'

-n = Value at POR

bit 5-0 DT[5:0]: CCPx Dead-Time Select bits
111111 = Inserts 63 dead-time delay periods between complementary output signals
111110 = Inserts 62 dead-time delay periods between complementary output signals
...
000010 = Inserts 2 dead-time delay periods between complementary output signals
000001 = Inserts 1 dead-time delay period between complementary output signals
000000 = Dead-time logic is disabled

Note 1: This register is implemented in the MCCP9 module only.

'1' = Bit is set

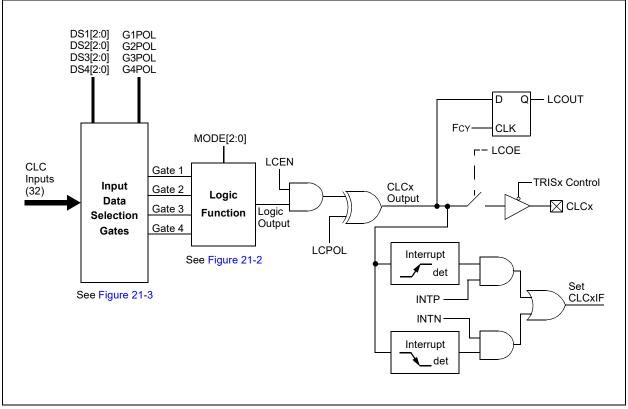
x = Bit is unknown

OETRIG	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
UEIRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾			
bit 15					•		bit			
			5444.0	5444.6	5444.6	5444.0				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0 ⁽¹			
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown			
bit 15	OETRIG: CC	Px Dead-Time	Select bit							
	1 = For Triggered mode (TRIGEN = 1): Module does not drive enabled output pins until triggered 0 = Normal output pin operation									
bit 14-12		One-Shot Eve								
DIL 14-12				ne hase neriod	e (eight time ba	ase periods tota	al)			
							<i>a)</i>			
	 110 = Extends one-shot event by six time base periods (seven time base periods total) 101 = Extends one-shot event by five time base periods (six time base periods total) 									
	100 = Extends one-shot event by four time base periods (five time base periods total)									
	 011 = Extends one-shot event by three time base periods (four time base periods total) 010 = Extends one-shot event by two time base periods (three time base periods total) 									
	010 = Extends one-shot event by two time base periods (three time base periods total) 001 = Extends one-shot event by one time base period (two time base periods total)									
			shot Trigger ev							
bit 11		ted: Read as '								
bit 10-8	OUTM[2:0]: F	PWMx Output N	Mode Control bi	its ⁽¹⁾						
	OUTM[2:0]: PWMx Output Mode Control bits ⁽¹⁾ 111 = Reserved									
	110 = Output Scan mode									
		DC Output mod								
	100 = Brush DC Output mode, reverse									
	011 = Reserved 010 = Half-Bridge Output mode									
	010 = Half-Br		ode							
	001 = Push-F	idge Output m	le							
bit 7-6	001 = Push-F 000 = Steera l	idge Output mo Pull Output moo	le out mode							
bit 7-6 bit 5	001 = Push-F 000 = Steeral Unimplemen	idge Output mo Pull Output moo ble Single Outp ted: Read as '	le out mode	MxC and OCM	xE, Polarity Co	ontrol bit				
	001 = Push-F 000 = Steeral Unimplemen POLACE: CC 1 = Output pi	idge Output mo Pull Output moo ble Single Outp ted: Read as ' Px Output Pin n polarity is ac	te out mode o' s, OCMxA, OC tive-low	MxC and OCM	xE, Polarity Co	ontrol bit				
bit 5	001 = Push-F 000 = Steeral Unimplemen POLACE: CC 1 = Output pi 0 = Output pi	idge Output mo Pull Output mo ble Single Outp ted: Read as ' CPx Output Pin n polarity is ac n polarity is ac	te out mode o' s, OCMxA, OC tive-low tive-high		-					
bit 5	001 = Push-F 000 = Steeral Unimplemen POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC	idge Output mo Pull Output mo ble Single Outp ted: Read as ' CPx Output Pin n polarity is ac n polarity is ac :Px Output Pin	de out mode o' s, OCMxA, OC tive-low tive-high s, OCMxB, OCI		-					
bit 5	001 = Push-F 000 = Steeral Unimplemen POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC 1 = Output pi	idge Output mo Pull Output mo ble Single Outp ted: Read as ' CPx Output Pin n polarity is ac n polarity is ac	te out mode o' s, OCMxA, OC tive-low tive-low s, OCMxB, OCI tive-low		-					
bit 5 bit 4	001 = Push-F 000 = Steeral Unimplemen POLACE: CC 1 = Output pi 0 = Output pi 0 = Output pi 0 = Output pi 0 = Output pi	idge Output mo Pull Output mo ble Single Outp ted: Read as ' Px Output Pin n polarity is ac n polarity is ac n polarity is ac n polarity is ac	te out mode o' s, OCMxA, OC tive-low tive-low tive-low tive-low	MxD and OCM	xF, Polarity Co		ntrol bits			
	001 = Push-F 000 = Steeral Unimplemen POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC 1 = Output pi 0 = Output pi 9SSACE[1:0]	idge Output mo Pull Output mo ble Single Outp ted: Read as ' Px Output Pin n polarity is ac n polarity is ac n polarity is ac n polarity is ac n polarity is ac	te out mode o' s, OCMxA, OC tive-low tive-low tive-low tive-low	MxD and OCM A, OCMxC and	xF, Polarity Co OCMxE, Shute	ntrol bit ⁽¹⁾	ntrol bits			
bit 5 bit 4	001 = Push-F 000 = Steeral Unimplemen POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC 1 = Output pi 0 = Output pi 0 = Output pi 0 = Output pi 11 = Pins are 10 = Pins are	idge Output mo Pull Output mod ble Single Outp ted: Read as ' CPx Output Pin n polarity is ac n polarity is ac n polarity is ac n polarity is ac n polarity is ac polarity is ac n polarity is ac n polarity is ac driven active to driven inactive	te but mode 0' s, OCMxA, OC tive-low tive-high s, OCMxB, OCI tive-low tive-low tive-high ut Pins, OCMxA when a shutdow when a shutdow	MxD and OCM A, OCMxC and vn event occurs own event occu	xF, Polarity Co OCMxE, Shuto	ntrol bit ⁽¹⁾	ntrol bits			
bit 5 bit 4 bit 3-2	001 = Push-F 000 = Steeral Unimplemen POLACE: CC 1 = Output pi 0 = Output pi POLBDF: CC 1 = Output pi 0 = Pins are 10 = Pins are 0x = Pins are	idge Output mo bele Single Output ted: Read as ' CPx Output Pin n polarity is ac n polarity is ac Px Output Pin n polarity is ac n polarity is ac polarity is ac l: PWMx Output driven active tri-stated when	de but mode o' s, OCMxA, OC tive-low tive-high s, OCMxB, OCI tive-low tive-low tive-high ut Pins, OCMxA vhen a shutdow e when a shutdown e	MxD and OCM A, OCMxC and vn event occurs own event occurs vent occurs	xF, Polarity Co OCMxE, Shuto s ırs	ntrol bit ⁽¹⁾ down State Cor				
bit 5 bit 4	001 = Push-F 000 = Steeral Unimplemen POLACE: CC 1 = Output pi 0 = Output pi 0 = Output pi 0 = Output pi 0 = Output pi PSSACE[1:0] 11 = Pins are 0 x = Pins are PSSBDF[1:0]	idge Output mo bele Single Output ted: Read as ' CPx Output Pin n polarity is ac n polarity is ac n polarity is ac n polarity is ac polarity is ac i: PWMx Output driven active tri-stated when : PWMx Output	te but mode o' s, OCMxA, OC tive-low tive-high s, OCMxB, OCI tive-low tive-high ut Pins, OCMxA when a shutdow e when a shutdow a shutdown e ut Pins, OCMxE	MxD and OCM A, OCMxC and vn event occurs own event occurs a, OCMxD, and	xF, Polarity Co OCMxE, Shuto S Irs OCMxF, Shuto	ntrol bit ⁽¹⁾				
bit 5 bit 4 bit 3-2	001 = Push-F 000 = Steeral Unimplemen POLACE: CC 1 = Output pi 0 = Output pi 11 = Pins are 0x = Pins are PSSBDF[1:0] 11 = Pins are	idge Output mo bele Single Output ted: Read as ' CPx Output Pin n polarity is ac n polarity is ac n polarity is ac n polarity is ac i PWMx Output driven active tri-stated when : PWMx Output driven active	de but mode o' s, OCMxA, OC tive-low tive-high s, OCMxB, OCI tive-low tive-low tive-high ut Pins, OCMxA vhen a shutdow e when a shutdown e	MxD and OCM A, OCMxC and vn event occurs own event occurs a, OCMxD, and vn event occurs	xF, Polarity Co OCMxE, Shuto Irs OCMxF, Shuto	ntrol bit ⁽¹⁾ down State Cor				

REGISTER 20-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

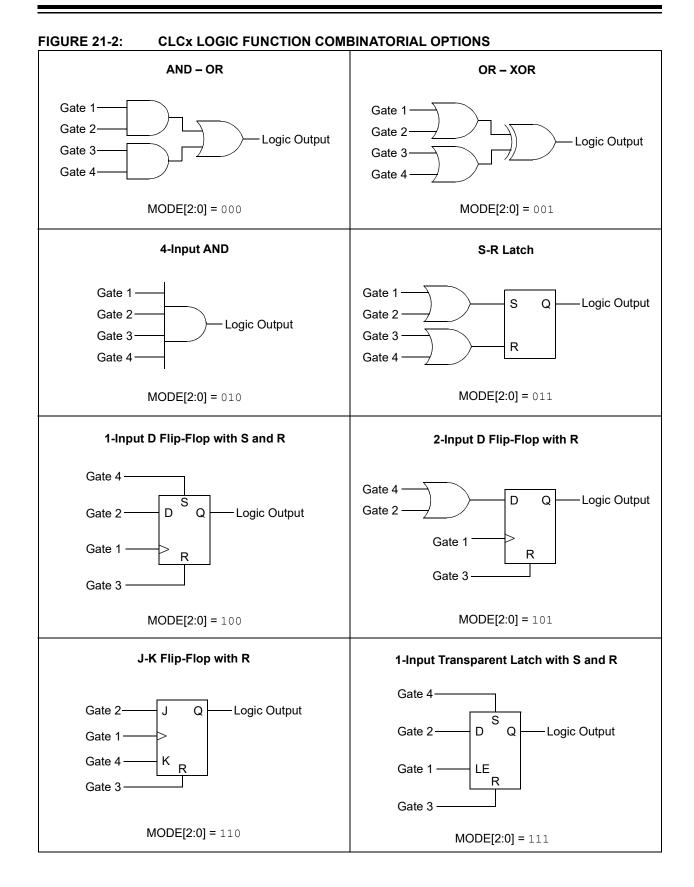
Note 1: These bits are implemented in the MCCP9 module only.

U-0	U-0	U-0	U-0	U-0	W1-0	U-0	U-0			
_	—	_	—	—	ICGARM		_			
bit 15							bit			
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0			
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE			
bit 7			/				bit			
Legend:		C = Clearable								
R = Readabl		W1 = Write '1	' Only bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-11	Unimplemen	ted: Read as '	o '							
bit 10	-	out Capture Gat								
	A write of '1'	to this location	n will arm the	input capture g	ating logic for	a one-shot ga	te event whe			
		• 01 or 10. Bit a ted: Read as '(-	IS U.						
bit 9-8	•									
bit 7		CPx Trigger Sta s been triggere		ng						
	0 = Timer ha	s not been trigg	gered and is h	eld in Reset						
bit 6		x Trigger Set R								
				r when TRIGEN	N = 1 (location	always reads a	s '0').			
bit 5		Px Trigger Clear	•	r trigger when		action always	raada aa (∩')			
L:1 1				er trigger when ⁻	I RIGEN - 1 (IC)	cation always i	eaus as 0).			
bit 4		ASEVT: CCPx Auto-Shutdown Event Status/Control bit 1 = A shutdown event is in progress; CCPx outputs are in the shutdown state								
		tputs operate n				51010				
bit 3	SCEVT: Singl	le Edge Compa	are Event State	us bit						
		edge compare								
	-	edge compare		occurred						
bit 2		Capture x Disal		a not concrete	a contura avai	.+				
				es not generate erate a capture e		IL				
bit 1		Capture x Buffe								
	•	t Capture x FIF								
	0 = The Inpu	t Capture x FIF	O buffer has r	not overflowed						
bit 0	-	Capture x Buff								
		pture x buffer h		ble						
	0 – input Cap	pture x buffer is	empty							


REGISTER 20-7: CCPxSTATL: CCPx STATUS REGISTER

21.0 CONFIGURABLE LOGIC CELL (CLC)

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "Configurable Logic Cell (CLC)" (www.microchip.com/DS70005298) in the "dsPIC33/PIC24 Family Reference Manual". The information in this data sheet supersedes the information in the FRM. The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flexibility and potential in embedded designs, since the CLC module can operate outside the limitations of software execution, and supports a vast amount of output designs.


There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 21-1 shows an overview of the module.

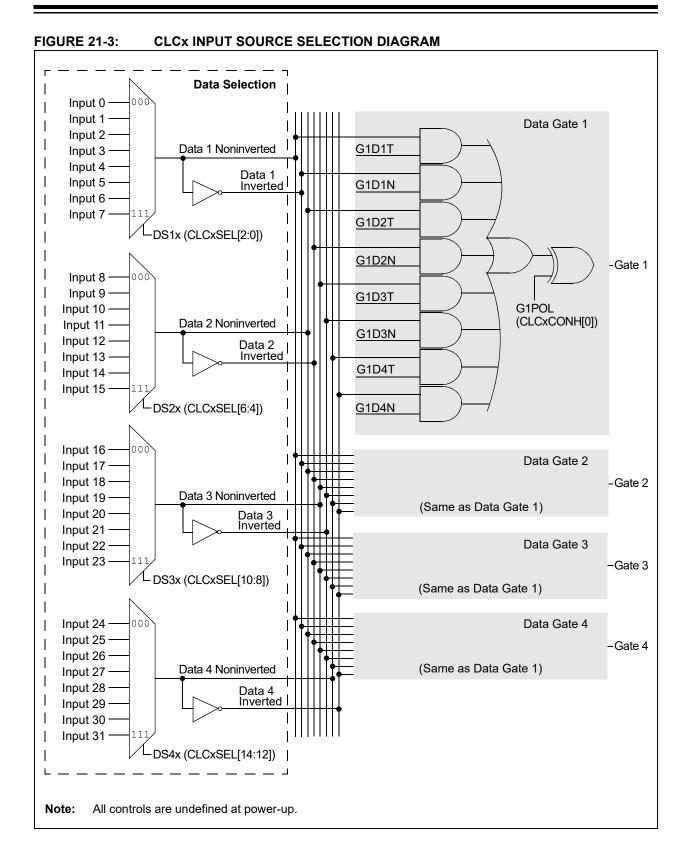

Figure 21-3 shows the details of the data source multiplexers and Figure 21-2 shows the logic input gate connections.

FIGURE 21-1: CLCx MODULE

dsPIC33CK64MP105 FAMILY

21.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Input MUX Select register (CLCxSEL) allows the user to select up to four data input sources using the four data input selection multiplexers. Each multiplexer has a list of eight data sources available.

The CLCx Gate Logic Input Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these eight signals are enabled, ORed together by the logic cell input gates. If no inputs are selected (CLCxGLS = 0x00), the output will be zero or one, depending on the GxPOL bits.

REGISTER 21-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0			
LCEN	—	—	_	INTP	INTN	—	_			
bit 15							bit 8			
R-0	R-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
LCOE	-	LCPOL	0-0	0-0	MODE2	MODE1	MODE0			
bit 7	LCOUT	LCPUL	_	—	MODEZ	WODET	bit 0			
Legend:										
R = Readab	= Readable bit W = Writable bit		U = Unimplen	nented bit, read	l as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 15	LCEN: CLCx									
		enabled and mix disabled and ha	0 1 0							
bit 14-12		ted: Read as '0	•	Julputs						
bit 11	-	Positive Edge In		le bit						
		 Interrupt will be generated when a rising edge occurs on LCOUT 								
	0 = Interrupt	will not be gene	rated							
bit 10		INTN: CLCx Negative Edge Interrupt Enable bit								
	 I = Interrupt will be generated when a falling edge occurs on LCOUT Interrupt will not be generated 									
bit 9-8	-	ted: Read as '0								
bit 7	•	Port Enable bit								
	1 = CLCx port pin output is enabled									
	1 = CLCx por									
-			nabled							
	0 = CLCx por LCOUT: CLC	t pin output is e t pin output is d x Data Output S	nabled sabled							
	0 = CLCx por LCOUT: CLC 1 = CLCx out	t pin output is e t pin output is d x Data Output S put high	nabled sabled							
bit 6	0 = CLCx por LCOUT: CLC 1 = CLCx out 0 = CLCx out	t pin output is e t pin output is d x Data Output S put high put low	nabled sabled status bit							
bit 6	0 = CLCx por LCOUT: CLC 1 = CLCx out 0 = CLCx out LCPOL: CLC	t pin output is e t pin output is d x Data Output S put high put low x Output Polarit	nabled sabled itatus bit y Control bit							
bit 6 bit 5	0 = CLCx por LCOUT: CLC 1 = CLCx out 0 = CLCx out LCPOL: CLC 1 = The outp	t pin output is e t pin output is d x Data Output S put high put low	nabled sabled status bit y Control bit s is inverted	ed						

REGISTER 21-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

- bit 2-0 **MODE[2:0]:** CLCx Mode bits
 - 111 = Single input transparent latch with S and R
 - 110 = JK flip-flop with R
 - 101 = Two-input D flip-flop with R
 - 100 = Single input D flip-flop with S and R
 - 011 = SR latch
 - 010 = Four-input AND
 - 001 = Four-input OR-XOR
 - 000 = Four-input AND-OR

REGISTER 21-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7							bit 0

l edend.

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	1 = Channel 4 logic output is inverted when applied to the logic cell0 = Channel 4 logic output is not inverted
bit 2	G3POL: Gate 3 Polarity Control bit
	1 = Channel 3 logic output is inverted when applied to the logic cell0 = Channel 3 logic output is not inverted
bit 1	G2POL: Gate 2 Polarity Control bit
	1 = Channel 2 logic output is inverted when applied to the logic cell0 = Channel 2 logic output is not inverted
bit 0	G1POL: Gate 1 Polarity Control bit
	1 = Channel 1 logic output is inverted when applied to the logic cell0 = Channel 1 logic output is not inverted

U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 - DS2[2:0] - DS1[2:0] bit Legend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' BS4[2:0]: Data Selection MUX 4 Signal Selection bits 111 = SCCP3 auxiliary out 101 = CLCIND pin 100 = Reserved 011 = SPI1 Input (SDIx) ⁽¹⁾ 010 = Comparator 3 output 001 = CLC2 output 000 = PWM Event A Dit 10 = SCCP3 compare Event Flag (CCP4IF) 110 = SCCP4 compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART 1RX output corresponding to CLCx module 011 = SPI1 Output (SDOx) corresponding to CLCx module 011 = SCP1 output 000 = CLCING I/O pin 010 = CLC1 output 010 = CLC3 output 010 = CLC3 output 000 = CLCING I/O pin 011 = SCCP1 OC (CCP1F) out 110 = SCCP1 OC (CCP1F) out 101 = SCCP2 (CC (CCP1F) out 110 = SCCP1 OC (CCP1F) out 110 = SCCP1 OC (CCP1F) out 110 = SCCP1 OC (CCP1F) out 101 = Reserved 100 = Comparator 1 output 010 = Comparator 1 output 010 = CLCING I/O pin	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
U-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 - DS2[2:0] - DS1[2:0] bit Legend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' BS4[2:0]: Data Selection MUX 4 Signal Selection bits 111 = SCCP3 auxiliary out 101 = SCCP1 auxiliary out 101 = CLCIND pin 100 = CCep2 output 000 = PWM Event A bit 11 Unimplemented: Read as '0' 001 = SPI1 Input (SDIx) ⁽¹⁾ 010 = Comparator 3 output 001 = CLC2 output 000 = PWM Event A 001 = SCP3 Compare Event Flag (CCP4IF) 110 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC3 output 001 = CLC3 output 001 = CLC3 output 001 = CLC1 output 002 = CUCN Compare Event Flag (CCP3IF) 101 = CLC4 out 101 = CLC4 out 100 = CCMparator 2 output 001 = CLC1 output 002 = CUCN CO (CCP2IF) 011 = SCP2 CC (CCP2IF) out 101 = SCCP3 CC (CCP2IF) out 111 = SCCP2 CC (CCP2IF) out 111 = SCCP2 CC (CCP2IF) out 111 = SCCP2 CC (CCP2IF) out 101 = Reserve	_		DS4[2:0]		—		DS3[2:0]						
- DS2[2:0] - DS1[2:0] bit 7 bit Legend: Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' oi = Bit is cleared x = Bit is unknown bit 14 DS4[2:0]: Data Selection MUX 4 Signal Selection bits 111 = SCCP3 auxiliary out 101 = CLCND pin 100 = Reserved 011 = SCP1 auxiliary out 100 = Comparator 3 output 001 = CLC2 output 001 = CLC2 output 000 = PWM Event A 001 = CLC2 output 001 = CLC2 output 001 = SCP4 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = SCCP3 Compare Event Flag (CCP3IF) 101 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SCIP OC (CCP3IF) 011 = SCIP OC (CCP2IF) out 101 = SCCP3 OC (CCP2IF) out 101 = SCCP1 OC (CCP2IF) out 101 = SCCP1 OC (CCP2IF) out 101 = SCCP1 OC (CCP2IF) out 101 = SCCP1 OC (CCP2IF) out 101 = Reserved 100 = Reserved 101 = CC1 NB I/O pin 101 = CLCNE I/O pin 101 = CCNB I/O pin 001 = CLCINB	bit 15							bit					
- DS2[2:0] - DS1[2:0] bit 7 bit Legend: Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' oi = Bit is cleared x = Bit is unknown bit 14 DS4[2:0]: Data Selection MUX 4 Signal Selection bits 111 = SCCP3 auxiliary out 101 = CLCND pin 100 = Reserved 011 = SCP1 auxiliary out 100 = Comparator 3 output 001 = CLC2 output 001 = CLC2 output 000 = PWM Event A 001 = CLC2 output 001 = CLC2 output 001 = SCP4 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = SCCP3 Compare Event Flag (CCP3IF) 101 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SCIP OC (CCP3IF) 011 = SCIP OC (CCP2IF) out 101 = SCCP3 OC (CCP2IF) out 101 = SCCP1 OC (CCP2IF) out 101 = SCCP1 OC (CCP2IF) out 101 = SCCP1 OC (CCP2IF) out 101 = SCCP1 OC (CCP2IF) out 101 = Reserved 100 = Reserved 101 = CC1 NB I/O pin 101 = CLCNE I/O pin 101 = CCNB I/O pin 001 = CLCINB		5/1/ 0	D 444 0	D 444 0		D /11/0	D # M O						
egend: Image: Control of the second state of the second stat	U-0	R/W-0		R/W-0	U-0	R/W-0		R/W-0					
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 14-12 DS4[2:0]: Data Selection MUX 4 Signal Selection bits 111 = SCCP3 auxiliary out 101 = CLCIND pin 101 = CLCIND pin 100 = Reserved 0'1 = SCP1 auxiliary out 010 = CLC2 output 001 = CLC2 output 001 = CLC2 output 001 = CLC2 output 001 = CLC2 output 001 = CLC2 output 001 = CLC4 out 001 = UART1 RX output corresponding to CLCx module 011 = SCP1 Output (SDOx) corresponding to CLCx module 011 = CLC4 out 001 = CLC1 NC I/O pin 010 = CLCINC I/O pin 000 = CLCINC I/O pin 000 = CLCINC I/O pin 000 = CLCINC I/O pin 011 = SCCP1 OC (CCP1IF) out 111 = SCCP2 OC (CCP2IF) out 111 = SCCP2 OC (CCP2IF) out 111 = SCCP2 OC (CCP2IF) out 101 = Reserved 001 = Reserved 001 = CLCINB I/O pin 001 = CLCINB I/O pin 001 = CLCINB I/O pin 001 = CLCINB I/O pin 001 = CLCINB I/O pin			DS2[2:0]		—		DS1[2:0]	L :4					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' x = Bit is unknown bit 15 Unimplemented: Read as '0' x = Bit is unknown bit 14-12 DS4[2:0]: Data Selection MUX 4 Signal Selection bits 111 = SCCP1 auxiliary out 100 = Reserved 011 = SCP1 auxiliary out 100 = Reserved 011 = SCP1 auxiliary out 100 = Reserved 011 = SCP1 auxiliary out 100 = Reserved <td>DIT /</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DIt</td>	DIT /							DIt					
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' D54[2:0]: Data Selection MUX 4 Signal Selection bits 111 = SCCP3 auxiliary out 110 = SCCP1 auxiliary out 100 = Reserved 011 = CLCIND pin 101 = CLCIND pin 100 = Reserved 011 = SP11 Input (SDIx) ⁽¹⁾ 010 = Comparator 3 output 001 = CL2 output 001 = CL2 output 001 = CL2 output 001 = CL2 output 001 = SCCP3 Compare Event Flag (CCP4IF) 110 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP4 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SP11 Output (SDOx) corresponding to CLCx module ⁽¹⁾ 011 = CLC1 output 001 = CLC1 output 001 = CLC1 output 011 = SCCP2 OC (CCP2IF) out 111 = SCCP2 OC (CCP2IF) out 111 = SCCP2 OC (CCP2IF) out 110 = Reserved 111 = SCCP2 OC (CCP2IF) out 110 = Reserved 111 = UART1 TX input corresponding to CLCx module 010 = Reserved 111 = UART1 TX input corresponding to CLCx module 010 = Reserved 112 = Reserved 011 = UART1 TX input corresponding to CLCx module 012 = Comparator 1 output	Legend:												
Dit 15 Unimplemented: Read as '0' Dit 14-12 DS4[2:0]: Data Selection MUX 4 Signal Selection bits 111 = SCCP3 auxiliary out 110 = SCCP3 auxiliary out 110 = SCCP1 auxiliary out 100 = Reserved 011 = CLCIND pin 100 = Reserved 011 = CLC2 output 000 = PUM Event A 000 = PUM Event A 000 = PUM Event A 011 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP4 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SP1 Output (SD0x) corresponding to CLCx module 011 = SC1 output 000 = CLCINC I/O pin 011 = SCCP1 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 110 = SCCP1 OC (CCP1IF) out 110 = SCCP1 OC (CCP1IF) out 110 = Reserved 011 = Reserved 111 = UART1 TX input corresponding to CLCx module 011 = Reserved 111 = SCCP1 OC (CCP1IF) out 110 = Reserved 112 = Reserved 011 = Reserved 113 = UART1 TX input corresponding to CLCx module 011 = Reserved 111 = SCCP1 OC (CCP1IF) out 110 = Reserved 112 = Reserved 011 = Reserved 113 = Reserved 011 = Reserved </td <td>R = Readat</td> <td>ole bit</td> <td>W = Writable I</td> <td>oit</td> <td>U = Unimpler</td> <td>mented bit, rea</td> <td>ad as '0'</td> <td></td>	R = Readat	ole bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'						
bit 14-12 DS4[2:0]: Data Selection MUX 4 Signal Selection bits 111 = SCCP3 auxiliary out 102 = SCCP1 auxiliary out 101 = CLCIND pin 102 = Reserved 101 = SPI1 Input (SDIx) ⁽¹⁾ 010 = Comparator 3 output 001 = CLC2 output 000 = PWM Event A bit 11 Unimplemented: Read as '0' bit 11 SSG20]: Data Selection MUX 3 Signal Selection bits 111 = SCCP3 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 111 = SCCP4 compare Event Flag (CCP3IF) 111 = SCCP3 couptut 111 = SCCP1 CUput 111 = SCCP1 Output 111 = SCCP2 OC (CCP2IF) out 110 = Reserved 111 = SCCP1 OC (CCP1IF) out 111 = SCCP1 OC (CCP1IF) out 111 = SCCP1 OC (CCP1IF) out 111 = Reserved 111 = UART1 TX input corresponding to CLCx module 111 = UART1	-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown					
bit 14-12 DS4[2:0]: Data Selection MUX 4 Signal Selection bits 111 = SCCP3 auxiliary out 102 = SCCP1 auxiliary out 101 = CLCIND pin 102 = Reserved 101 = SPI1 Input (SDIx) ⁽¹⁾ 010 = Comparator 3 output 001 = CLC2 output 000 = PWM Event A bit 11 Unimplemented: Read as '0' bit 11 SSG20]: Data Selection MUX 3 Signal Selection bits 111 = SCCP3 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 111 = SCCP4 compare Event Flag (CCP3IF) 111 = SCCP3 couptut 111 = SCCP1 CUput 111 = SCCP1 Output 111 = SCCP2 OC (CCP2IF) out 110 = Reserved 111 = SCCP1 OC (CCP1IF) out 111 = SCCP1 OC (CCP1IF) out 111 = SCCP1 OC (CCP1IF) out 111 = Reserved 111 = UART1 TX input corresponding to CLCx module 111 = UART1	hit 15	Unimplomo	nted: Read as '	,									
 111 = SCCP3 auxiliary out 110 = SCCP1 auxiliary out 101 = CLCIND pin 100 = Reserved 111 = SPI1 Input (SDIx)⁽¹⁾ 010 = Comparator 3 output 001 = CLC2 output 000 = PWM Event A obit 11 Unimplemented: Read as '0' obit 10-8 DS3[2:0]: Data Selection MUX 3 Signal Selection bits 111 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SPI1 Output (SDOx) corresponding to CLCx module(1) 010 = Comparator 2 output 001 = CLC1 output 000 = CLCINC I/O pin obit 7 Unimplemented: Read as '0' obit 6-4 DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP4 OC (CCP2IF) out 110 = SCCP4 OC (CCP2IF) out 110 = Reserved 101 = Reserved 101 = Reserved 101 = Comparator 1 output 001 = CLCINB I/O pin 	-	-	•										
 110 = SCCP1 auxiliary out 101 = CLCIND pin 100 = Reserved 101 = SPI1 Input (SDIx)⁽¹⁾ 010 = Comparator 3 output 001 = CLC2 output 000 = PWM Event A 001 = DS3[2:0]: Data Selection MUX 3 Signal Selection bits 111 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SPI1 Output (SDOx) corresponding to CLCx module 011 = SPI1 Output (SDOx) corresponding to CLCx module(1) 010 = Comparator 2 output 001 = CLC1 output 000 = CLCINC I/O pin 011 = SCCP2 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 110 = Reserved 110 = Reserved 111 = UART1 TX input corresponding to CLCx module 011 = Reserved 010 = Reserved 011 = UART1 TX input corresponding to CLCx module 011 = Reserved 010 = Reserved 011 = UART1 TX input corresponding to CLCx module 011 = Reserved 010 = Reserved 010 = Reserved 011 = Reserved 010 = COMPARTOR 1 output 011 = Reserved 011 = Reserve	510 1 12												
100 = Reserved 011 = SPI1 Input (SDIx) ⁽¹⁾ 010 = Cucp comparator 3 output 001 = CLC2 output 000 = PWM Event A bit 11 Unimplemented: Read as '0' bit 10-8 DS3[2:0]: Data Selection MUX 3 Signal Selection bits 111 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SPI1 Output (SD0x) corresponding to CLCx module(1) 010 = Comparator 2 output 001 = CLC1 output 000 = CLCINC I/O pin bit 7 Unimplemented: Read as '0' bit 6-4 DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP2 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 110 = SCCP1 OC (CCP1IF) out 111 = SCCP2 OC (CCP1IF) out 101 = Reserved 100 = Reserved 101 = Reserved 100 = CLCINB I/O pin </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
 011 = SPI1 Input (SDIx)⁽¹⁾ 010 = Comparator 3 output 001 = CLC2 output 000 = PWM Event A Dit 11 Unimplemented: Read as '0' DS3[2:0]: Data Selection MUX 3 Signal Selection bits 111 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SPI1 Output (SD0x) corresponding to CLCx module⁽¹⁾ 010 = Comparator 2 output 011 = CLC1 output 000 = CLCINC I/O pin Dit 7 Unimplemented: Read as '0' Dit 6-4 DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP2 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 110 = Reserved 011 = UART1 TX input corresponding to CLCx module 012 = Reserved 013 Unimplemented: Read as '0' 			101 = CLCIND pin										
 010 = Comparator 3 output 001 = CLC2 output 000 = PWM Event A 001 = DS3[2:0]: Data Selection MUX 3 Signal Selection bits 111 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SPI1 Output (SD0x) corresponding to CLCx module 011 = SLC1 output 000 = CLCINC I/O pin 000 = CC21CI CCP2IF) out 110 = SCCP2 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 101 = Reserved 011 = UART1 TX input corresponding to CLCx module 012 = CC22 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 101 = Reserved 011 = UART1 TX input corresponding to CLCx module 012 = Comparator 1 output 003 = Reserved 004 = CLCINB I/O pin 005 = CLCINB I/O pin 													
001 = CLC2 output 000 = PWM Event A 00it 11 Unimplemented: Read as '0' Dit 10-8 DS3[2:0]: Data Selection MUX 3 Signal Selection bits 111 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SPI1 Output (SDOx) corresponding to CLCx module 011 = CLC1 output 000 = CLCINC I/O pin 001 = SCCP2 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 110 = SCCP1 OC (CCP1IF) out 101 = Reserved 101 = UART1 TX input corresponding to CLCx module 011 = Reserved 000 = Reserved 010 = Reserved 010 = Reserved 010 = Reserved 010 = Reserved 011 = UART1 TX input corresponding to CLCx module 011 = COmparator 1 output 011 = Reserved 010 = CLINB I/O pin 011 = Reserved 010 = CLINB I/O pin													
000 = PWM Event A bit 11 Unimplemented: Read as '0' bit 10-8 DS3[2:0]: Data Selection MUX 3 Signal Selection bits 111 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SPI1 Output (SDOx) corresponding to CLCx module(1) 010 = Comparator 2 output 001 = CLC1 output 000 = CLCINC I/O pin bit 7 Unimplemented: Read as '0' bit 6-4 DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP2 OC (CCP2IF) out 101 = Reserved 100 = Reserved 101 = Reserved 100 = Reserved 011 = UART1 TX input corresponding to CLCx module 012 = Comparator 1 output 013 = Reserved 014 = UART1 TX input corresponding to CLCx module 015 = Comparator 1 output 016 = Comparator 1 output 017 = Reserved 018 = Reserved 019 = CLCINB I/O pin bit 3		• •											
 bit 10-8 DS3[2:0]: Data Selection MUX 3 Signal Selection bits 111 = SCCP4 Compare Event Flag (CCP4IF) 100 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SPI1 Output (SDOx) corresponding to CLCx module⁽¹⁾ 010 = Comparator 2 output 001 = CLC1 output 000 = CLCINC I/O pin Dit 6-4 DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP2 OC (CCP2IF) out 100 = Reserved 100 = Reserved 101 = Reserved 100 = Reserved 101 = Reserved 000 = CLCINB I/O pin Dit 3 Unimplemented: Read as '0' 													
 111 = SCCP4 Compare Event Flag (CCP4IF) 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SPI1 Output (SDOx) corresponding to CLCx module⁽¹⁾ 010 = Comparator 2 output 001 = CLC1 output 000 = CLCINC I/O pin Dit 7 Unimplemented: Read as '0' DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP2 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 101 = Reserved 100 = Reserved 001 = CLCINB I/O pin Dit 3 Unimplemented: Read as '0' 	bit 11	Unimpleme	nted: Read as ')'									
 110 = SCCP3 Compare Event Flag (CCP3IF) 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SPI1 Output (SDOx) corresponding to CLCx module⁽¹⁾ 010 = Comparator 2 output 001 = CLC1 output 000 = CLCINC I/O pin bit 7 Unimplemented: Read as '0' bit 6-4 DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP2 OC (CCP2IF) out 102 = SCCP1 OC (CCP1IF) out 103 = Reserved 104 = Comparator 1 output 105 = Comparator 1 output 106 = Comparator 1 output 107 = Reserved 108 = CLCINB I/O pin 108 = CLCINB I/O pin 108 = CLCINB I/O pin	bit 10-8	DS3[2:0]: D	ata Selection ML	JX 3 Signal S	election bits								
 101 = CLC4 out 100 = UART1 RX output corresponding to CLCx module 011 = SPI1 Output (SDOx) corresponding to CLCx module⁽¹⁾ 010 = Comparator 2 output 001 = CLC1 output 000 = CLCINC I/O pin Doit 7 Unimplemented: Read as '0' DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP2 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 101 = Reserved 100 = Reserved 011 = UART1 TX input corresponding to CLCx module 010 = Comparator 1 output 001 = Reserved 002 = CLCINB I/O pin 		111 = SCCP4 Compare Event Flag (CCP4IF)											
100 = UART1 RX output corresponding to CLCx module011 = SPI1 Output (SDOx) corresponding to CLCx module(1)010 = Comparator 2 output001 = CLC1 output000 = CLCINC I/O pinDit 7Unimplemented: Read as '0'Dit 6-4DS2[2:0]: Data Selection MUX 2 Signal Selection bits111 = SCCP2 OC (CCP2IF) out110 = SCCP1 OC (CCP1IF) out101 = Reserved100 = Reserved101 = Reserved100 = Reserved011 = UART1 TX input corresponding to CLCx module010 = Comparator 1 output011 = Reserved000 = CLCINB I/O pinDit 3Unimplemented: Read as '0'													
011 = SPI1 Output (SDOx) corresponding to CLCx module ⁽¹⁾ 010 = Comparator 2 output 001 = CLC1 output 000 = CLCINC I/O pin Dit 7 Unimplemented: Read as '0' Dit 6-4 DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP2 OC (CCP2IF) out 100 = Reserved 101 = Reserved 100 = Reserved 011 = UART1 TX input corresponding to CLCx module 010 = Comparator 1 output 011 = Reserved 010 = CLCINB I/O pin													
 010 = Comparator 2 output 001 = CLC1 output 000 = CLCINC I/O pin 000 = CLCINC I/O pin 017 Unimplemented: Read as '0' 051 6-4 DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP2 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 101 = Reserved 100 = Reserved 101 = UART1 TX input corresponding to CLCx module 010 = Comparator 1 output 001 = Reserved 000 = CLCINB I/O pin bit 3 Unimplemented: Read as '0'													
000 = CLCINC I/O pin bit 7 Unimplemented: Read as '0' bit 6-4 DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP2 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 101 = Reserved 100 = Reserved 011 = UART1 TX input corresponding to CLCx module 010 = Comparator 1 output 001 = Reserved 000 = CLCINB I/O pin bit 3													
bit 7Unimplemented: Read as '0'bit 6-4DS2[2:0]: Data Selection MUX 2 Signal Selection bits111 = SCCP2 OC (CCP2IF) out110 = SCCP1 OC (CCP1IF) out101 = Reserved100 = Reserved011 = UART1 TX input corresponding to CLCx module010 = Comparator 1 output001 = Reserved000 = CLCINB I/O pinbit 3Unimplemented: Read as '0'		001 = CLC1 output											
bit 6-4 DS2[2:0]: Data Selection MUX 2 Signal Selection bits 111 = SCCP2 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 101 = Reserved 100 = Reserved 011 = UART1 TX input corresponding to CLCx module 010 = Comparator 1 output 001 = Reserved 000 = CLCINB I/O pin bit 3 Unimplemented: Read as '0'													
 111 = SCCP2 OC (CCP2IF) out 110 = SCCP1 OC (CCP1IF) out 101 = Reserved 100 = Reserved 011 = UART1 TX input corresponding to CLCx module 010 = Comparator 1 output 001 = Reserved 000 = CLCINB I/O pin bit 3 Unimplemented: Read as '0'		-											
 110 = SCCP1 OC (CCP1IF) out 101 = Reserved 100 = Reserved 011 = UART1 TX input corresponding to CLCx module 010 = Comparator 1 output 001 = Reserved 000 = CLCINB I/O pin Dit 3 Unimplemented: Read as '0'	bit 6-4												
101 = Reserved 100 = Reserved 011 = UART1 TX input corresponding to CLCx module 010 = Comparator 1 output 001 = Reserved 000 = CLCINB I/O pin bit 3 Unimplemented: Read as '0'													
100 = Reserved 011 = UART1 TX input corresponding to CLCx module 010 = Comparator 1 output 001 = Reserved 000 = CLCINB I/O pin bit 3 Unimplemented: Read as '0'				out									
 011 = UART1 TX input corresponding to CLCx module 010 = Comparator 1 output 001 = Reserved 000 = CLCINB I/O pin Dit 3 Unimplemented: Read as '0' 													
001 = Reserved 000 = CLCINB I/O pin Dit 3 Unimplemented: Read as '0'				sponding to (CLCx module								
000 = CLCINB I/O pinDit 3Unimplemented: Read as '0'													
bit 3 Unimplemented: Read as '0'													
	h :+ 0			, 3									
Note 1: Valid only when SPI is used on PPS.	DIT 3	Unimpieme	ntea: Read as '(J									
	Note 1: \	√alid only when	SPI is used on F	PS.									

REGISTER 21-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

REGISTER 21-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

- bit 2-0 **DS1[2:0]:** Data Selection MUX 1 Signal Selection bits
 - 111 = SCCP4 auxiliary out
 - 110 = SCCP2 auxiliary out
 - 101 = Reserved
 - 100 = REFCLKO output
 - 011 = INTRC/LPRC clock source
 - 010 = CLC3 out
 - 001 = System clock (FCY)
 - 000 = CLCINA I/O pin
- Note 1: Valid only when SPI is used on PPS.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N			
bit 15							bit 8			
D M M A	544.0	DAALO	5444.0	D 444 0	DAVA	D 444 0	D /14/0			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N			
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
1.11.45			4.T. E. I.I.							
bit 15		2 Data Source								
		rce 4 signal is e rce 4 signal is c								
bit 14		e 2 Data Source								
		rce 4 inverted s rce 4 inverted s								
bit 13		 0 = Data Source 4 inverted signal is disabled for Gate 2 G2D3T: Gate 2 Data Source 3 True Enable bit 								
		rce 3 signal is e rce 3 signal is c								
bit 12	G2D3N: Gate 2 Data Source 3 Negated Enable bit									
		rce 3 inverted s	•							
		rce 3 inverted s	•							
bit 11		2 Data Source								
		rce 2 signal is e rce 2 signal is c								
bit 10		e 2 Data Source								
		rce 2 inverted s rce 2 inverted s								
bit 9	G2D1T: Gate	 0 = Data Source 2 inverted signal is disabled for Gate 2 G2D1T: Gate 2 Data Source 1 True Enable bit 								
		rce 1 signal is e rce 1 signal is c								
bit 8	G2D1N: Gate	e 2 Data Source	1 Negated Er	nable bit						
		rce 1 inverted s rce 1 inverted s								
bit 7	G1D4T: Gate	1 Data Source	4 True Enable	e bit						
		rce 4 signal is e rce 4 signal is c								
bit 6	G1D4N: Gate	e 1 Data Source	4 Negated Er	nable bit						
		rce 4 inverted s	0							
L:1 F		rce 4 inverted s	0							
bit 5	1 = Data Sou	1 Data Source rce 3 signal is e	nabled for Ga	te 1						
hit 1		rce 3 signal is c								
bit 4		e 1 Data Source rce 3 inverted s	-							
		rce 3 inverted s								
Note 1: If	no inputs are se		-		zero or one o	tenending on th				

REGISTER 21-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER⁽¹⁾

REGISTER 21-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER⁽¹⁾

bit 3	G1D2T: Gate 1 Data Source 2 True Enable bit 1 = Data Source 2 signal is enabled for Gate 1 0 = Data Source 2 signal is disabled for Gate 1
bit 2	G1D2N: Gate 1 Data Source 2 Negated Enable bit
	 1 = Data Source 2 inverted signal is enabled for Gate 1 0 = Data Source 2 inverted signal is disabled for Gate 1
bit 1	G1D1T: Gate 1 Data Source 1 True Enable bit
	1 = Data Source 1 signal is enabled for Gate 10 = Data Source 1 signal is disabled for Gate 1
bit 0	G1D1N: Gate 1 Data Source 1 Negated Enable bit
	 1 = Data Source 1 inverted signal is enabled for Gate 1 0 = Data Source 1 inverted signal is disabled for Gate 1

Note 1: If no inputs are selected (CLCxGLS = 0×00), the output will be zero or one, depending on the GxPOL bits.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
G3D4T		G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N				
bit 7	ODHN	00001	Coboin	03021	GGDZIN	00011	bit (
Legend:											
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15	G4D4T: Gate	e 4 Data Source	4 True Enable	bit							
		irce 4 signal is e									
		irce 4 signal is o									
bit 14	G4D4N: Gate	e 4 Data Source	e 4 Negated Er	able bit							
		Irce 4 inverted s									
bit 13		Irce 4 inverted s	0								
DIL 15		G4D3T: Gate 4 Data Source 3 True Enable bit 1 = Data Source 3 signal is enabled for Gate 4									
		irce 3 signal is o									
bit 12	G4D3N: Gate	G4D3N: Gate 4 Data Source 3 Negated Enable bit									
		rce 3 inverted s	•								
		Irce 3 inverted s	•								
bit 11		4 Data Source									
		rce 2 signal is e rce 2 signal is e									
bit 10		e 4 Data Source									
		rce 2 inverted s									
bit 9	G4D1T: Gate	4 Data Source	1 True Enable	bit							
		irce 1 signal is e irce 1 signal is e									
bit 8	G4D1N: Gate	e 4 Data Source	e 1 Negated Er	able bit							
		rce 1 inverted s									
bit 7	G3D4T: Gate	e 3 Data Source	4 True Enable	bit							
		irce 4 signal is e irce 4 signal is e									
bit 6	G3D4N: Gate	e 3 Data Source	e 4 Negated Er	able bit							
		rce 4 inverted s	0								
		 0 = Data Source 4 inverted signal is disabled for Gate 3 G3D3T: Gate 3 Data Source 3 True Enable bit 									
bit 5		e 3 Data Source Irce 3 signal is e	• • • • • • • • • • • • • • • • • • • •								
		irce 3 signal is o									
bit 4		e 3 Data Source	-								
		rce 3 inverted s									
	0 = Data Sou	rce 3 inverted s	signal is disable	ed for Gate 3							

REGISTER 21-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER⁽¹⁾

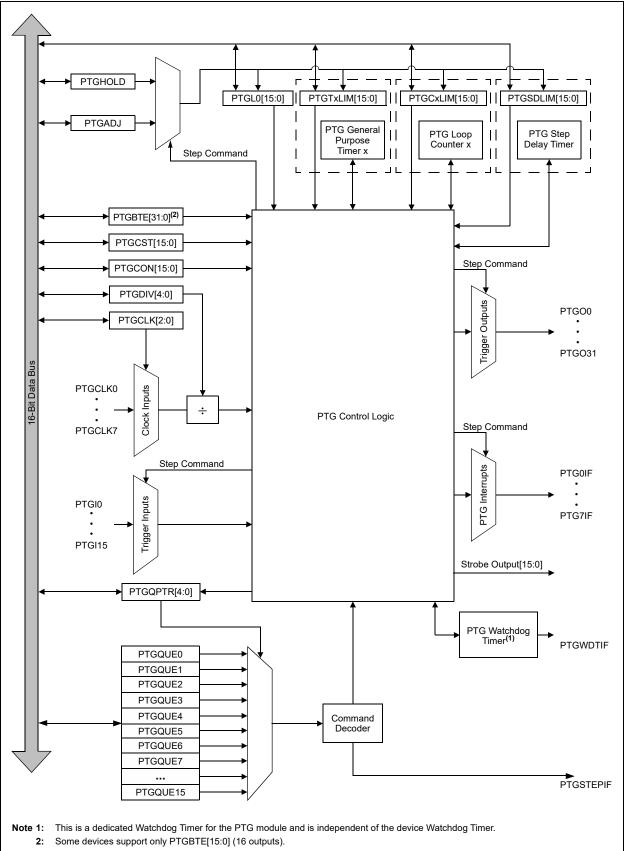
REGISTER 21-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER⁽¹⁾

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit 1 = Data Source 2 signal is enabled for Gate 3 0 = Data Source 2 signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = Data Source 2 inverted signal is enabled for Gate 30 = Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	1 = Data Source 1 signal is enabled for Gate 30 = Data Source 1 signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = Data Source 1 inverted signal is enabled for Gate 30 = Data Source 1 inverted signal is disabled for Gate 3

Note 1: If no inputs are selected (CLCxGLS = 0×00), the output will be zero or one, depending on the GxPOL bits.

NOTES:

22.0 PERIPHERAL TRIGGER GENERATOR (PTG)


Note 1:	This data sheet summarizes the features
	of the dsPIC33CK64MP105 family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to "Peripheral Trigger
	Generator (PTG)" (www.microchip.com/
	DS70000669) in the "dsPIC33/PIC24
	Family Reference Manual".

The dsPIC33CK64MP105 family Peripheral Trigger Generator (PTG) module is a user-programmable sequencer that is capable of generating complex trigger signal sequences to coordinate the operation of other peripherals. The PTG module is designed to interface with the modules, such as an Analog-to-Digital Converter (ADC), output compare and PWM modules, timers and interrupt controllers.

22.1 Features

- Behavior is Step Command Driven:
 - Step commands are eight bits wide
- Commands are Stored in a Step Queue:
 - Queue depth is up to 32 entries
- Programmable Step execution time (Step delay)
- Supports the Command Sequence Loop:
 - Can be nested one-level deep
 - Conditional or unconditional loop
 - Two 16-bit loop counters
- 15 Hardware Input Triggers:
 - Sensitive to either positive or negative edges, or a high or low level
- One Software Input Trigger
- Generates up to 32 Unique Output Trigger Signals
- Generates Two Types of Trigger Outputs:
 - Individual
 - Broadcast
- Generates up to Ten Unique Interrupt Signals
- Two 16-Bit General Purpose Timers
- Flexible Self-Contained Watchdog Timer (WDT) to Set an Upper Limit to Trigger Wait Time
- Single-Step Command Capability in Debug mode
- Selectable Clock (System, Pulse-Width Modulator (PWM) or ADC)
- Programmable Clock Divider

22.2 PTG Control/Status Registers

REGISTER 22-1: PTGCST: PTG CONTROL/STATUS LOW REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	HC/R/W-0	R/W-0	R/W-0
PTGEN	-	PTGSIDL	PTGTOGL	—	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS
bit 15							bit 8

HC/R/W-0	HS/R/W-0	HS/HC/R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
PTGSTRT	PTGWDTO	PTGBUSY	_	_	—	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	5	PTGEN: PTG Enable bit
		1 = PTG is enabled
		0 = PTG is disabled
bit 14	1	Unimplemented: Read as '0'
bit 13	3	PTGSIDL: PTG Freeze in Debug Mode bit
		1 = Halts PTG operation when device is Idle
		0 = PTG operation continues when device is Idle
bit 12	2	PTGTOGL: PTG Toggle Trigger Output bit
		1 = Toggles state of TRIG output for each execution of PTGTRIG
		0 = Generates a single TRIG pulse for each execution of PTGTRIG
bit 11		Unimplemented: Read as '0'
bit 10)	PTGSWT: PTG Software Trigger bit ⁽²⁾
		1 = Toggles state of TRIG output for each execution of PTGTRIG
		0 = Generates a single TRIG pulse for each execution of PTGTRIG
bit 9		PTGSSEN: PTG Single-Step Command bit ⁽³⁾
		1 = Enables single step when in Debug mode
		0 = Disables single step
bit 8		PTGIVIS: PTG Counter/Timer Visibility bit
		1 = Reading the PTGSDLIM, PTGCxLIM or PTGTxLIM registers returns the current values of their
		corresponding Counter/Timer registers (PTGSDLIM, PTGCxLIM and PTGTxLIM)
		0 = Reading the PTGSDLIM, PTGCxLIM or PTGTxLIM registers returns the value of these Limit registers
bit 7		PTGSTRT: PTG Start Sequencer bit
		1 = Starts to sequentially execute the commands (Continuous mode)
L:4 C		0 = Stops executing the commands
bit 6		PTGWDTO: PTG Watchdog Timer Time-out Status bit
		 PTG Watchdog Timer has timed out PTG Watchdog Timer has not timed out
bit 5		
DIL D		PTGBUSY: PTG State Machine Busy bit
		1 = PTG is running on the selected clock source; no SFR writes are allowed to PTGCLK[2:0] or PTGDIV[4:0]
		0 = PTG state machine is not running
••		
Note		These bits apply to the PTGWHI and PTGWLO commands only.
	2:	This bit is only used with the PTGCTRL Step command software trigger option.

3: The PTGSSEN bit may only be written when in Debug mode.

REGISTER 22-1: PTGCST: PTG CONTROL/STATUS LOW REGISTER (CONTINUED)

- bit 4-2 Unimplemented: Read as '0'
- bit 1-0 **PTGITM[1:0]:** PTG Input Trigger Operation Selection bit⁽¹⁾
 - 11 = Single-level detect with Step delay not executed on exit of command (regardless of the PTGCTRL command) (Mode 3)
 - 10 = Single-level detect with Step delay executed on exit of command (Mode 2)
 - 01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the PTGCTRL command) (Mode 1)
 - 00 = Continuous edge detect with Step delay executed on exit of command (Mode 0)
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.
 - 2: This bit is only used with the PTGCTRL Step command software trigger option.
 - 3: The PTGSSEN bit may only be written when in Debug mode.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	—	PTGWDT2	PTGWDT1	PTGWDTC			
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-13	111 = CLC1 110 = PLL VC 101 = Reserv 100 = Reserv 011 = Input fr 010 = PTG m 001 = PTG m		it ck pin, T1CK urce will be AI urce will be Fo	DC clock DSC						
bit 12-8	PTGDIV[4:0]: PTG Module Clock Prescaler (Divider) bits 11111 = Divide-by-32 11110 = Divide-by-31 00001 = Divide-by-2 00000 = Divide-by-1									
bit 7-4	1111 = All trig 1110 = All trig 0001 = All trig	gger outputs ar gger outputs ar gger outputs ar	e 16 PTG cloc e 15 PTG cloc e 2 PTG clock	k cycles wide k cycles wide cycles wide	G clock cycles) I	bits				
bit 3	0000 = All trigger outputs are 1 PTG clock cycle wide Unimplemented: Read as '0'									
bit 2-0	PTGWDT[2:0]: PTG Watchdog Timer Time-out Selection bits									
	111 = Watche 110 = Watche 101 = Watche 100 = Watche 011 = Watche 010 = Watche 001 = Watche	dog Timer will t dog Timer is dis	me out after 5 me out after 2 me out after 1 me out after 6 me out after 3 me out after 1 me out after 8	12 PTG clock 56 PTG clock 28 PTG clock 4 PTG clocks 2 PTG clocks 6 PTG clocks	S S					

REGISTER 22-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE LOW REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGBT	E[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGB	FE[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplem	nented bit, rea	id as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	'0' = Bit is cleared x = Bit is unknown			

bit 15-0 **PTGBTE[15:0]:** PTG Broadcast Trigger Enable bits

1 = Generates trigger when the broadcast command is executed

0 = Does not generate trigger when the broadcast command is executed

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 22-4: PTGBTEH: PTG BROADCAST TRIGGER ENABLE HIGH REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGE	BTE[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGE	BTE[23:16]			
bit 7							bit 0
Legend:							
-	R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set	Bit is set '0' = Bit is cleared x = Bit is ur		x = Bit is unkr	nown	

bit 15-0 **PTGBTE[31:16]:** PTG Broadcast Trigger Enable bits

1 = Generates trigger when the broadcast command is executed

0 = Does not generate trigger when the broadcast command is executed

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 22-5: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

PTGHOLD[15:8] bit 15 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTGHOLD[7:0]								
bit 15 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTGHOLD[7:0] bit 7	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PTGHOLD[7:0] bit 7				PTGHO	_D[15:8]			
PTGHOLD[7:0] bit 7	bit 15							bit 8
PTGHOLD[7:0] bit 7								
bit 7	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				PTGHO	LD[7:0]			
l egend:	bit 7							bit 0
Legend:								
	Legend:							

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	

bit 15-0 **PTGHOLD[15:0]:** PTG General Purpose Hold Register bits This register holds the user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register using the PTGCOPY command.

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 22-6: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTOTO	114145-01			
			PIGIOL	.IM[15:8]			
bit 15							bit 8
r							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGT0LIM[7:0]							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGT0LIM[15:0]:** PTG Timer0 Limit Register bits General Purpose Timer0 Limit register.

Note 1: These bits are read-only when the module is executing Step commands.

bit 7

bit 0

REGISTER 22-7: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1	LIM[15:8]			
bit 15	bit 15						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT	1LIM[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is		x = Bit is unk	nown				

bit 15-0 **PTGT1LIM[15:0]:** PTG Timer1 Limit Register bits General Purpose Timer1 Limit register.

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 22-8: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		PTGSI	DLIM[15:8]					
						bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		PTGS	DLIM[7:0]					
						bit 0		
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			bit 8 R/W-0 R/W-0 bit 0		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is		x = Bit is unkr	nown					
	R/W-0	R/W-0 R/W-0 bit W = Writable bi	PTGSI R/W-0 R/W-0 R/W-0 PTGS bit W = Writable bit	PTGSDLIM[15:8] R/W-0 R/W-0 PTGSDLIM[7:0] bit W = Writable bit	PTGSDLIM[15:8] R/W-0 R/W-0 R/W-0 R/W-0 PTGSDLIM[7:0]	PTGSDLIM[15:8] R/W-0 R/W-0 R/W-0 R/W-0 PTGSDLIM[7:0]		

bit 15-0 **PTGSDLIM[15:0]:** PTG Step Delay Limit Register bits

This register holds a PTG Step delay value representing the number of additional PTG clocks between the start of a Step command and the completion of a Step command.

Note 1: These bits are read-only when the module is executing Step commands.

x = Bit is unknown

REGISTER 22-9: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER⁽¹⁾

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
bit 7							bit 0
			PTGC0	LIM[7:0]			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			PTGC0L	.IM[15:8]			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 **PTGCOLIM[15:0]:** PTG Counter 0 Limit Register bits This register is used to specify the loop count for the PTGJMPC0 Step command or as a Limit register for the General Purpose Counter 0.

'0' = Bit is cleared

Note 1: These bits are read-only when the module is executing Step commands.

'1' = Bit is set

REGISTER 22-10: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	.IM[7:0]			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGC1LIM[15:0]:** PTG Counter 1 Limit Register bits This register is used to specify the loop count for the PTGJMPC1 Step command or as a Limit register for the General Purpose Counter 1.

Note 1: These bits are read-only when the module is executing Step commands.

-n = Value at POR

REGISTER 22-11: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PTGA	DJ[15:8]					
bit 15							bit 8		
[
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PTGA	ADJ[7:0]					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, rea	id as '0'	bit (
-n = Value at P	at POR '1' = Bit is set '0' = Bit is cleared x = Bit is		x = Bit is unki	nown					

bit 15-0 **PTGADJ[15:0]:** PTG Adjust Register bits This register holds the user-supplied data to be added to the PTGTX

This register holds the user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register using the PTGADD command.

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 22-12: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTG	L0[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTG	SL0[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ıd as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 PTGL0[15:0]: PTG Literal 0 Register bits

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 22-13: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15					•	•	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			PTGQPTR[4:0)]	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-5	Unimplemented: Read as '0'

bit 4-0 **PTGQPTR[4:0]:** PTG Step Queue Pointer Register bits This register points to the currently active Step command in the Step queue.

Note 1: These bits are read-only when the module is executing Step commands.

REGISTER 22-14: PTGQUEn: PTG STEP QUEUE n POINTER REGISTER (n = 0-15)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP2n	+1[7:0] ⁽²⁾			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP2	n[7:0] ⁽²⁾			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	STEP2n+1[7:0]: PTG Command 4n+1 bits ⁽²⁾
	A queue location for storage of the STEP2n+1 command byte, where 'n' is from PTGQUEn.
bit	STEP2n[7:0]: PTG Command 4n+2 bits ⁽²⁾
	A queue location for storage of the STEP2n command byte, where 'n' are the odd numbered Step Queue Pointers.

Note 1: These bits are read-only when the module is executing Step commands.

2: Refer to Table 22-1 for the Step command encoding.

TABLE 22-1: PTG STEP COMMAND FORMAT AND DESCRIPTION

Step Command Byte	
STER	Px[7:0]
CMD[3:0]	OPTION[3:0]
bit 7 bit 4	bit 3 bit 0

bit 7-4	Step Command	CMD[3:0]	Command Description
	PTGCTRL	0000	Execute the control command as described by the OPTION[3:0] bits.
	PTGADD	0001	Add contents of the PTGADJ register to the target register as described by the OPTION[3:0] bits.
	PTGCOPY		Copy contents of the PTGHOLD register to the target register as described by the OPTION[3:0] bits.
	PTGSTRB	001x	This command starts an ADC conversion of the channels specified in CMD[0] and OPTION[3:0] bits.
	PTGWHI	0100	Wait for a low-to-high edge input from a selected PTG trigger input as described by the OPTION[3:0] bits.
	PTGWLO	0101	Wait for a high-to-low edge input from a selected PTG trigger input as described by the OPTION[3:0] bits.
	—	0110	Reserved; do not use. ⁽¹⁾
	PTGIRQ	0111	Generate individual interrupt request as described by the OPTION[3:0] bits.
	PTGTRIG	100x	Generate individual trigger output as described by the bits, CMD[0]:OPTION[3:0].
	PTGJMP	101x	Copy the values contained in the bits, CMD[0]:OPTION[3:0], to the PTGQPTR register and jump to that Step queue.
	PTGJMPC0	110x	PTGC0 = PTGC0LIM: Increment the PTGQPTR register.
			$PTGC0 \neq PTGC0LIM$: Increment Counter 0 (PTGC0) and copy the values contained in the bits, CMD[0]:OPTION[3:0], to the PTGQPTR register, and jump to that Step queue.
	PTGJMPC1	111x	PTGC1 = PTGC1LIM: Increment the PTGQPTR register.
			PTGC1 \neq PTGC1LIM: Increment Counter 1 (PTGC1) and copy the values contained in the bits, CMD[0]:OPTION[3:0], to the PTGQPTR register, and jump to that Step queue.

Note 1: All reserved commands or options will execute, but they do not have any affect (i.e., execute as a NOP instruction).

Step Command	OPTION[3:0]	Command Description
PTGCTRL(1)	0000	NOP.
	0001	Reserved; do not use.
	0010	Disable Step delay timer (PTGSD).
	0011	Reserved; do not use.
	0100	Reserved; do not use.
	0101	Reserved; do not use.
	0110	Enable Step delay timer (PTGSD).
	0111	Reserved; do not use.
	1000	Start and wait for the PTG Timer0 to match the PTGT0LIM register.
	1001	Start and wait for the PTG Timer1 to match the PTGT1LIM register.
	1010	Wait for the software trigger (level, PTGSWT = 1).
	1011	Wait for the software trigger (positive edge, PTGSWT = 0 to 1).
	1100	Copy the PTGC0LIM register contents to the strobe output.
	1101	Copy the PTGC1LIM register contents to the strobe output.
	1110	Reserved; do not use.
	1111	Generate the triggers indicated in the PTGBTE register.
PTGADD ⁽¹⁾	0000	Add the PTGADJ register contents to the PTGC0LIM register.
	0001	Add the PTGADJ register contents to the PTGC1LIM register.
	0010	Add the PTGADJ register contents to the PTGT0LIM register.
	0011	Add the PTGADJ register contents to the PTGT1LIM register.
	0100	Add the PTGADJ register contents to the PTGSDLIM register.
	0101	Add the PTGADJ register contents to the PTGL0 register.
	0110	Reserved; do not use.
	0111	Reserved; do not use.
PTGCOPY (1)	1000	Copy the PTGHOLD register contents to the PTGC0LIM register.
	1001	Copy the PTGHOLD register contents to the PTGC1LIM register.
	1010	Copy the PTGHOLD register contents to the PTGT0LIM register.
	1011	Copy the PTGHOLD register contents to the PTGT1LIM register.
	1100	Copy the PTGHOLD register contents to the PTGSDLIM register.
	1101	Copy the PTGHOLD register contents to the PTGL0 register.
	1110	Reserved; do not use.
	1111	Reserved; do not use.

TABLE 22-2: PTG COMMAND OPTIONS

Note 1: All reserved commands or options will execute, but they do not have any affect (i.e., execute as a NOP instruction).

Step Command	OPTION[3:0]	Option Description
PTGWHI(1)	0000	PTGI0 (see Table 22-3 for input assignments).
or (1)	•	•
PTGWLO ⁽¹⁾	•	•
	•	•
	1111	PTGI15 (see Table 22-3 for input assignments).
PTGIRQ ⁽¹⁾	0000	Generate PTG Interrupt 0.
	•	•
	•	•
	•	•
	0111	Generate PTG Interrupt 7.
	1000	Reserved; do not use.
	•	•
	•	•
	•	•
	1111	Reserved; do not use.
PTGTRIG	00000	PTGO0 (see Table 22-4 for output assignments).
	00001	PTGO1 (see Table 22-4 for output assignments).
	•	•
	•	•
	•	•
	11110	PTGO30 (see Table 22-4 for output assignments).
	11111	PTGO31 (see Table 22-4 for output assignments).
PTGWHI(1)	0000	PTGI0 (see Table 22-3 for input assignments).
or PTGWLO ⁽¹⁾	•	•
PTGWLO("	•	•
	•	•
	1111	PTGI15 (see Table 22-3 for input assignments).
PTGIRQ ⁽¹⁾	0000	Generate PTG Interrupt 0.
	•	•
	•	•
	•	•
	0111	Generate PTG Interrupt 7.
	1000	Reserved; do not use.
	•	•
	•	•
	•	•
	1111	Reserved; do not use.
PTGTRIG	00000	PTGO0 (see Table 22-4 for output assignments).
	00001	PTGO1 (see Table 22-4 for output assignments).

TABLE 22-2: PTG COMMAND OPTIONS (CONTINUED)

Note 1: All reserved commands or options will execute, but they do not have any affect (i.e., execute as a NOP instruction).

PTG Input Number	PTG Input Description
PTG Trigger Input 0	Trigger Input from PWM Channel 1
PTG Trigger Input 1	Trigger Input from PWM Channel 2
PTG Trigger Input 2	Trigger Input from PWM Channel 3
PTG Trigger Input 3	Trigger Input from PWM Channel 4
PTG Trigger Input 4	Reserved
PTG Trigger Input 5	Reserved
PTG Trigger Input 6	Reserved
PTG Trigger Input 7	Trigger Input from SCCP4
PTG Trigger Input 8	Trigger Input from MCCP5
PTG Trigger Input 9	Trigger Input from Comparator 1
PTG Trigger Input 10	Trigger Input from Comparator 2
PTG Trigger Input 11	Trigger Input from Comparator 3
PTG Trigger Input 12	Trigger Input from CLC1
PTG Trigger Input 13	Trigger Input ADC Common Interrupt
PTG Trigger Input 14	Reserved
PTG Trigger Input 15	Trigger Input from INT2 PPS

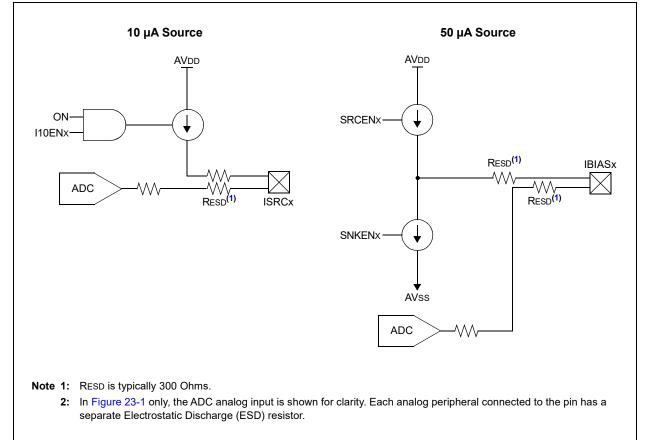
TABLE 22-3: PTG INPUT DESCRIPTIONS

TABLE 22-4: PTG OUTPUT DESCRIPTIONS

PTG Output Number	PTG Output Description			
PTGO0 to PTGO11	Reserved			
PTGO12	ADC TRGSRC[30]			
PTGO13 to PTGO23	Reserved			
PTGO24	PPS Output RP46			
PTGO25	PPS Output RP47			
PTGO26	PPS Input RP6			
PTGO27	PPS Input RP7			
PTGO28 to PTGO31	Reserved			

NOTES:

23.0 CURRENT BIAS GENERATOR (CBG)


- Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Current Bias Generator (CBG)" (www.microchip.com/DS70005253) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Current Bias Generator (CBG) consists of two classes of current sources: 10 μ A and 50 μ A sources. The major features of each current source are:

- 10 µA Current Sources:
 - Current sourcing only
 - Up to four independent sources
- 50 µA Current Sources:
 - Selectable current sourcing or sinking
 - Selectable current mirroring for sourcing and sinking

A simplified block diagram of the CBG module is shown in Figure 23-1.

FIGURE 23-1: CONSTANT-CURRENT SOURCE MODULE BLOCK DIAGRAM⁽²⁾

23.1 Current Bias Generator Control Registers

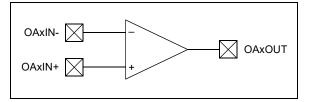
REGISTER 23-1: BIASCON: CURRENT BIAS GENERATOR CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
ON	_	—		—	—	—			
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	—		110EN3	I10EN2	110EN1	110EN0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15	ON: Current E	ON: Current Bias Module Enable bit							
	1 = Module is enabled								
	0 = Module is	0 = Module is disabled							
bit 14-4	Unimplemen	Unimplemented: Read as '0'							
bit 3	•	I10EN3: 10 µA Enable for Output 3 bit							
	$1 = 10 \mu A$ output is enabled								
	0 = 10 µA out								
bit 2	I10EN2: 10 µA Enable for Output 2 bit								
		put is enabled put is disabled							
bit 1	•		itout 1 hit						
	I10EN1: 10 μA Enable for Output 1 bit 1 = 10 μA output is enabled								
	$0 = 10 \ \mu\text{A}$ output is disabled								
bit 0	•	I10EN0: 10 µA Enable for Output 0 bit							
	$1 = 10 \mu\text{A}$ output is enabled								
	•	put is disabled							

REGISTER 23-2: IBIASCONH: CURRENT BIAS GENERATOR 50 μA CURRENT SOURCE CONTROL HIGH REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		SHRSRCEN3	SHRSNKEN3	GENSRCEN3	GENSNKEN3	SRCEN3	SNKEN3
bit 15							bit 8
		-		-	-		-
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	SHRSRCEN2	SHRSNKEN2	GENSRCEN2	GENSNKEN2	SRCEN2	SNKEN2
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimpleme	ented bit, read a	s '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear		x = Bit is unki	nown
bit 15-14	Unimpleme	nted: Read as ')'				
bit 13		13: Share Source		•			
		g Current Mirror I g Current Mirror I			ce from another	source)	
bit 12	-	3: Share Sink E					
		Current Mirror m			e from another s	ource)	
		Current Mirror m				,	
bit 11		13: Generated Se		•			
		generates the cu does not generat			ronco		
bit 10		IOUS NOT Generated Si			erence		
Dit TO		generates the cu		•			
		does not generat			erence		
bit 9	SRCEN3: S	ource Enable for	Output #3 bit				
	-	source is enable source is disable					
bit 8		ink Enable for O					
bit 0		sink is enabled					
	0 = Current	sink is disabled					
bit 7-6	Unimpleme	nted: Read as ')'				
bit 5		12: Share Source		-			
		g Current Mirror ı g Current Mirror ı			ce from another	source)	
bit 4	SHRSNKEN	12: Share Sink E	nable for Outpu	ut #2 bit			
		Current Mirror m Current Mirror m			e from another s	ource)	
bit 3	GENSRCEN	12: Generated Se	ource Enable fo	or Output #2 bit			
		generates the cu does not generat			erence		
bit 2	GENSNKEN	12: Generated Si	nk Enable for 0	Dutput #2 bit			
		generates the cu does not generat			erence		
bit 1	SRCEN2: Se	ource Enable for	Output #2 bit				
		source is enable source is disable					
bit 0	SNKEN2: S	ink Enable for O	utput #2 bit				
	1 = Current	sink is enabled sink is disabled					

REGISTER 23-3: IBIASCONL: CURRENT BIAS GENERATOR 50 µA CURRENT SOURCE CONTROL LOW REGISTER


U-0 U-0 RW-0 <			— / · · · ·	B A · · · ·	-	-	-	
bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 - - SHRSRCEN0 SHRSNKEN0 GENSNKEN0 SRCEN0 SNKEN0 bit 7 - - SHRSRCEN0 SHRSNKEN0 GENSNKEN0 SRCEN0 SNKEN0 bit 7 - - - SHRSRCEN1 SHRSNCEN0 SRCEN0 SNKEN0 bit 7 - - - - - SHRSNCEN1 SHRSNCEN1 SHRSNCEN1 SHRSNCEN1 SHRSNCEN1 SHRSNCEN1 Share S	U-0	U-0						
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 - - SHRSRCEN0 SHRSNKEN0 GENSRKEN0 SRCEN0 SRKEN0 bit 7 - - SHRSRCEN0 SHRSRCEN0 SRCEN0 SRCEN0 SRCEN0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' bit 0 bit 15-14 Unimplemented: Read as '0' Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' - - - - - - - Bit States S	—	—	SHRSRCEN1	SHRSNKEN1	GENSRCEN1	GENSNKEN1	SRCEN1	
- SHRSRCEN0 SHRSNKEN0 GENSRCEN0 SRCEN0 SNKEN0 bit 7 bit 0 bit 0 bit 0 Lagend: R = Readable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared 'x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 SHRSRCEN1: Share Source Enable for Output #1 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Current sink is enabled 0 = Current Mirror mode is disabled bit 3 bit 4 SHRSNKEN0: Share Source Enable for Output #0 bit 1 = Source generates the current source mirror reference from another source) 0 = Sinking Current Mirror mode is disabled bit 4 bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Source generates the curr	bit 15							bit 8
bit 7 bit 0 Legend: Image: Control of the state of th	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 SHRSRCEN1: Share Source Enable for Output #1 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabled bit 12 SHRSNKCN1: Share Sink Enable for Output #1 bit 1 = Sinking Current Mirror mode is disabled bit 11 GENSRCEN1: Generated Source Enable for Output #1 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Current source is enabled 0 = Current source is enabled 0 = Current source is enabled 0 = Current sink is disabled 0 bit 7-6 Unimplemented: Read as '0' bit 5 SHRSRCEN: Share Source Enable for Output #1 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Source does not generate the current source mirror reference bit 8 SNKEN1: Share Sink Enable for Output #0 bit		_	SHRSRCEN0	SHRSNKENC	GENSRCEN0	GENSNKEN0	SRCEN0	SNKEN0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 SHRSRCEN1: Share Source Enable for Output #1 bit I = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 Sourcing Current Mirror mode is disabled bit 12 SHRSNKEM1: Share Sink Enable for Output #1 bit I = Sourcing Current Mirror mode is disabled bit 12 SHRSNKEM1: Generated Source Enable for Output #1 bit I = Source generates the current source mirror reference bit 11 GENSRCEN1: Generated Sink Enable for Output #1 bit I = Source generates the current source mirror reference bit 10 GENSKEM1: Source Enable for Output #1 bit I = Source generates the current source mirror reference bit 3 SRCEN1: Source Enable for Output #1 bit I = Current source is disabled bit 4 SMRSRCEN1: Sink Enable for Output #1 bit I = Current sink is alsabled bit 5 SHRSRCEN1: Source Enable for Output #1 bit I = Current sink is disabled bit 5 SHRS	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 SHRSRCEN1: Share Source Enable for Output #1 bit I = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 Sourcing Current Mirror mode is disabled bit 12 SHRSNKEM1: Share Sink Enable for Output #1 bit I = Sourcing Current Mirror mode is disabled bit 12 SHRSNKEM1: Generated Source Enable for Output #1 bit I = Source generates the current source mirror reference bit 11 GENSRCEN1: Generated Sink Enable for Output #1 bit I = Source generates the current source mirror reference bit 10 GENSKEM1: Source Enable for Output #1 bit I = Source generates the current source mirror reference bit 3 SRCEN1: Source Enable for Output #1 bit I = Current source is disabled bit 4 SMRSRCEN1: Sink Enable for Output #1 bit I = Current sink is alsabled bit 5 SHRSRCEN1: Source Enable for Output #1 bit I = Current sink is disabled bit 5 SHRS	Legend:							
In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 SHRSRCEN1: Share Source Enable for Output #1 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabled bit 12 SHRSNCEN1: Share Share Source Enable for Output #1 bit 1 = Sinking Current Mirror mode is disabled bit 11 GENSRCEN1: Generated Source Enable for Output #1 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source to cos not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Current source is disabled 0 = Current sink is enable for Output #1 bit 1 = Current sink is disabled bit 7-6 Unimplemented: Read as '0' 1 = Sourcing Current Mirror mode	-	le bit	W = Writable b	it	U = Unimplem	ented bit, read a	s '0'	
bit 13 SHRSRCEN1: Share Source Enable for Output #1 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled bit 12 SHRSNKEN1: Share Sink Enable for Output #1 bit 1 = Sinking Current Mirror mode is disabled bit 11 GENSRCEN1: Generated Source Enable for Output #1 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source coes not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Current source is enabled 0 = Current source is disabled bit 8 SNKEN1: Share Source Enable for Output #1 bit 1 = Current sink is disabled bit 7-6 Unimplemented: Read as '0' bit 4 SHRSNEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is disabled bit 4 SHRSNEN0: Generated Source Enable for Output #0	-n = Value a	t POR	'1' = Bit is set		•			nown
bit 13 SHRSRCEN1: Share Source Enable for Output #1 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled bit 12 SHRSNKEN1: Share Sink Enable for Output #1 bit 1 = Sinking Current Mirror mode is disabled bit 11 GENSRCEN1: Generated Source Enable for Output #1 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source coes not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Current source is enabled 0 = Current source is disabled bit 8 SNKEN1: Share Source Enable for Output #1 bit 1 = Current sink is disabled bit 7-6 Unimplemented: Read as '0' bit 4 SHRSNEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is disabled bit 4 SHRSNEN0: Generated Source Enable for Output #0								
1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabled bit 12 SHRSNKEN1: Share Sink Enable for Output #1 bit 1 = Sinking Current Mirror mode is disabled bit 11 GENSRCEN1: Generated Source Enable for Output #1 bit 1 = Sourcing Courrent Mirror mode is disabled bit 11 GENSRCEN1: Generated Source Enable for Output #1 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Current source is disabled bit 8 SNKEN1: Sink Enable for Output #1 bit 1 = Current source is disabled bit 7-6 Unimplemented: Read as '0' bit 4 SHRSNKEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is disabled bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Sourcing Current Mirror mode is disabled bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit	bit 15-14	-						
0 = Sourcing Current Mirror mode is disabled bit 12 SHRSNKEM1: Share Sink Enable for Output #1 bit 1 = Sinking Current Mirror mode is disabled bit 11 GENSRCEN1: Generated Source Enable for Output #1 bit 1 = Source generates the current source mirror reference 0 = Sourcing Current Mirror mode is disabled bit 11 GENSRCEN1: Generated Source Enable for Output #1 bit 1 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source is enabled 0 = Current source is disabled bit 8 SNKEN1: Sink Enable for Output #1 bit 1 = Current sink is disabled 0 = Current sink is disabled bit 7-6 Unimplemented: Read as '0' bit 5 SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is disabled bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Sourcing Current Mirror mode is disabled bit 4 SHRSRCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference	bit 13				•	<i>.</i>		
bit 12 SHRSNKEN: Share Sink Enable for Output #1 bit 1 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled bit 11 GENSRCEN1: Generated Source Enable for Output #1 bit 1 = Source generates the current source mirror reference 0 = Source generates the current source mirror reference 0 = Source generates the current source mirror reference 0 = Source generates the current source mirror reference 0 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source toes not generate the current source mirror reference 0 = Current source is disabled bit 3 SNKEN1: Sink Enable for Output #1 bit 1 = Current sink is disabled bit 7-6 Unimplemented: Read as '0' bit 5 SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is disabled bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Sinking Current Mirror mode is disabled bit 4 SHRSNKEN0: Generated Source Enable for Output #0 bit						ce from another	source)	
0 = Sinking Current Mirror mode is disabled bit 11 GENSRCENt: Generated Source Enable for Output #1 bit 1 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference bit 10 GENSNKEN1: Generated Sink Enable for Output #1 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Current source is enabled 0 = Current source is disabled bit 8 SNKEN1: Sink Enable for Output #1 bit 1 = Current source is disabled bit 7-6 Unimplemented: Read as '0' bit 5 SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled bit 4 SHRSNCEN0: Generated Source Enable for Output #0 bit 1 = Sinking Current Mirror mode is disabled bit 3 GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Sinking Current Mirror mode is disabled bit 4 SHRSNCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source doe	bit 12		•					
bit 11 GENSRCEN1: Generated Source Enable for Output #1 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference bit 10 GENSNKEN1: Generated Sink Enable for Output #1 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference bit 9 SRCEN1: Source Enable for Output #1 bit 1 = Current source is enabled 0 = Current source is disabled bit 8 SNKEN1: Sink Enable for Output #1 bit 1 = Current sink is enabled 0 = Current sink is enabled 0 = Current sink is enabled 0 = Current sink is disabled bit 7-6 Unimplemented: Read as '0' bit 4 SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabled bit 4 SHRSNCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled bit 3 GENSNCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mir						e from another s	ource)	
1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference bit 10 GENSNKEN1: Generated Sink Enable for Output #1 bit 1 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference bit 9 SRCEN1: Source Enable for Output #1 bit 1 = Current source is enabled 0 = Current source is disabled bit 8 SNKEN1: Sink Enable for Output #1 bit 1 = Current sink is enabled 0 = Current sink is enabled 0 = Current sink is enabled 0 = Current sink is disabled bit 7-6 Unimplemented: Read as '0' bit 5 SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabled bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference bit 3 GENSRKEN0: Generated Sink Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current	bit 11	•						
bit 10 GENSNKEN1: Generated Sink Enable for Output #1 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference bit 9 SRCEN1: Source Enable for Output #1 bit 1 = Current source is enabled 0 = Current source is disabled bit 8 SNKEN1: Sink Enable for Output #1 bit 1 = Current source is disabled 0 = Current source is disabled bit 7-6 Unimplemented: Read as '0' bit 5 SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabled bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Sourcing Current Mirror mode is disabled bit 3 GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference bit 2 GENSNKEN0: Generated Sink Enable for Output #0 bit 1 = Source generates the current source mirror reference bit 2 GENSNKEN0: Generated Sink Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference	Sit II	1 = Source	generates the cu	rrent source m	irror reference			
1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference bit 9 SRCEN1: Source Enable for Output #1 bit 1 = Current source is enabled 0 = Current source is disabled bit 8 SNKEN1: Sink Enable for Output #1 bit 1 = Current sink is enabled 0 = Current sink is enabled 0 = Current sink is enabled 0 = Current sink is disabled bit 7-6 Unimplemented: Read as '0' bit 5 SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled bit 3 GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference bit 2 GENSNKEN0: Generated Sink Enable for Output #0 bit 1 = Source does not generate the current source mirror reference 0 = Source does not gene	bit 10		•			crence		
bit 9 SRCEN1: Source Enable for Output #1 bit 1 = Current source is enabled 0 = Current source is disabled bit 8 SNKEN1: Sink Enable for Output #1 bit 1 = Current sink is enabled 0 = Current sink is enabled 0 = Current sink is enabled 0 = Current sink is disabled bit 7-6 Unimplemented: Read as '0' bit 5 SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled bit 3 GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror re	Dit To	1 = Source	generates the cu	rrent source m	irror reference	erence		
1 = Current source is enabled 0 = Current source is disabled bit 8 SNKEN1: Sink Enable for Output #1 bit 1 = Current sink is enabled 0 = Current sink is enabled 0 = Current sink is enabled 0 = Current sink is enabled bit 7-6 Unimplemented: Read as '0' bit 5 SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabled bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabled bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Sinking Current Mirror mode is disabled bit 3 GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the	bit 9		-					
1 = Current sink is enabled 0 = Current sink is disabledbit 7-6Unimplemented: Read as '0'bit 5SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabledbit 4SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabledbit 3GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source could be for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source could be for Output #0 bit 1 = Current source is enabled 0 = Current source is enabled 0 = Current source is enabled 0 = Current source is enabledbit 0SNKEN0: Sink Enable for Output #0 bit 1 = Current source is disabled		1 = Current	source is enable	d				
bit 7-6Unimplemented: Read as '0'bit 5SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabledbit 4SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabledbit 3GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Current source is enabled 0 = Current source is enabled 0 = Current source is disabledbit 0SNKEN0: Sink Enable for Out	bit 8	SNKEN1: S	Sink Enable for O	utput #1 bit				
bit 5 SHRSRCEN0: Share Source Enable for Output #0 bit 1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabled bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled bit 3 GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source is enabled 1 = Current source is enabled 0 = Current source is enabled 0 = Current source is disabled bit 0 SNKEN0: Sink Enable for Output #0 bit 1 = Current sink is enabled		-						
1 = Sourcing Current Mirror mode is enabled (uses reference from another source) 0 = Sourcing Current Mirror mode is disabled bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled bit 3 GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source is enabled 0 = Current source is enabled 0 = Current source is enabled 0 = Current source is disabled bit 0 SNKEN0: Sink Enable for Output #0 bit 1 = Current sink is enabled	bit 7-6	Unimpleme	ented: Read as ')'				
0 = Sourcing Current Mirror mode is disabled bit 4 SHRSNKEN0: Share Sink Enable for Output #0 bit 1 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled bit 3 GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source is enabled 0 = Current source is enabled 0 = Current source is disabled bit 0 SNKENO: Sink Enable for Output #0 bit 1 = Current sink is enabled	bit 5	SHRSRCE	N0: Share Source	Enable for O	utput #0 bit			
1 = Sinking Current Mirror mode is enabled (uses reference from another source) 0 = Sinking Current Mirror mode is disabled bit 3 GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference bit 2 GENSNKEN0: Generated Sink Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference bit 1 SRCEN0: Source Enable for Output #0 bit 1 = Current source is enabled 0 = Current source is disabled bit 0 SNKEN0: Sink Enable for Output #0 bit 1 = Current sink is enabled						ce from another	source)	
0 = Sinking Current Mirror mode is disabled bit 3 GENSRCEN0: Generated Source Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference bit 2 GENSNKEN0: Generated Sink Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference bit 1 SRCEN0: Source Enable for Output #0 bit 1 = Current source is enabled 0 0 = Current source is disabled bit 0 SNKEN0: Sink Enable for Output #0 bit 1 = Current sink is enabled	bit 4	SHRSNKE	N0: Share Sink E	nable for Outp	ut #0 bit			
1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference bit 2 GENSNKEN0: Generated Sink Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference 0 = Source does not generate the current source mirror reference bit 1 SRCEN0: Source Enable for Output #0 bit 1 = Current source is enabled 0 = Current source is disabled bit 0 SNKEN0: Sink Enable for Output #0 bit 1 = Current source is disabled						e from another s	ource)	
0 = Source does not generate the current source mirror reference bit 2 GENSNKEN0: Generated Sink Enable for Output #0 bit 1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference bit 1 SRCEN0: Source Enable for Output #0 bit 1 = Current source is enabled 0 = Current source is disabled bit 0 SNKEN0: Sink Enable for Output #0 bit 1 = Current source is disabled	bit 3	GENSRCE	N0: Generated Se	ource Enable f	or Output #0 bit			
1 = Source generates the current source mirror reference 0 = Source does not generate the current source mirror reference bit 1 SRCEN0: Source Enable for Output #0 bit 1 = Current source is enabled 0 = Current source is disabled bit 0 SNKEN0: Sink Enable for Output #0 bit 1 = Current sink is enabled						erence		
0 = Source does not generate the current source mirror reference bit 1 SRCEN0: Source Enable for Output #0 bit 1 = Current source is enabled 0 = Current source is disabled bit 0 SNKEN0: Sink Enable for Output #0 bit 1 = Current sink is enabled	bit 2	GENSNKE	N0: Generated Si	nk Enable for	Output #0 bit			
 1 = Current source is enabled 0 = Current source is disabled bit 0 SNKEN0: Sink Enable for Output #0 bit 1 = Current sink is enabled 						erence		
bit 0 SNKEN0: Sink Enable for Output #0 bit 1 = Current sink is enabled	bit 1	SRCEN0: S	Source Enable for	Output #0 bit				
1 = Current sink is enabled		-						
	bit 0	SNKEN0: S	Sink Enable for O	utput #0 bit				

24.0 OPERATIONAL AMPLIFIER

Note: The 28-pin device variants support only two op amp instances. Refer to Table 1 and Table 2 for availability.

The dsPIC33CK64MP105 family implements three instances of operational amplifiers (op amps). The op amps can be used for a wide variety of purposes, including signal conditioning and filtering. The three op amps are functionally identical. The block diagram for a single amplifier is shown in Figure 24-1.

FIGURE 24-1: SINGLE OPERATIONAL AMPLIFIER BLOCK DIAGRAM

The op amps are controlled by two SFR registers: AMPCON1L and AMPCON1H. They remain in a lowpower state until the AMPON bit is set. Each op amp can then be enabled independently by setting the corresponding AMPENx bit (x = 1, 2, 3).

The NCHDISx bit provides some flexibility regarding input range versus Integral Nonlinearity (INL). When NCHDISx = 0 (default), the op amps have a wider input voltage range (see Table 31-38 in Section 31.0 "Electrical Characteristics"). When NCHDISx = 1, the wider input range is traded for improved INL performance (lower INL).

24.1 Operational Amplifier Control Registers

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
AMPON	—	_	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_	—	_	—	—	AMPEN3 ⁽¹⁾	AMPEN2	AMPEN1	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15	AMPON: Op	Amp Enable/O	n bit					
				ective AMPEN	lx bits are also a	sserted		
	0 = Disables	all op amp mo	dules					
bit 14-3	•	ted: Read as '						
bit 2		o Amp #3 Enabl						
		Op Amp #3 if th	he AMPON bi	it is also assert	ed			
	0 = Disables							
bit 1 AMPEN2: Op Amp #2 Enable bit 1 = Enables Op Amp #2 if the AMPON bit is also asserted								
	1 = Enables 0 = Disables		ne AMPON bi	it is also assert	ed			
bit 0		Op Amp #2 Amp #1 Enabl	la hit					
	•	Op Amp #1 Enab		it is also assort	ad			
	0 = Disables			1 13 4130 435011	<u>u</u>			
	2.2.2.0100	- F , P ,, I						

REGISTER 24-1: AMPCON1L: OP AMP CONTROL REGISTER LOW

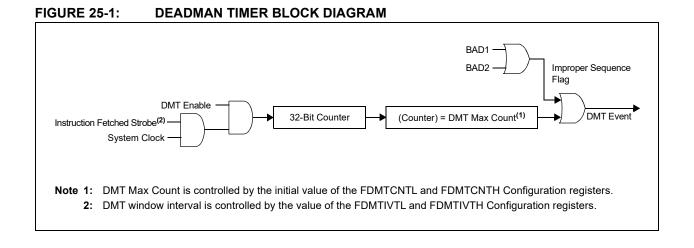
Note 1: This bit is not available on 28-pin devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
		<u> </u>	—	—	NCHDIS3 ⁽¹⁾	NCHDIS2	NCHDIS1
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-3	Unimplemen	ted: Read as '	0'				
bit 2	NCHDIS3: Op	o Amp #3 N Ch	annel Disable	bit ⁽¹⁾			
		Op Amp #3 N ut range for Op		stage; reduce	d INL, but lower	ed input voltag	e range
bit 1	NCHDIS2: Op	o Amp #2 N Ch	annel Disable	bit			
		Op Amp #2 N ut range for Op		stage; reduce	d INL, but lower	ed input voltag	e range
bit 0	NCHDIS1: Op	Amp #1 N Ch	annel Disable	bit			
		Op Amp #1 N ut range for Op		stage; reduce	d INL, but lower	ed input voltag	e range

Note 1: This bit is not available on 28-pin devices.

NOTES:

25.0 DEADMAN TIMER (DMT)


Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Deadman Timer (DMT)" (www.microchip.com/DS70005155) in the "dsPIC33/PIC24 Family Reference Manual".

The primary function of the Deadman Timer (DMT) is to interrupt the processor in the event of a software malfunction. The DMT, which works on the system clock, is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs, until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

DMT can be enabled in the Configuration fuse or by software in the DMTCON register by setting the ON bit. The DMT consists of a 32-bit counter with a time-out count match value, as specified by the two 16-bit Configuration Fuse registers: FDMTCNTL and FDMTCNTH.

A DMT is typically used in mission-critical and safetycritical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 25-1 shows a block diagram of the Deadman Timer module.

25.1 Deadman Timer Control/Status Registers

R/W-0	U-0						
0N ⁽¹⁾		—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	_
bit 7			•				bit 0

REGISTER 25-1: DMTCON: DEADMAN TIMER CONTROL REGISTER

Legend:

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ON: DMT Module Enable bit ⁽¹⁾					
	1 = Deadman Timer module is enabled					

0 = Deadman Timer module is not enabled

bit 14-0 Unimplemented: Read as '0'

Note 1: This bit has control only when DMTDIS = 0 in the FDMT register.

REGISTER 25-2: DMTPRECLR: DEADMAN TIMER PRECLEAR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			STE	P1[7:0]					
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	—	_	_	—	—	_		
bit 7	•	·				·	bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15-8	STEP1[7:0]:	DMT Preclear	Enable bits						
	01000000 All Other	= Enables th	e Deadman T	ïmer preclear (Step 1)				
	Write Patterns = Sets the BAD1 flag; these bits are cleared when a DMT Reset event occurs. STEP1[7:0] bits are also cleared if the STEP2[7:0] bits are loaded with the correct value in the correct sequence.								
bit 7-0	Unimplemer	nted: Read as	0'						

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	_	_	—	_		_			
bit 15	•						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			STEP	2[7:0]						
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-8	Unimplemer	nted: Read as '	0'							
bit 7-0	STEP2[7:0]:	DMT Clear Tim	ner bits							
	00001000	loading of th	e STEP1[7:0]	bits in the corr	Deadman Time ect sequence. Th ster and observin	ne write to thes	e bits may be			
	All Other		U	0		0	0			
	Write Patterns = Sets the BAD2 bit; the value of STEP1[7:0] will remain unchanged and the new value being written to STEP2[7:0] will be captured. These bits are cleared when a DMT Reset event occurs.									

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	_	—	_	—
bit 15					·		bit 8
HC/R-0	HC/R-0	HC/R-0	U-0	U-0	U-0	U-0	R-0
BAD1	BAD2	DMTEVENT		—	—		WINOPN
bit 7							bit 0
Legend:		HC = Hardware	e Clearable bit				
R = Readable	e bit	W = Writable b	it	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set	1' = Bit is set '0' = Bit is cleared x = Bit is ur				nown
			,				
bit 15-8	-	ited: Read as '0					
bit 7		man Timer Bad					
		STEP1[7:0] valu STEP1[7:0] valu					
bit 6	BAD2: Dead	man Timer Bad	STEP2[7:0] Val	ue Detect bit			
		STEP2[7:0] valu					
		STEP2[7:0] valu		ected			
bit 5		Deadman Time					
		n Timer event w ered prior to cou	•		l, or bad STEI	P1[7:0] or STE	EP2[7:0] value
		n Timer event w	,				
bit 4-1	Unimplemen	ted: Read as '0	3				
bit 0	WINOPN: De	adman Timer C	lear Window bit	t			
	1 = Deadmar	n Timer clear wir	ndow is open				
	0 = Deadmar	n Timer clear wir	ndow is not ope	n			

REGISTER 25-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

REGISTER 25-5: DMTCNTL: DEADMAN TIMER COUNT REGISTER LOW

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			COUN	ITER[15:8]			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			COUN	NTER[7:0]			
bit 7	bit 7					bit 0	
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared	red x = Bit is unknown		

bit 15-0 **COUNTER[15:0]:** Read Current Contents of Lower DMT Counter bits

REGISTER 25-6: DMTCNTH: DEADMAN TIMER COUNT REGISTER HIGH

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			COUN	TER[31:24]			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			COUN	TER[23:16]			
bit 7	bit 7						bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at I	n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			own

bit 15-0 COUNTER[31:16]: Read Current Contents of Higher DMT Counter bits

REGISTER 25-7: DMTPSCNTL: DMT POST-CONFIGURE COUNT STATUS REGISTER LOW

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			PSC	NT[15:8]				
bit 15							bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			PSC	CNT[7:0]				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			t	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown		

bit 15-0 **PSCNT[15:0]:** Lower DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTL Configuration register.

REGISTER 25-8: DMTPSCNTH: DMT POST-CONFIGURE COUNT STATUS REGISTER HIGH

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PSC	NT[31:24]			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PSC	NT[23:16]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown		

bit 15-0 **PSCNT[31:16]:** Higher DMT Instruction Count Value Configuration Status bits This is always the value of the FDMTCNTH Configuration register.

REGISTER 25-9: DMTPSINTVL: DMT POST-CONFIGURE INTERVAL STATUS REGISTER LOW

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PSIN	TV[15:8]			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PSIN	ITV[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented b				ted bit, rea	ad as '0'		
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unkno			own	

bit 15-0 **PSINTV[15:0]:** Lower DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTL Configuration register.

REGISTER 25-10: DMTPSINTVH: DMT POST-CONFIGURE INTERVAL STATUS REGISTER HIGH

R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		PSIN	TV[31:24]				
						bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		PSIN	TV[23:16]				
bit 7						bit 0	
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown	
	R-0	R-0 R-0 bit W = Writable b	PSIN R-0 R-0 R-0 PSIN pit W = Writable bit	PSINTV[31:24] R-0 R-0 R-0 PSINTV[23:16] PSINTV[23:16] Dit W = Writable bit U = Unimpleme	PSINTV[31:24] R-0 R-0 R-0 PSINTV[23:16] PSINTV[23:16]	PSINTV[31:24] R-0 R-0 R-0 R-0 PSINTV[23:16] PSINTV[23:16] U = Unimplemented bit, read as '0'	

bit 15-0 **PSINTV[31:16]:** Higher DMT Window Interval Configuration Status bits This is always the value of the FDMTIVTH Configuration register.

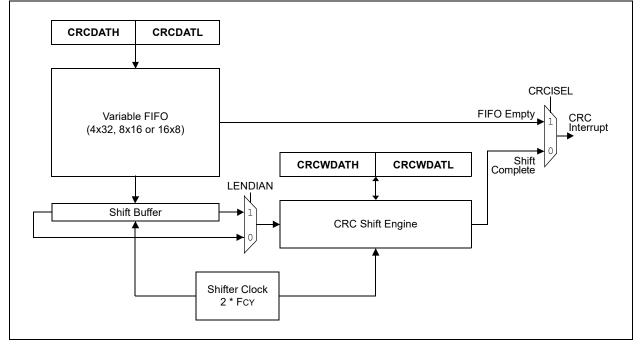
© 2018-2020 Microchip Technology Inc.

REGISTER 25-11: DMTHOLDREG: DMT HOLD REGISTER⁽¹⁾

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			UPR	CNT[15:8]			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			UPR	RCNT[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at	Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un		x = Bit is unkr	nown			

bit 15-0 UPRCNT[15:0]: DMTCNTH Register Value when DMTCNTL and DMTCNTH were Last Read bits

Note 1: The DMTHOLDREG register is initialized to '0' on Reset, and is only loaded when the DMTCNTL and DMTCNTH registers are read.


26.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. For more information, refer to "32-Bit Programmable Cyclic Redundancy Check (CRC)" (www.microchip.com/ DS30009729) in the "dsPIC33/PIC24 Family Reference Manual". The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 Bits
- Programmable Shift Direction (little or big-endian)
- · Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

A simple version of the CRC shift engine is displayed in Figure 26-1.

FIGURE 26-1: CRC MODULE BLOCK DIAGRAM

26.1 CRC Control Registers

REGISTER 26-1: CRCCONL: CRC CONTROL REGISTER LOW

R/W-0	U-0	R/W-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0	HSC/R-0
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8
HSC/R-0	HSC/R-1	R/W-0	HC/R/W-0	R/W-0	R/W-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	MOD		<u> </u>
bit 7							bit (
Legend:		HC = Hardware	Clearable bit	HSC = Hardw	/are Settable/C	learable bit	
R = Readab	ole bit	W = Writable b	it	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15	CRCEN: CF	RC Enable bit					
	1 = Enables 0 = Disable						
bit 14		ented: Read as '	0'				
bit 13	-	C Stop in Idle Mo					
	COIDL. UNV						
-		•		evice enters Idle	mode		
-	1 = Disconti	nues module op es module opera	eration when de		e mode		
bit 12-8	1 = Disconti 0 = Continu	nues module op	eration when de ation in Idle mod		e mode		
-	1 = Disconti 0 = Continu VWORD[4: (nues module op es module opera 0]: Pointer Value e number of vali	eration when de ation in Idle mod bits	de		of 8 when PL	EN[4:0] ≥ 7 o
-	1 = Disconti 0 = Continu VWORD[4: Indicates the 16 when PL	nues module op es module opera 0]: Pointer Value e number of vali	eration when de ation in Idle mod bits id words in the	de		of 8 when PL	EN[4:0] ≥ 7 o
bit 12-8	1 = Disconti 0 = Continu VWORD[4: Indicates the 16 when PL	nues module op es module opera 0]: Pointer Value e number of vali EN[4:0] ≤ 7. CRC FIFO Full bi full	eration when de ation in Idle mod bits id words in the	de		of 8 when PL	EN[4:0] ≥ 7 o
bit 12-8	1 = Disconti 0 = Continu VWORD[4:0 Indicates the 16 when PL CRCFUL: C 1 = FIFO is 0 = FIFO is	nues module op es module opera 0]: Pointer Value e number of vali EN[4:0] ≤ 7. CRC FIFO Full bi full	eration when de ation in Idle mod bits id words in the t	de		of 8 when PL	EN[4:0] ≥ 7 o
bit 12-8 bit 7	1 = Disconti 0 = Continu VWORD[4:0 Indicates the 16 when PL CRCFUL: C 1 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is	nues module op es module opera 0]: Pointer Value e number of vali EN[4:0] ≤ 7. CRC FIFO Full bi full not full CRC FIFO Empty empty	eration when de ation in Idle mod bits id words in the t	le		of 8 when PL	EN[4:0] ≥ 7 o
bit 12-8 bit 7	1 = Disconti 0 = Continu VWORD[4:0 Indicates the 16 when PL CRCFUL: 0 1 = FIFO is 0 = FIFO is 0 = FIFO is 0 = FIFO is 0 = FIFO is	nues module op es module opera 0]: Pointer Value e number of vali EN[4:0] ≤ 7. CRC FIFO Full bi full not full CRC FIFO Empty empty not empty	eration when de ation in Idle mod bits id words in the t y bit	le		of 8 when PL	EN[4:0] ≥ 7 o
bit 12-8 bit 7 bit 6	1 = Disconti 0 = Continu VWORD[4: (Indicates the 16 when PL CRCFUL: O 1 = FIFO is CRCMPT: O 1 = FIFO is 0 = FIFO is CRCISEL: O 1 = Interrup	nues module op es module opera 0]: Pointer Value e number of vali EN[4:0] \leq 7. CRC FIFO Full bi full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empty	eration when de ation in Idle mod bits id words in the t v bit election bit oty; the final wo	te FIFO. Has a m rd of data is still	naximum value		EN[4:0] ≥ 7 o
bit 12-8 bit 7 bit 6 bit 5	1 = Disconti 0 = Continu VWORD[4: (Indicates the 16 when PL CRCFUL: O 1 = FIFO is CRCMPT: O 1 = FIFO is 0 = FIFO is CRCISEL: O 1 = Interrup	nues module op es module opera D]: Pointer Value e number of value EN[4:0] \leq 7. CRC FIFO Full bi full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empty	eration when de ation in Idle mod bits id words in the t v bit election bit oty; the final wo	te FIFO. Has a m rd of data is still	naximum value		EN[4:0] ≥ 7 o
bit 12-8 bit 7 bit 6 bit 5	1 = Disconti 0 = Continu VWORD[4:0 Indicates the 16 when PL CRCFUL: C 1 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is 0 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: Cl 1 = Starts C	nues module op es module opera 0: Pointer Value e number of value EN[4:0] \leq 7. CRC FIFO Full bi full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empt t on shift is comp RC Start bit RC serial shifter	eration when de ation in Idle mod bits id words in the t y bit election bit oty; the final wo olete and results	te FIFO. Has a m rd of data is still	naximum value		EN[4:0] ≥ 7 o
bit 12-8 bit 7 bit 6	1 = Disconti 0 = Continu VWORD[4: (Indicates the 16 when PL CRCFUL: O 1 = FIFO is CRCMPT: O 1 = FIFO is CRCMPT: O 1 = FIFO is CRCISEL: O 1 = Interrup 0 = Interrup CRCGO: CI 1 = Starts O 0 = CRC se	nues module op es module opera 0]: Pointer Value e number of value EN[4:0] \leq 7. CRC FIFO Full bi full not full CRC FIFO Empty empty not CRC Interrupt Set t on FIFO is empt t on shift is comp RC Start bit	eration when de ation in Idle mod bits id words in the t y bit election bit oty; the final wo oblete and results hed off	te FIFO. Has a m rd of data is still	naximum value		EN[4:0] ≥ 7 o
bit 12-8 bit 7 bit 6 bit 5 bit 4	1 = Disconti 0 = Continu VWORD[4:0 Indicates the 16 when PL CRCFUL: C 1 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CH 1 = Starts C 0 = CRC se LENDIAN: H 1 = Data wo	nues module op es module opera 0: Pointer Value e number of value EN[4:0] \leq 7. CRC FIFO Full bi full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empt t on Shift is comp RC Start bit RC serial shifter rial shifter is turr	eration when de ation in Idle mod bits id words in the t y bit election bit obty; the final wo obtete and results bed off ion Select bit the FIFO, start	te FIFO. Has a m rd of data is still s are ready ing with the LSt	naximum value shifting throug o (little-endian)		EN[4:0] ≥ 7 o
bit 12-8 bit 7 bit 6 bit 5 bit 4	1 = Disconti 0 = Continu VWORD[4:0 Indicates the 16 when PL CRCFUL: C 1 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CI 1 = Starts C 0 = CRC se LENDIAN: I 1 = Data wo 0 = Data wo	nues module op es module opera 0: Pointer Value e number of value EN[4:0] \leq 7. CRC FIFO Full bi full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empt t on shift is comp RC Start bit CRC serial shifter rial shifter is turr Data Shift Direct ord is shifted into	eration when de ation in Idle mode bits id words in the t y bit election bit oty; the final wo plete and results hed off ion Select bit the FIFO, start the FIFO, start	te FIFO. Has a m rd of data is still s are ready ing with the LSt	naximum value shifting throug o (little-endian)		EN[4:0] ≥ 7 o
bit 12-8 bit 7 bit 6 bit 5 bit 4 bit 3	1 = Disconti 0 = Continu VWORD[4:0 Indicates the 16 when PL CRCFUL: C 1 = FIFO is 0 = FIFO is CRCMPT: C 1 = FIFO is CRCISEL: C 1 = Interrup 0 = Interrup CRCGO: CI 1 = Starts C 0 = CRC se LENDIAN: I 1 = Data wo 0 = Data wo	nues module op es module opera 0 : Pointer Value e number of value EN[4:0] \leq 7. CRC FIFO Full bi full not full CRC FIFO Empty empty not empty CRC Interrupt Set t on FIFO is empt t on Shift is comp RC Start bit RC serial shifter rial shifter is turr Data Shift Direct ord is shifted into Calculation Mode e mode	eration when de ation in Idle mode bits id words in the t y bit election bit oty; the final wo plete and results hed off ion Select bit the FIFO, start the FIFO, start	te FIFO. Has a m rd of data is still s are ready ing with the LSt	naximum value shifting throug o (little-endian)		EN[4:0] ≥ 7 o

	REGISTER 26-2:	CRCCONH: CRC CONTRO	L REGISTER HIGH
--	----------------	---------------------	-----------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	—			DWIDTH[4:0)]				
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	-	-	PLEN[4:0]							
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value a	t POR	'1' = Bit is set	t '0' = Bit is cleared			x = Bit is unkr	nown			
bit 15-13	Unimplemer	ted: Read as '	0'							
bit 12-8	DWIDTH[4:0]: Data Word W	/idth Configura	ation bits						
	Configures th	e width of the o	data word (Da	ta Word Width –	· 1).					
bit 7-5	Unimplemer	ted: Read as '	0'							
bit 4-0	PLEN[4:0]: F	Polynomial Leng	gth Configurat	ion bits						
	Configures th	e length of the	polynomial (P	olynomial Lengt	th – 1).					

REGISTER 26-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х	[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X[7:1]				—
bit 7	bit 7						bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as			d as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	= Bit is cleared x = Bit is unknown		

bit 15-1 **X[15:1]:** XOR of Polynomial Term xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

REGISTER 26-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X[23:16]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown		

bit 15-0 X[31:16]: XOR of Polynomial Term xⁿ Enable bits

27.0 POWER-SAVING FEATURES

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (www.microchip.com/ DS70615) in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33CK64MP105 family devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33CK64MP105 family devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

27.1 Clock Frequency and Clock Switching

The dsPIC33CK64MP105 family devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits (OSCCON[10:8]). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator with High-Frequency PLL".

27.2 Instruction-Based Power-Saving Modes

The dsPIC33CK64MP105 family devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 27-1.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

EXAMPLE 27-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#0	;	Put	the	device	into	Sleep	mode
PWRSAV	#1	;	Put	the	device	into	Idle	mode

27.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification on the I/O ports or peripherals that use an External Clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the regulators can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON[8]) bit (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON[8]) bit can be set to keep the regulators active during Sleep mode. The available Low-Power Sleep modes are shown in Table 27-1. Additional regulator information is available in **Section 28.4 "On-Chip Voltage Regulator"**.

Relative Power	LPWREN	VREGS	MODE
Highest	0	1	Full power, active
_	0	0	Full power, standby
_	1 (1)	1	Low power, active
Lowest	1 (1)	0	Low power, standby

TABLE 27-1: LOW-POWER SLEEP MODES

Note 1: Low-Power modes, when LPWREN = 1, can only be used in the industrial temperature range.

27.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 27.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the SIDL bit in the Timer1 Control register (T1CON[13]).

27.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

27.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV[11]). The ratio between peripheral and core clock speed is determined by the DOZE[2:0] bits (CLKDIV[14:12]). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV[15]). By default, interrupt events have no effect on Doze mode operation.

27.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid. A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note 1: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

27.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

27.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (www.microchip.com/DS70615) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

27.6 PMD Control Registers

REGISTER 27-1: PMD1: PERIPHERAL MODULE DISABLE 1 CONTROL REGISTER U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 T1MD QEI1MD **PWMMD** bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 U2MD ADC1MD I2C1MD U1MD SPI2MD SPI1MD bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as '0' bit 11 T1MD: Timer1 Module Disable bit 1 = Timer1 module is disabled 0 = Timer1 module is enabled bit 10 **QEI1MD:** QEI1 Module Disable bit 1 = QEI1 module is disabled 0 = QEI1 module is enabled bit 9 PWMMD: PWM Module Disable bit 1 = PWM module is disabled 0 = PWM module is enabled bit 8 Unimplemented: Read as '0' bit 7 I2C1MD: I2C1 Module Disable bit 1 = 12C1 module is disabled0 = I2C1 module is enabled bit 6 U2MD: UART2 Module Disable bit 1 = UART2 module is disabled 0 = UART2 module is enabled bit 5 U1MD: UART1 Module Disable bit 1 = UART1 module is disabled 0 = UART1 module is enabled bit 4 SPI2MD: SPI2 Module Disable bit 1 = SPI2 module is disabled 0 = SPI2 module is enabled bit 3 SPI1MD: SPI1 Module Disable bit

bit 2-1

bit 0

1 = SPI1 module is disabled 0 = SPI1 module is enabled

Unimplemented: Read as '0'

ADC1MD: ADC Module Disable bit 1 = ADC module is disabled 0 = ADC module is enabled

REGISTER 27-2: PMD2: PERIPHERAL MODULE DISABLE 2 CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		_	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD			
bit 7							bit			
Legend:										
R = Readab	ole bit	W = Writable	U = Unimplem	nented bit, read	1 as '0'					
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-5	Unimplemen	ted: Read as	'0'							
bit 4	CCP5MD: SO	CCP5 Module	Disable bit							
		1 = SCCP5 module is disabled								
		nodule is enab								
bit 3		CCP4 Module								
		nodule is disat nodule is enab								
bit 2		CCP3 Module								
		nodule is disat								
		nodule is disal								
bit 1	CCP2MD: SO	CCP2 Module	Disable bit							
	1 = SCCP2 m	nodule is disat	bled							
	0 = SCCP2 m	nodule is enab	led							
bit 0	CCP1MD: SO	CCP1 Module	Disable bit							
	1 = SCCP1 m	nodule is disat	led							
	0 = SCCP1 m	nodule is enab	led							

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
	—	—		—	—	—	_							
bit 15							bit 8							
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0							
CRCMD	—	QEI2MD		U3MD	—	I2C2MD	—							
bit 7							bit 0							
Legend:														
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'														
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own							
bit 15-8	Unimplemen	Unimplemented: Read as '0'												
bit 7	CRCMD: CRO	C Module Disab	le bit											
		lule is disabled												
		lule is enabled												
bit 6	-	ted: Read as '0												
bit 5		2 Module Disab	ole bit											
		lule is disabled lule is enabled												
bit 4		ted: Read as '0	,											
bit 3	•	3 Module Disab												
DIL 3		odule is disable												
		odule is enable												
bit 2	Unimplemen	ted: Read as '0	,											
bit 1	I2C2MD: I2C2 Module Disable bit													
	1 = I2C2 mod	1 = I2C2 module is disabled												
	0 = I2C2 mod	0 = I2C2 module is enabled												
bit 0	Unimplemen	ted: Read as '0	,											

REGISTER 27-3: PMD3: PERIPHERAL MODULE DISABLE 3 CONTROL REGISTER

REGISTER 27-4: PMD4: PERIPHERAL MODULE DISABLE 4 CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—	—	_		—	—	—						
bit 15				•			bit 8					
U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0					
REFOMD												
bit 7 bit 0												
Legend:												
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'						
-n = Value at	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown											
bit 15-4 Unimplemented: Read as '0'												
bit 3	REFOMD: Re	eference Clock	Module Disable	e bit								

- **REFOMD:** Reference Clock Module Disable bit
 - 1 = Reference clock module is disabled
 - 0 = Reference clock module is enabled
- bit 2-0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
_	_	—		DMA3MD	DMA2MD	DMA1MD	DMA0MD						
bit 15	·						bit 8						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0						
—	—	—		—	—	—	SPI3MD						
bit 7							bit 0						
Legend:													
R = Readab	ole bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown						
bit 15-12	Unimplement	Unimplemented: Read as '0'											
bit 11	DMA3MD: DN	/IA3 Module Dis	sable bit										
		dule is disabled											
		dule is enabled											
bit 10		/IA2 Module Dis											
		dule is disabled dule is enabled											
bit 9		Al Module Dis											
DIL 9		dule is disabled											
		dule is enabled											
bit 8	DMA0MD: DN	/A0 Module Dis	sable bit										
-	1 = DMA0 mo	dule is disabled	ł										
	0 = DMA0 mo	dule is enabled	l										
bit 7-1	Unimplement	Unimplemented: Read as '0'											
bit 0	SPI3MD: SPI3	3 Module Disab	le bit										
		1 = SPI3 module is disabled											
	0 = SPI3 mod	ule is enabled											

REGISTER 27-5: PMD6: PERIPHERAL MODULE DISABLE 6 CONTROL REGISTER

REGISTER 27-6: PMD7: PERIPHERAL MODULE DISABLE 7 CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0						
_	—	—	—	—	CMP3MD	CMP2MD	CMP1MD						
bit 15	÷			·	•		bit 8						
U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0						
—	—	—		PTGMD		_	—						
bit 7	÷			·			bit 0						
Legend:													
R = Readab	le bit	W = Writable b	it	U = Unimplen	nented bit, read	d as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown						
bit 15-11	Unimpleme	Unimplemented: Read as '0'											
bit 10	CMP3MD: C	Comparator 3 Mod	dule Disable	bit									
	1 = Compara	ator 3 module is c	disabled										
	0 = Compara	ator 3 module is ϵ	enabled										
bit 9	CMP2MD: C	Comparator 2 Moo	dule Disable	bit									
		ator 2 module is c											
	•	ator 2 module is e											
bit 8		Comparator 1 Mod		bit									
		ator 1 module is c											
bit 7-4	-	ator 1 module is e											
	-	Unimplemented: Read as '0'											
bit 3		G Module Disable	e bit										
		dule is disabled											
		dule is enabled											
bit 2-0	Unimpleme	nted: Read as '0'	9										

U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0				
_	_	OPAMPMD	SENT2MD	SENT1MD		_	DMTMD				
bit 15							bita				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	BIASMD	—				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 15-14	-	nted: Read as '									
bit 13		Op Amp Module									
		modules are dis modules are en									
bit 12		SENT2 Module									
		module is disable									
	0 = SENT2 r	module is enable	ed								
bit 11	-	SENT1 Module									
		nodule is disable nodule is enable									
bit 10-9		nted: Read as '									
bit 8	•	adman Timer M		oit							
		dule is disabled dule is enabled									
bit 7-6	Unimpleme	nted: Read as ')'								
bit 5	CLC4MD: C	LC4 Module Dis	able bit								
		odule is disabled									
bit 4		odule is enabled LC3 Module Dis									
DIL 4		odule is disabled									
		odule is enabled									
bit 3	CLC2MD: C	LC2 Module Dis	able bit								
		odule is disabled									
h # 0		odule is enabled LC1 Module Dis									
bit 2		odule is disabled									
		odule is enabled									
bit 1	BIASMD: Co	onstant-Current	Source Module	Disable bit							
	 1 = Constant-current source module is disabled 0 = Constant-current source module is enabled 										

REGISTER 27-7: PMD8: PERIPHERAL MODULE DISABLE 8 CONTROL REGISTER

TABLE 27-2: PMD REGISTERS

Register	Bit 15	Bit14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMD1	—	_	—	—	T1MD	QEIMD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	ADC1MD
PMD2	—	_	—	_	_	_	—	—		_	_	CCP5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
PMD3	_	_	—	_	_		_	_	CRCMD		QEI2MD	_	U3MD	—	I2C2MD	_
PMD4	_	_	_	_	_		—	_		_	_	_	REFOMD	—	—	—
PMD6	—	_	_	_	DMA3MD	DMA2MD	DMA1MD	DMA0MD		_	_	_	—	—	—	SPI3MD
PMD7	_	_	_	_	_	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	PTGMD	_	_	—
PMD8	—		OPAMPMD	SENT2MD	SENT1MD		_	DMTMD	_		CLC4MD	CLC3MD	CLC2MD	CLC1MD	BIASMD	—

NOTES:

28.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The dsPIC33CK64MP105 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

28.1 Configuration Bits

In dsPIC33CK64MP105 family devices, the Configuration Words are implemented as volatile memory. This means that configuration data will get loaded to volatile memory (from the Flash Configuration Words) each time the device is powered up. Configuration data are stored at the end of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 28-1. The configuration data are automatically loaded from the Flash Configuration Words to the proper Configuration Shadow registers during device Resets.

Note:	Configuration	data	are	reloaded	on	all
	types of device	e Rese	ets.			

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Words for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled. Program code executing out of configuration space will cause a device Reset.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words.

TABLE 28-1: dsPIC33CKXXMPX0X CONFIGURATION ADDRESSES

Register Name	64k	32k
FSEC	0x00AF00	0x005F00
FBSLIM	0x00AF10	0x005F10
FSIGN	0x00AF14	0x005F14
FOSCSEL	0x00AF18	0x005F18
FOSC	0x00AF1C	0x005F1C
FWDT	0x00AF20	0x005F20
FPOR	0x00AF24	0x005F24
FICD	0x00AF28	0x005F28
FDMTIVTL	0x00AF2C	0x005F2C
FDMTIVTH	0x00AF30	0x005F30
FDMTCNTL	0x00AF34	0x005F34
FDMTCNTH	0x00AF38	0x005F38
FDMT	0x00AF3C	0x005F3C
FDEVOPT	0x00AF40	0x005F40
FALTREG	0x00AF44	0x005F44

TABLE 28-2: CONFIGURATION REGISTERS MAP

Register Name	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSEC	_	AIVTDIS	-	—	_		CSS[2:0]		CWRP	GS	S[1:0]	GWRP	—	BSEN	BSS	[1:0]	BWRP
FBSLIM	_	_	_	—							BSLIM[12:0)]					
FSIGN	_	۲ <mark>(2</mark>)	_	—	_	—	_	_	—	—	—	—	—	—	—	—	—
FOSCSEL	_	-	_	_	_	_	_	_	_	IESO	_	_	_	_		FNOSC[2:0]	
FOSC	_	-	_	_	XTBST XTCFG[1:0] — PLLKEN FCKSM[1:0] — —					_	_	OSCIOFCN	OSCIOFCN POSCMD[1:0]				
FWDT	_	FWDTEN			SWDTPS[4:0	0]		WDTW	/IN[1:0]	WINDIS	RCLKS	EL[1:0]			RWDTPS[4:0]		
FPOR	_	-	_	_	_	_	r ⁽¹⁾	_	_	_	BISTDIS	r ⁽¹⁾	r ⁽¹⁾	_	_	_	_
FICD	_	-	_	_	_	_	_	_	_	r(1)	_	JTAGEN	_	_	_	ICS	[1:0]
FDMTIVTL	—								DMTI	VT[15:0]							
FDMTIVTH	_								DMTI	/T[31:16]							
FDMTCNTL	—								DMTC	NT[15:0]							
FDMTCNTH	_								DMTCI	NT[31:16]							
FDMT	—	_	_	—	_		_	_	_			_	—		_		DMTDIS
FDEVOPT	—	_	_	SPI2PIN	_		SMB3EN	r ⁽²⁾	r ⁽²⁾	r ⁽¹⁾		_	ALTI2C2	ALTI2C1	r ⁽¹⁾		—
FALTREG	_	—		CTXT4[2:0]				CTXT3[2:0]				CTXT2[2:0]				CTXT1[2:0]	

Legend: — = unimplemented bit, read as '1'; r = reserved bit.

Note 1: Bit reserved, maintain as '1'.

2: Bit reserved, maintain as '0'.

REGISTER 28-1: FSEC CONFIGURATION REGISTER
--

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
_	—	—	_	—	_	—	_		
bit 23							bit 16		
R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1		
AIVTDIS				CSS2	CSS1	CSS0	CWRP		
bit 15				0002	0001	0000	bit 8		
R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1		
GSS1	GSS0	GWRP	—	BSEN	BSS1	BSS0	BWRP		
bit 7							bit (
Legend:		PO = Program	n Once bit						
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'			
-n = Erased	value	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown		
bit 23-16	Unimplemer	nted: Read as '	1'						
bit 15	AIVTDIS: Alternate Interrupt Vector Table Disable bit								
	1 = Disables AIVT 0 = Enables AIVT								
bit 14-12	Unimplemer	ted: Read as '	1'						
bit 11-9	CSS[2:0]: Configuration Segment Code Flash Protection Level bits								
	110 = Standa 10x = Enhar	nced security	han CWRP w	rite protection)					
bit 8	0xx = High security CWRP: Configuration Segment Write-Protect bit								
	1 = Configur	ation Segment ation Segment	is not write-pr	otected					
bit 7-6	-	-	-	Protection Level	hits				
	11 = No prote 10 = Standar	ection (other th d security			bito				
bit 5	0x = High security GWRP: General Segment Write-Protect bit								
bit 5	1 = User program memory is not write-protected								
	0 = User pro	gram memory	s write-protec	ted					
bit 4	Unimplemer	nted: Read as '	1'						
bit 3	BSEN: Boot Segment Control bit								
	 1 = No Boot Segment 0 = Boot Segment size is determined by BSLIM[12:0] 								
bit 2-1	 Boot Segment size is determined by BSLIM[12:0] BSS[1:0]: Boot Segment Code Flash Protection Level bits 								
	11 = No prote 10 = Standar	ection (other th d security			,				
bit 0	0x = High se	Segment Write	Droto at hit						

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—	—	—	_	—
bit 23							bit 16
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
	_	—			BSLIM[12:8] ⁽¹⁾		
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			BSLIM	1[7:0] ⁽¹⁾			
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Erased value	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-13 Unimplemented: Read as '1'

- bit 12-0 BSLIM[12:0]: Boot Segment Code Flash Page Address Limit bits⁽¹⁾ Contains the page address of the first active General Segment page. The value to be programmed is the inverted page address, such that programming additional '0's can only increase the Boot Segment size.
- Note 1: The BSLIMx bits are a 'write-once' element. If, after the Reset sequence, they are not erased (all '1's), then programming of the FBSLIM bits is prohibited. An attempt to do so will fail to set the WR bit (NVMCON[15]), and consequently, have no effect.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—	—	—	_	—	—	—	
bit 23							bit 16	
r-0	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—	—	—	_	—	—	—	
bit 15							bit 8	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—	—	—	—	—	—	—	
bit 7							bit 0	
Legend:		r = Reserved	bit	PO = Program Once bit				
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Erased value		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 23-16	Unimplemen	ted: Read as '	l'					
-								

REGISTER 28-3: FSIGN CONFIGURATION REGISTER

bit 15 Reserved: Maintain as '0'

bit 14-0 Unimplemented: Read as '1'

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—	—	—	_	_
bit 23				·	•		bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	_	_	_	_	_
bit 15		·			•		bit 8
R/PO-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1
IESO	—	—	—	—	FNOSC2	FNOSC1	FNOSC0
bit 7							bit C
Legend:		PO = Program Once bit					
R = Readable bit		W = Writable bit		U = Unimplen	nented bit, read	d as '0'	
-n = Erased value		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
R = Readable bit		W = Writable	bit	-			nown
bit 23-8	Unimplemen	ted: Read as '	L'				

REGISTER 28-4: FOSCSEL CONFIGURATION REGISTER

bit 7 **IESO:** Internal External Switchover bit

1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)

0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)

bit 6-3 Unimplemented: Read as '1'

bit 2-0 **FNOSC[2:0]:** Initial Oscillator Source Selection bits

- 111 = Internal Fast RC (FRC) Oscillator with Postscaler
- 110 = Backup Fast RC (BFRC)
- 101 = LPRC Oscillator
- 100 = Reserved
- 011 = Primary Oscillator with PLL (XTPLL, HSPLL, ECPLL)
- 010 = Primary (XT, HS, EC) Oscillator
- 001 = Internal Fast RC Oscillator with PLL (FRCPLL)
- 000 = Fast RC (FRC) Oscillator

REGISTER 28-5: FOSC CONFIGURATION REGISTER

						11.4				
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1			
	—	_	—		—	—	—			
bit 23							bit 16			
U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1			
		_	XTBST	XTCFG1	XTCFG0		PLLKEN ⁽¹⁾			
bit 15			AIDOI	XIO OI			bit 8			
							bit o			
R/PO-1	R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1			
FCKSM1	FCKSM0	—	—	—	OSCIOFNC	POSCMD1	POSCMD0			
bit 7	1					1	bit 0			
Legend:		PO = Program	n Once bit							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Erased v	alue	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 23-13	•	ted: Read as '								
bit 12			Programmabil	ity bit						
	1 = Boosts the kick-start 0 = Default kick-start									
bit 11-10			tor Drive Selec	t bits						
	XTCFG[1:0]: Crystal Oscillator Drive Select bits Current gain programmability for oscillator (output drive).									
	11 = Gain3 (use for 24-32 MHz crystals)									
	10 = Gain2 (use for 16-24 MHz crystals) 01 = Gain1 (use for 8-16 MHz crystals)									
	•		• /							
bit 9	00 = Gain0 (use for 4-8 MHz crystals) Unimplemented: Read as '1'									
bit 8	PLLKEN: PLI	Lock Enable	bit ⁽¹⁾							
			disabled if lock							
		•	be disabled if I	ock is lost						
bit 7-6		Clock Switchin	•							
	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled									
	 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled 									
bit 5-3		ted: Read as '								
bit 2	-		ction bit (excep	ot in XT and HS	S modes)					
	1 = OSCO is the clock output									
	0 = OSCO is the general purpose digital I/O pin									
bit 1-0	-		illator Mode Se	elect bits						
	11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode (10 MHz-32 MHz)									
			iode (10 MHZ-3 iode (3.5 MHz-3							
		ernal Clock) m		- ···· - /						
Note 1: At	time-out period	will occur whe	n the system cl	ock switching l	ogic requests tl	ne PLL clock so	ource and the			

Note 1: A time-out period will occur when the system clock switching logic requests the PLL clock source and the PLL is not already enabled.

	REGISTER 28-6:	FWDT CONFIGURATION REGISTER
--	----------------	-----------------------------

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	SWDTPS4	SWDTPS3	SWDTPS2	SWDTPS1	SWDTPS0	WDTWIN1	WDTWIN0
bit 15	•						bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WINDIS	RCLKSEL1	RCLKSEL0	RWDTPS4	RWDTPS3	RWDTPS2	RWDTPS1	RWDTPS0
bit 7							bit 0

Legend:	PO = Program Once bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Erased value	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-16	Unimplemented: Read as '1'
bit 15	FWDTEN: Watchdog Timer Enable bit
	1 = WDT is enabled in hardware0 = WDT controller via the ON bit (WDTCONL[15])
bit 14-10	SWDTPS[4:0]: Sleep Mode Watchdog Timer Period Select bits 11111 = Divide by 2 ³¹ = 2,147,483,648 11110 = Divide by 2 ³⁰ = 1,073,741,824
	00001 = Divide by $2^1 = 2$ 00000 = Divide by $2^0 = 1$
bit 9-8	WDTWIN[1:0]: Watchdog Timer Window Select bits
	 11 = WDT window is 25% of the WDT period 10 = WDT window is 37.5% of the WDT period 01 = WDT window is 50% of the WDT period 00 = WDT Window is 75% of the WDT period
bit 7	WINDIS: Watchdog Timer Window Enable bit
	1 = Watchdog Timer is in Non-Window mode 0 = Watchdog Timer is in Window mode
bit 6-5	RCLKSEL[1:0]: Watchdog Timer Clock Select bits
	 11 = LPRC clock 10 = Uses FRC when WINDIS = 0, system clock is not INTOSC/LPRC and device is not in Sleep; otherwise, uses INTOSC/LPRC 01 = Uses peripheral clock when system clock is not INTOSC/LPRC and device is not in Sleep; otherwise, uses INTOSC/LPRC 00 = Reserved
bit 4-0	RWDTPS[4:0]: Run Mode Watchdog Timer Period Select bits
	11111 = Divide by 2^{31} = 2,147,483,648 11110 = Divide by 2^{30} = 1,073,741,824
	00001 = Divide by $2^1 = 2$ 00000 = Divide by $2^0 = 1$

REGISTER 28-7: FPOR CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	_	—	—	—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	r-1	U-1	U-1
—	—	_	—	—	—	—	—
bit 15							bit 8
U-1	R/PO-1 ⁽¹⁾	r-1	r-1	U-1	U-1	U-1	U-1
_	BISTDIS	—	—	—	—	—	—
bit 7						bit 0	
Legend:		PO = Program Once bit		r = Reserved bit			
R = Readable bit W = Wr		W = Writable	bit	U = Unimplemented bit, rea		d as '0'	
-n = Erased value		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 23-11	Unimplemen	ted: Read as '	1'				
bit 10	Reserved: Maintain as '1'						

- bit 9-7 **Unimplemented:** Read as '1'
- bit 6 **BISTDIS:** Memory BIST Feature Disable bit⁽¹⁾
 - 1 = MBIST on Reset feature is disabled
 - 0 = MBIST on Reset feature is enabled
- bit 5-4 Reserved: Maintain as '0b11'
- bit 3-0 Unimplemented: Read as '1'

Note 1: Applies to a Power-on Reset (POR) only.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	_	—	—	—	—	—	—
bit 15							bit 8
r-1	U-1	R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1
—	—	JTAGEN	—	—	—	ICS1	ICS0
bit 7	bit 7						bit 0
Legend: PO = Program Once bit		n Once bit	r = Reserved bit				
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
-n = Erased v	alue	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

REGISTER 28-8: FICD CONFIGURATION REGISTER

bit 23-8	Unimplemented: Read as '1'
bit 7	Reserved: Maintain as '1'
bit 6	Unimplemented: Read as '1'

bit 5 **JTAGEN:** JTAG Enable bit

- 1 = JTAG port is enabled
 - 0 = JTAG port is disabled
- bit 4-2 Unimplemented: Read as '1'
- bit 1-0 ICS[1:0]: ICD Communication Channel Select bits

11 = Communicates on PGC1 and PGD1

 ${\tt 10}$ = Communicates on PGC2 and PGD2

<code>01 = Communicates on PGC3 and PGD3</code>

00 = Reserved, do not use

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	_	—	—	—	—
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTI	VT[15:8]			
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTI	VT[7:0]			
bit 7						bit 0	
Legend: PO = Program Once bit		n Once bit					
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
-n = Erased value '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

REGISTER 28-9: FDMTIVTL CONFIGURATION REGISTER

bit 23-16 Unimplemented: Read as '1'

bit 15-0 DMTIVT[15:0]: DMT Window Interval Lower 16 bits

REGISTER 28-10: FDMTIVTH CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTIV	T[31:24]			
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTIV	T[23:16]			
bit 7							bit 0
Legend:		PO = Prograr	n Once bit				

Legend:	PO = Program Once bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Erased value	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 23-16 Unimplemented: Read as '1'

bit 15-0 DMTIVT[31:16]: DMT Window Interval Higher 16 bits

REGISTER 28-11: FDMTCNTL CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23				•			bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTC	NT[15:8]			

			DIVITO	1[13.0]			
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1

R/P0)-1 ŀ	R/PO-1						
				DMTCNT	[7:0]			
bit 7								bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Erased value	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16 Unimplemented: Read as '1'

bit 15-0 DMTCNT[15:0]: DMT Instruction Count Time-out Value Lower 16 bits

REGISTER 28-12: FDMTCNTH CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	—	—	
bit 23							bit 16
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTCN	T[31:24]			
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
			DMTCN	T[23:16]			
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Erased value	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16 Unimplemented: Read as '1'

bit 15-0 DMTCNT[31:16]: DMT Instruction Count Time-out Value Upper 16 bits

REGISTER 28-13: FDMT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—	—	—	—
						bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—		_	_	—
						bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/PO-1
	—	—	—	—	—	DMTDIS
						bit 0
Legend: PO = Program Once bit						
bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
alue	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
	U-1 U-1 U-1 bit	 U-1 U-1 U-1 U-1 PO = Program bit W = Writable	U-1 U-1 U-1 U-1	U-1 U-1 U-1 U U U U U U U U U U U U	- - - - - U-1 U-1 U-1 U-1 U-1 - - - - - U-1 U-1 U-1 U-1 U-1 - - - - - U-1 U-1 U-1 U-1 U-1 - - - - - PO = Program Once bit U = Unimplemented bit, read	- - - - - U-1 U-1 U-1 U-1 U-1 U-1 - - - - - - U-1 U-1 U-1 U-1 U-1 U-1 - - - - - - U-1 U-1 U-1 U-1 U-1 U-1 - - - - - - PO = Program Once bit U = Unimplemented bit, read as '0' U U

bit 23-1 Unimplemented: Read as '1'

bit 0 DMTDIS: DMT Disable bit

1 = DMT is disabled

0 = DMT is enabled

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	_	—	_	—	—	—	_
bit 23							bit 10
U-1	U-1	R/PO-1	U-1	U-1	R/PO-1	r-0	r-0
—	—	SPI2PIN ⁽¹⁾	—	_	SMB3EN ⁽²⁾	—	_
bit 15							bit 8
r-1	U-1	U-1	R/PO-1	R/PO-1	r-1	U-1	U-1
_		_	ALTI2C2	ALTI2C1		_	_
bit 7							bit (
Legend:		PO = Progran	n Once bit	r = Reserved	bit		
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Erased value '1' = Bit is set				'0' = Bit is cleared x = Bit is unknow			wn
bit 23-14	Unimpleme SPI2PIN: Ma 1 = Master S	nted: Read as aster SPI #2 Fa SPI2 uses PPS	' ₁ ' st I/O Pad Dis (I/O remap) to	make connect		e pins	
bit 23-14 bit 13 bit 12-11 bit 10	Unimpleme SPI2PIN: Ma 1 = Master S 0 = Master S Unimpleme SMB3EN: S	nted: Read as a ster SPI #2 Fa	⁽¹⁾ st I/O Pad Dis (I/O remap) to t connections	make connect with specified d		e pins	
bit 23-14 bit 13 bit 12-11 bit 10	Unimpleme SPI2PIN: Ma 1 = Master S 0 = Master S Unimpleme SMB3EN: S 1 = SMBus S 0 = Normal S	nted: Read as aster SPI #2 Fa SPI2 uses PPS SPI2 uses direct nted: Read as MBus 3.0 Leve 3.0 input levels SMBus input levels	⁽¹⁾ st I/O Pad Dis (I/O remap) to t connections (1) Is Enable bit ⁽²	make connect with specified d		e pins	
bit 23-14 bit 13 bit 12-11 bit 10 bit 9-8	Unimpleme SPI2PIN: Ma 1 = Master S 0 = Master S Unimpleme SMB3EN: S 1 = SMBus S 0 = Normal S Reserved: N	nted: Read as aster SPI #2 Fa SPI2 uses PPS SPI2 uses direct nted: Read as MBus 3.0 Leve 3.0 input levels SMBus input lev	⁽¹⁾ st I/O Pad Dis (I/O remap) to t connections (1) Is Enable bit ⁽²	make connect with specified d		e pins	
bit 23-14 bit 13 bit 12-11 bit 10 bit 9-8 bit 7	Unimpleme SPI2PIN: Ma 1 = Master S 0 = Master S Unimpleme SMB3EN: S 1 = SMBus S 0 = Normal S Reserved: M Reserved: M	nted: Read as aster SPI #2 Fa SPI2 uses PPS SPI2 uses direct nted: Read as MBus 3.0 Leve 3.0 input levels SMBus input lev Maintain as '0' Maintain as '1'	⁽¹⁾ st I/O Pad Dis (I/O remap) to t connections (1) Is Enable bit ⁽² vels	make connect with specified d		e pins	
bit 23-14 bit 13 bit 12-11 bit 10 bit 9-8 bit 7 bit 6-5	Unimpleme SPI2PIN: Ma 1 = Master S 0 = Master S Unimpleme SMB3EN: S 1 = SMBus S 0 = Normal S Reserved: M Reserved: M	nted: Read as aster SPI #2 Fa SPI2 uses PPS SPI2 uses direct nted: Read as MBus 3.0 Leve 3.0 input levels SMBus input lev Maintain as '0' Maintain as '1' nted: Read as	⁽¹⁾ st I/O Pad Dis (I/O remap) to t connections ⁽¹⁾ Is Enable bit ⁽² vels	make connect with specified d		e pins	
bit 23-14 bit 13 bit 12-11 bit 10 bit 9-8 bit 7	Unimpleme SPI2PIN: Ma 1 = Master S 0 = Master S Unimpleme SMB3EN: S 1 = SMBus S 0 = Normal S Reserved: N Reserved: N Unimpleme ALTI2C2: Al 1 = Default I	nted: Read as aster SPI #2 Fa SPI2 uses PPS SPI2 uses direct nted: Read as MBus 3.0 Leve 3.0 input levels SMBus input lev Maintain as '0' Maintain as '1'	⁽¹⁾ st I/O Pad Dis (I/O remap) to t connections (1) Is Enable bit ⁽²⁾ vels (1) n Mapping bit (2/SDA2 pins	make connect with specified d	levice pins	e pins	
bit 23-14 bit 13 bit 12-11 bit 10 bit 9-8 bit 7 bit 6-5	Unimpleme SPI2PIN: Ma 1 = Master S 0 = Master S Unimpleme SMB3EN: S 1 = SMBus S 0 = Normal S Reserved: N Reserved: N Unimpleme ALTI2C2: Al 1 = Default I 0 = Alternate ALTI2C1: Al 1 = Default I	nted: Read as aster SPI #2 Fa SPI2 uses PPS SPI2 uses direct nted: Read as MBus 3.0 Leve 3.0 input levels SMBus input lev Maintain as '0' Maintain as '1' nted: Read as ternate I2C2 Pir ocation for SCL	⁽¹⁾ st I/O Pad Dis (I/O remap) to t connections ⁽¹⁾ Is Enable bit ⁽²⁾ vels ⁽¹⁾ n Mapping bit (2/SDA2 pins CL2/SDA2 pins n Mapping bit (1/SDA1 pins	make connect with specified d	levice pins A2)	e pins	
bit 23-14 bit 13 bit 12-11 bit 10 bit 9-8 bit 7 bit 6-5 bit 4	Unimpleme SPI2PIN: Ma 1 = Master S 0 = Master S Unimpleme SMB3EN: S 1 = SMBus S 0 = Normal S Reserved: N Reserved: N Unimpleme ALTI2C2: Al 1 = Default I 0 = Alternate ALTI2C1: Al 1 = Default I 0 = Alternate	nted: Read as aster SPI #2 Fa SPI2 uses PPS SPI2 uses direct nted: Read as MBus 3.0 Leve 3.0 input levels SMBus input levels SMBus input levels Maintain as '0' Maintain as '1' nted: Read as ternate I2C2 Pil ocation for SCL e location for SCL ternate I2C1 Pil ocation for SCL	⁽¹⁾ st I/O Pad Dis (I/O remap) to t connections ⁽¹⁾ Is Enable bit ⁽²⁾ vels ⁽¹⁾ n Mapping bit (2/SDA2 pins CL2/SDA2 pins n Mapping bit (1/SDA1 pins	make connect with specified d	levice pins A2)	e pins	

2: SMBus mode is enabled by the SMEN bit (I2CxCONL[8]).

REGISTER 28-15: FALTREG CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1				
	—	_	_	_	_	_	_				
bit 23							bit 16				
L											
U-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1				
_		CTXT4[2:0]		_		CTXT3[2:0]					
bit 15	·						bit 8				
U-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1				
_		CTXT2[2:0]		<u> </u>		CTXT1[2:0]					
bit 7							bit 0				
Legend:		PO = Program	once bit								
R = Readabl	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Erased	value	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own				
bit 23-15	•	nted: Read as '1									
bit 14-12			ternate Workii	ng Register Set	#4 with Interru	upt Priority Level	s (IPL) bits				
	111 = Not as				-						
		110 = Alternate Register Set #4 is assigned to IPL Level 7									
		101 = Alternate Register Set #4 is assigned to IPL Level 6 100 = Alternate Register Set #4 is assigned to IPL Level 5									
		ate Register Set									
		ate Register Set									
		ate Register Set									
		ate Register Set	-	d to IPL Level 1							
bit 11	-	nted: Read as '1									
bit 10-8		-	ternate Workii	ng Register Set	#3 with Interru	upt Priority Level	s (IPL) bits				
	111 = Not as		#0 is secimus		,						
		ate Register Set ate Register Set									
		ate Register Set	•								
		ate Register Set									
		ate Register Set									
		ate Register Set									
hit 7		ate Register Set	•		I						
bit 7	•	nted: Read as '1		ng Dogiator Sof	#2 with Interry	upt Driarity Laval	o (IDI) hito				
bit 6-4	111 = Not as			ng Register Set	#2 with mem	upt Priority Level	S (IPL) DIIS				
		ate Register Set	#2 is assigne	d to IPI evel 7	,						
		ate Register Set	•								
		ate Register Set									
		ate Register Set									
		ate Register Set									
		ate Register Set ate Register Set	-								
bit 3		nted: Read as '1	-								
DILO	ommplemen	neu. Neau as 1									

REGISTER 28-15: FALTREG CONFIGURATION REGISTER (CONTINUED)

- bit 2-0
- CTXT1[2:0]: Specifies the Alternate Working Register Set #1 with Interrupt Priority Levels (IPL) bits
 - 111 = Not assigned
 - 110 = Alternate Register Set #1 is assigned to IPL Level 7
 - 101 = Alternate Register Set #1 is assigned to IPL Level 6
 - 100 = Alternate Register Set #1 is assigned to IPL Level 5
 - 011 = Alternate Register Set #1 is assigned to IPL Level 4 010 = Alternate Register Set #1 is assigned to IPL Level 3
 - 010 Alternate Register Set #1 is assigned to IPL Level S
 - 001 = Alternate Register Set #1 is assigned to IPL Level 2 000 = Alternate Register Set #1 is assigned to IPL Level 1

28.2 Device Identification

The dsPIC33CK64MP105 devices have two Identification registers, near the end of configuration memory space, that store the Device ID (DEVID) and Device Revision (DEVREV). These registers are used to determine the mask, variant and manufacturing information about the device. These registers are read-only and are shown in Register 28-16 and Register 28-17.

REGISTER 28-16: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	_		—	—	
bit 23							bit 16	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—		—				_	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R	R	R	R	
—		—			DEVR	EV[3:0]		
bit 7							bit 0	
Legend:								
R = Read-Only	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown	

bit 23-4 Unimplemented: Read as '0'

bit 3-0 DEVREV[3:0]: Device Revision bits

REGISTER 28-17: DEVID: DEVICE ID REGISTERS

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	_
bit 23							bit 16
R-1	R-0	R-0	R-0	R-1	R-1	R-1	R-0
			FAMI	D[7:0]			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEV[7:0] ⁽¹⁾			
bit 7							bit 0
Legend:							
R = Read-O	nly bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			own
bit 23-16	Unimplemer	nted: Read as ')'				
bit 15-8	FAMID[7:0]:	Device Family I	dentifier bits				
	1000 1110	= dsPIC33CK64	MP105 family	/			

bit 7-0 **DEV[7:0]:** Individual Device Identifier bits⁽¹⁾

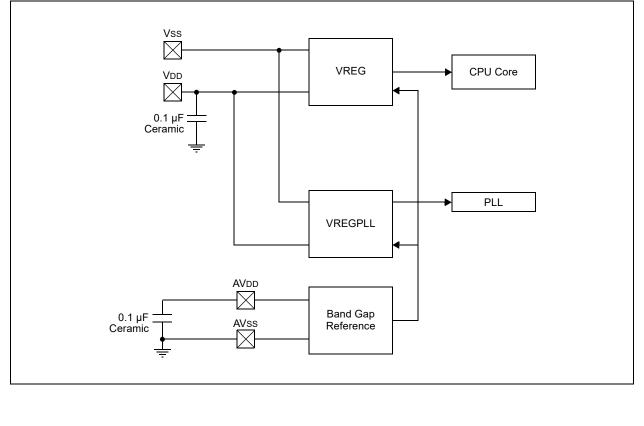
Note 1: See Table 28-3 for the list of Device Identifier bits.

TABLE 28-3: DEVICE IDs FOR THE dsPIC33CK64MP105 FAMILY

Device	DEVID
dsPIC33CK64MP105	0x8E12
dsPIC33CK64MP103	0x8E11
dsPIC33CK64MP102	0x8E10
dsPIC33CK32MP105	0x8E02
dsPIC33CK32MP103	0x8E01
dsPIC33CK32MP102	0x8E00

28.3 User OTP Memory

The dsPIC33CK64MP105 family devices contain 64 One-Time-Programmable (OTP) double words, located at addresses, 801700h through 8017FEh. Each 48-bit OTP double word can only be written one time. The OTP Words can be used for storing checksums, code revisions, manufacturing dates, manufacturing lot numbers or any other application-specific information.


The OTP area is not cleared by any erase command. This memory can be written only once.

28.4 On-Chip Voltage Regulator

The dsPIC33CK64MP105 family devices have a capacitorless internal voltage regulator to supply power to the core at 1.2V (typical). The voltage regulator, VREG, provides power for the core. The PLL is powered using a separate regulator, VREGPLL, as shown in Figure 28-1. The regulators have Low-Power and Standby modes for use in Sleep modes. For additional information about Sleep, see Section 27.2.1 "Sleep Mode".

When the regulators are in Low-Power mode (LPWREN = 1), the power available to the core is limited.

Before the LPWREN bit is set, the device should be placed into a lower power state by disabling peripherals and lowering CPU frequency (e.g., 8 MHz FRC without PLL). The output voltages of the two regulators can be controlled independently by the user, which gives the capability to save additional power during Sleep mode.

FIGURE 28-1: INTERNAL REGULATOR

REGISTER 28-18: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER

R/W-0	U-0						
LPWREN ⁽¹⁾	—	_	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	—	VREG3OV1	VREG3OV0	-	—	VREG10V1	VREG10V0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	LPWREN: Low-Power Mode Enable bit ⁽¹⁾ 1 = Voltage regulators are in Low-Power mode 0 = Voltage regulators are in Full Power mode
bit 14-6	Unimplemented: Read as '0'
bit 5-4	VREG3OV[1:0]: VREGPLL Voltage Control bits 11/00 = VouT = 1.5 * VBG = 1.2V 10 = VouT = 1.25 * VBG = 1.0V 01 = VouT = VBG = 0.8V
bit 3-2	Unimplemented: Read as '0'
bit 1-0	VREG1OV[1:0]: VREG Voltage Control bits 11/00 = VOUT = 1.5 * VBG = 1.2V 10 = VOUT = 1.25 * VBG = 1.0V 01 = VOUT = VBG = 0.8V

Note 1: Low-Power mode can only be used within the industrial temperature range. The CPU should be run at slow speed (8 MHz or less) before setting this bit.

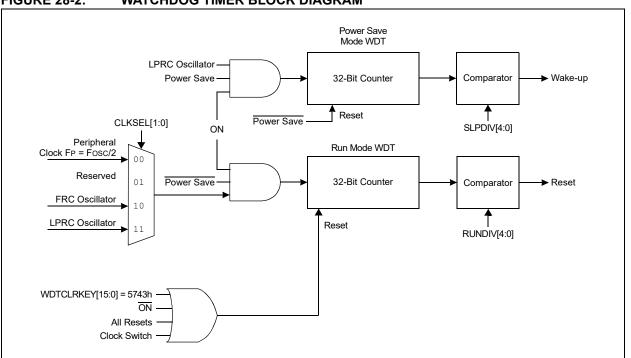
28.5 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse which resets the device. The BOR selects the clock source based on the device Configuration bit selections.

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON[5]) is '1'. If the crystal oscillator is being used, then a nominal delay of TFSCM is applied. Refer to Parameter SY35 in Table 31-26 of **Section 31.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON[1]) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage.


28.6 Dual Watchdog Timer (WDT)

Note 1: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Dual Watchdog Timer", (www.microchip.com/DS70005250) in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33 dual Watchdog Timer (WDT) is described in this section. Refer to Figure 28-2 for a block diagram of the WDT. The WDT, when enabled, operates from the internal Low-Power RC (LPRC) Oscillator clock source or a selectable clock source in Run mode. The WDT can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. The WDT can be configured in Windowed mode or Non-Windowed mode. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode (Power Save mode). If the WDT expires and issues a device Reset, the WTDO bit in RCON (Register 6-1) will be set.

The following are some of the key features of the WDT modules:

- Configuration or Software Controlled
- Separate User-Configurable Time-out Periods for Run and Sleep/Idle
- Can Wake the Device from Sleep or Idle
- User-Selectable Clock Source in Run mode
- Operates from LPRC in Sleep/Idle mode

FIGURE 28-2: WATCHDOG TIMER BLOCK DIAGRAM

R/W-0		U-0	R-y	R-y	R-y	R-y	R-y
ON ^(1,2)) _		RUNDIV4 ⁽³⁾	RUNDIV3 ⁽³⁾	RUNDIV2 ⁽³⁾	RUNDIV1 ⁽³⁾	RUNDIV0 ⁽³⁾
bit 15							bit 8
R	R	R-y	R-y	R-y	R-y	R-y	HS/R/W-0
CLKSEL1	(3,5) CLKSEL0 ^(3,5)	SLPDIV4 ⁽³⁾	SLPDIV3 ⁽³⁾	SLPDIV2 ⁽³⁾	SLPDIV1 ⁽³⁾	SLPDIV0 ⁽³⁾	WDTWINEN ⁽⁴⁾
bit 7							bit 0
Lowondi					• Configuration		
Legend:	- 6.1 - 6.14		re Settable bit	•	n Configuration		
R = Reada		W = Writable			nented bit, rea		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	ON: Watchdog	g Timer Enable	e bit ^(1,2)				
			imer if it is not Fimer if it was e			uration	
bit 14-13		 0 = Disables the Watchdog Timer if it was enabled in software Unimplemented: Read as '0' 					
bit 12-8	RUNDIV[4:0]:	Sleep and Idl	e Mode WDT P	ostscaler Statu	us bits ⁽³⁾		
	11111 = Divid	le by 2 ³¹ = 2,1	47,483,648				
	11110 = Divid	le by 2 ³⁰ = 1,0	73,741,824				
	 00001 = Divid 00000 = Divid						
bit 7-6	CLKSEL[1:0]	: WDT Run Mo	de Clock Seleo	ct Status bits ^{(3,}	<mark>.5</mark>)		
	11 = LPRC O						
	10 = FRC Osc						
	01 = Reserved 00 = SYSCLK						
bit 5-1			Mode WDT P	ostscaler Statu	is bits ⁽³⁾		
	11111 = Divid	le by 2 ³¹ = 2,1	47,483,648				
	11110 = Divid	le by 2 ³⁰ = 1,0	73,741,824				
	 00001 = Divid 00000 = Divid						
bit 0		,	er Window Ena	blo bit(4)			
DILU	1 = Enables V	•					
	0 = Disables V						
Note 1:	A read of this bit w	/ill result in a '1	' if the WDT is	enabled by the	e device confia	uration or by so	oftware.
2:	The user's softwar				0		
	following the instru					-	

REGISTER 28-19: WDTCONL: WATCHDOG TIMER CONTROL REGISTER LOW

- **3:** These bits reflect the value of the Configuration bits.
- 4: The WDTWINEN bit reflects the status of the Configuration bit if the bit is set. If the bit is cleared, the value is controlled by software.
- 5: The available clock sources are device-dependent.

REGISTER 28-20:	WDTCONH: WATCHDOG TIMER CONTROL REGISTER HIGH
-----------------	---

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			WDTCL	RKEY[15:8]			
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			WDTCL	.RKEY[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	nted bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleare	ed	x = Bit is unk	nown

bit 15-0 WDTCLRKEY[15:0]: Watchdog Timer Clear Key bits

To clear the Watchdog Timer to prevent a time-out, software must write the value, 0x5743, to this location using a single 16-bit write.

28.7 JTAG Interface

The dsPIC33CK64MP105 family devices implement a JTAG interface, which supports boundary scan device testing. Programming is not supported through the JTAG interface; only boundary scan is supported.

Note:	Refer to "Programming and Diagnostics"
	(www.microchip.com/DS70608) in the
	"dsPIC33/PIC24 Family Reference Manual"
	for further information on usage, configuration
	and operation of the JTAG interface.

28.8 In-Circuit Serial Programming™ (ICSP™)

The dsPIC33CK64MP105 family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33CK64MP105 Family Flash Programming Specification"* (DS70005352) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGC1 and PGD1
- PGC2 and PGD2
- PGC3 and PGD3

28.9 In-Circuit Debugger

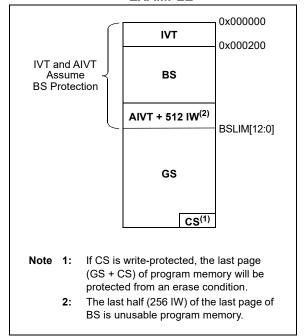
When the MPLAB[®] tool is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGCx (Emulation/Debug Clock) and PGDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGC1 and PGD1
- PGC2 and PGD2
- PGC3 and PGD3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGCx/PGDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGCx and PGDx).

28.10 Code Protection and CodeGuard™ Security


dsPIC33CK64MP105 family devices offer multiple levels of security for protecting individual intellectual property. The program Flash protection can be broken up into three segments: Boot Segment (BS), General Segment (GS) and Configuration Segment (CS). Boot Segment has the highest security privilege and can be thought to have limited restrictions when accessing other segments. General Segment has the least security and is intended for the end user system code. Configuration Segment contains only the device user configuration data, which is located at the end of the program memory space.

The code protection features are controlled by the Configuration registers, FSEC and FBSLIM. The FSEC register controls the code-protect level for each segment and if that segment is write-protected. The size of BS and GS will depend on the BSLIM[12:0] bits setting and if the Alternate Interrupt Vector Table (AIVT) is enabled. The BSLIM[12:0] bits define the number of pages for BS with each page containing 1024 IW. The smallest BS size is one page, which will consist of the Interrupt Vector Table (IVT) and 512 IW of code protection.

If the AIVT is enabled, the last page of BS will contain the AIVT and will not contain any BS code. With AIVT enabled, the smallest BS size is now two pages (2048 IW), with one page for the IVT and BS code, and the other page for the AIVT. Write protection of the BS does not cover the AIVT. The last page of BS can always be programmed or erased by BS code. The General Segment will start at the next page and will consume the rest of program Flash, except for the Flash Configuration Words. The IVT will assume GS security only if BS is not enabled. The IVT is protected from being programmed or page erased when either security segment has enabled write protection. The different device security segments are shown in Figure 28-3. Here, all three segments are shown, but are not required. If only basic code protection is required, then GS can be enabled independently or combined with CS, if desired.

SECURITY SEGMENTS EXAMPLE

NOTES:

29.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33CK64MP105 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (www.microchip.com/ DS70000157), which is available from the Microchip website (www.microchip.com).

The dsPIC33CK64MP105 family instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 29-1 lists the general symbols used in describingthe instructions.

The dsPIC33 instruction set summary in Table 29-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles, with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three

cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or twoword instruction. Moreover, double-word moves require two cycles.

Note: In dsPIC33CK64MP105 devices, read and Read-Modify-Write operations on non-CPU Special Function Registers require an additional cycle when compared to dsPIC30F, dsPIC33F, PIC24F and PIC24H devices.

Note: For more details on the instruction set, refer to the "16-Bit MCU and DSC Programmer's Reference Manual" (www.microchip.com/ DS70000157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
a ∈ {b, c, d}	a is selected from the set of values b, c, d
[n:m]	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)

TABLE 29-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

TABLE 29-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BFEXT	BFEXT	bit4,wid5,Ws,Wb	Bit Field Extract from Ws to Wb	2	2	None
		BFEXT	bit4,wid5,f,Wb	Bit Field Extract from f to Wb	2	2	None
7	BFINS	BFINS	bit4,wid5,Wb,Ws	Bit Field Insert from Wb into Ws	2	2	None
		BFINS	bit4,wid5,Wb,f	Bit Field Insert from Wb into f	2	2	None
		BFINS	bit4,wid5,lit8,Ws	Bit Field Insert from #lit8 to Ws	2	2	None

TABLE 29-2: INSTRUCTION SET OVERVIEW

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
9	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
		BRA	GE,Expr	Branch if Greater Than or Equal	1	1 (4)	None
		BRA	GEU,Expr	Branch if unsigned Greater Than or Equal	1	1 (4)	None
		BRA	GT,Expr	Branch if Greater Than	1	1 (4)	None
		BRA	GTU,Expr	Branch if Unsigned Greater Than	1	1 (4)	None
		BRA	LE,Expr	Branch if Less Than or Equal	1	1 (4)	None
		BRA	LEU,Expr	Branch if Unsigned Less Than or Equal	1	1 (4)	None
		BRA	LT,Expr	Branch if Less Than	1	1 (4)	None
		BRA	LTU,Expr	Branch if Unsigned Less Than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (4)	None
		BRA	OA,Expr	Branch if Accumulator A Overflow	1	1 (4)	None
		BRA	OB,Expr	Branch if Accumulator B Overflow	1	1 (4)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (4)	None
		BRA	SA,Expr	Branch if Accumulator A Saturated	1	1 (4)	None
		BRA	SB,Expr	Branch if Accumulator B Saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
		BRA	Z,Expr	Branch if Zero	1	1 (4)	None
		BRA		Computed Branch	1	4	None
10	DDDAK		Wn		1	4	None
	BREAK	BREAK	C 10.11.4	Stop User Code Execution	-		
11	BSET	BSET	f,#bit4	Bit Set f	1	1	None
10			Ws,#bit4	Bit Set Ws	1	1	None
12	BSW	BSW.C	Ws,Wb	Write C bit to Ws[Wb]	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws[Wb]	1	1	None
13	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
14	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
15	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
16	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws[Wb] to C	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws[Wb] to Z	1	1	Z
17	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
18	CALL	CALL	lit23	Call Subroutine	2	4	SFA
		CALL	Wn	Call Indirect Subroutine	1	4	SFA
		CALL.L	Wn	Call Indirect Subroutine (long address)	1	4	SFA
19	CLR	CLR	f	f = 0x0000	1	1	None
	0111		WREG	WREG = 0x0000	1	1	None
		CLR			1		
		CLR	Ws Acc,Wx,Wxd,Wy,Wyd,AW	Ws = 0x0000 B Clear Accumulator	1	1	None OA,OB,SA,S

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected	
20	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep	
21	COM	COM	f	f = f	1	1	N,Z	
		COM	f,WREG	WREG = f	1	1	N,Z	
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z	
22	CP	CP	f	Wd = Ws Compare f with WREG Compare Wb with lit8		1	C,DC,N,OV,Z	
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z	
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z	
23	CPO	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z	
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z	
24	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z	
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z	
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z	
25	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None	
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, Branch if =	1	1 (5)	None	
26	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None	
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, Branch if >	1	1 (5)	None	
27	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None	
		CPBLT	Wb,Wn,Expr	Compare Wb with Wn, Branch if <	1	1 (5)	None	
28	CPSNE	CPSNE CPSNE Wb, Wn Compare Wb with Wn, Skip if ≠		Compare Wb with Wn, Skip if \neq	1	1 (2 or 3)	None	
		CPBNE	Wb,Wn,Expr	Compare Wb with Wn, Branch if ≠	1	1 (5)	None	
29	CTXTSWP	CTXTSWP	#lit3	Switch CPU Register Context to Context Defined by lit3	1	2	None	
30	CTXTSWP	CTXTSWP	Wn	Switch CPU Register Context to Context Defined by Wn	1	2	None	
31	DAW.B	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С	
32	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z	
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z	
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z	
33	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z	
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z	
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z	
34	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None	
35	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV	
36	DIV.S ⁽²⁾	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV	
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV	
37	DIV.U ⁽²⁾	DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV	
	(2)	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV	
38	DIVF2(2)	(W1:W0 preserved)		1	6	N,Z,C,OV		
39	DIV2.S ⁽²⁾	DIV2.S	Wm,Wn	Signed 16/16-bit Integer Divide (W1:W0 preserved)	1	6	N,Z,C,OV	
		DIV2.SD	Wm,Wn	Signed 32/16-bit Integer Divide (W1:W0 preserved)	1	6	N,Z,C,OV	
40	DIV2.U ⁽²⁾	DIV2.U	Wm,Wn	Unsigned 16/16-bit Integer Divide (W1:W0 preserved)	1	6	N,Z,C,OV	
		DIV2.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide (W1:W0 preserved)	1	6	N,Z,C,OV	
41	DO	DO	#lit15,Expr	Do Code to PC + Expr, lit15 + 1 Times	2	2	None	
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 Times	2	2	None	

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
42	ED	ED Wm*Wm, Acc, Wx, Wy, Wxd		Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
43	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
44	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
46	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
47	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
48	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
49	FLIM	FLIM	Wb, Ws	Force Data (Upper and Lower) Range Limit without Limit Excess Result	1	1	N,Z,OV
		FLIM.V	Wb, Ws, Wd	Force Data (Upper and Lower) Range Limit with Limit Excess Result	1	1	N,Z,OV
50	GOTO	GOTO	Expr	Go to Address	2	4	None
		GOTO	Wn	Go to Indirect	1	4	None
		GOTO.L	Wn	Go to Indirect (long address)	1	4	None
51	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
52	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
53	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
54	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		LAC.D	Wso, #Slit4, Acc	Load Accumulator Double	1	2	OA,SA,OB,SE
56	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
57	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
58	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
59	MAX	MAX	Acc	Force Data Maximum Range Limit	1	1	N,OV,Z
		MAX.V	Acc, Wnd	Force Data Maximum Range Limit with Result	1	1	N,OV,Z
60	MIN	MIN	Acc	If Accumulator A Less than B Load Accumulator with B or vice versa	1	1	N,OV,Z
		MIN.V	Acc, Wd	If Accumulator A Less than B Accumulator Force Minimum Data Range Limit with Limit Excess Result	1	1	N,OV,Z
		MINZ	Асс	Accumulator Force Minimum Data Range Limit	1	1	N,OV,Z
		MINZ.V	Acc, Wd	Accumulator Force Minimum Data Range Limit with Limit Excess Result	1	1	N,OV,Z

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.
 2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
61	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
62	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit Literal to DSRPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit Literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws[9:0] to DSRPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws[7:0] to TBLPAG	1	1	None
64	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and Store Accumulator	1	1	None
65	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAE SA,SB,SAE
66	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
67	MSC	MSC Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB		Multiply and Subtract from Accumulator	1	1	OA,OB,OAE SA,SB,SAE
68	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = Signed(Wb) * Signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = Signed(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = Signed(Wb) * Signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = Signed(Wb) * Unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = Unsigned(Wb) * Unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = Signed(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2: The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
69	NEG	NEG Acc		Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
70	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
71	NORM	NORM	Acc, Wd	Normalize Accumulator	1	1	N,OV,Z
72	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
73	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
74	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
75	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
76	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 Times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 Times	1	1	None
77	RESET	RESET		Software Device Reset	1	1	None
78	RETFIE	RETFIE		Return from Interrupt	1	6 (5)	SFA
79	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	6 (5)	SFA
80	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
81	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
82	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
83	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
84	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
85	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
86	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
87	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
88	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

 Note 1:
 Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

 2:
 The divide instructions must be preceded with a "REPEAT #5" instruction, such that they are executed six consecutive times.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
89	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
91	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - Iit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
92	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
93	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
94	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
95	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
96	TBLRDH	TBLRDH	Ws,Wd	Read Prog[23:16] to Wd[7:0]	1	5	None
97	TBLRDL	TBLRDL	Ws,Wd	Read Prog[15:0] to Wd	1	5	None
98	TBLWTH	TBLWTH	Ws,Wd	Write Ws[7:0] to Prog[23:16]	1	2	None
99	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog[15:0]	1	2	None
101	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
104	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
105	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

30.0 DEVELOPMENT SUPPORT

Move a design from concept to production in record time with Microchip's award-winning development tools. Microchip tools work together to provide state of the art debugging for any project with easy-to-use Graphical User Interfaces (GUIs) in our free MPLAB[®] X and Atmel Studio Integrated Development Environments (IDEs), and our code generation tools. Providing the ultimate ease-of-use experience, Microchip's line of programmers, debuggers and emulators work seamlessly with our software tools. Microchip development boards help evaluate the best silicon device for an application, while our line of third party tools round out our comprehensive development tool solutions.

Microchip's MPLAB X and Atmel Studio ecosystems provide a variety of embedded design tools to consider, which support multiple devices, such as $PIC^{@}$ MCUs, $AVR^{@}$ MCUs, SAM MCUs and $dsPIC^{@}$ DSCs. MPLAB X tools are compatible with Windows[®], Linux[®] and Mac[®] operating systems while Atmel Studio tools are compatible with Windows.

Go to the following website for more information and details:

https://www.microchip.com/development-tools/

NOTES:

31.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33CK64MP105 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33CK64MP105 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias Storage temperature	
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss ⁽³⁾	-0.3V to +5.5V
Maximum current out of Vss pins	300 mA
Maximum current into Vod pins ⁽²⁾	300 mA
Maximum current sunk/sourced by any regular I/O pin	15 mA
Maximum current sunk/sourced by an I/O pin with increased current drive strength (RB1, RC8, RC9 and RD8)	25 mA
Maximum current sunk by a group of I/Os between two Vss pins ⁽⁴⁾	75 mA
Maximum current sourced by a group of I/Os between two VDD pins ⁽⁴⁾	75 mA
Maximum current sunk by all I/Os ^(2,5)	200 mA
Maximum current sourced by all I/Os ^(2,5)	200 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
- 3: See the "Pin Diagrams" section for the 5V tolerant pins.
- 4: Not applicable to AVDD and AVss pins.

5: For 28-pin packages, the maximum current sunk/sourced by all I/Os is limited by 150 mA.

31.1 DC Characteristics

TABLE 31-1: dsPIC33CK64MP105 FAMILY OPERATING CONDITIONS

VDD Range	Temperature Range	Maximum CPU Clock Frequency
3.0V to 3.6V	-40°C to +125°C	100 MHz

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Max.	Unit
Industrial Temperature Devices				
Operating Junction Temperature Range	TJ	-40	+125	°C
Operating Ambient Temperature Range	ТА	-40	+85	°C
Extended Temperature Devices				
Operating Junction Temperature Range	TJ	-40	+140	°C
Operating Ambient Temperature Range	ТА	-40	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD	PINT	+ Pi/o	W
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$		·	- > / a	
Maximum Allowed Power Dissipation	PDMAX	(TJ – 1	ΓΑ)/θJΑ	W

TABLE 31-3: PACKAGE THERMAL RESISTANCE⁽¹⁾

Package	Symbol	Тур.	Unit
48-Pin TQFP 7x7 mm	θJA	62.76	°C/W
48-Pin UQFN 6x6 mm	θJA	27.6	°C/W
36-Pin UQFN 5x5 mm	θJA	29.2	°C/W
28-Pin UQFN 6x6 mm	θJA	22.41	°C/W
28-Pin SSOP 5.30 mm	θJA	52.84	°C/W

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 31-4: OPERATING VOLTAGE SPECIFICATIONS

-40°C :	$\leq TA \leq +8$	ditions (unless otherwise stated): 5°C for Industrial 25°C for Extended				
Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
DC10	Vdd	Supply Voltage	3.0	3.6	V	
DC11	AVdd	Supply Voltage	Greater of: VDD – 0.3 or 3.0	Lesser of: VDD + 0.3 or 3.6	V	The difference between AVDD supply and VDD supply must not exceed ±300 mV at all times, including during device power-up
DC16		VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	Vss	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	—	V/ms	0V-3V in 100 ms
BO10	VBOR ⁽¹⁾	BOR Event on VDD Transition High-to-Low	2.68	2.99	V	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC and comparators) may have degraded performance. The VBOR parameter is for design guidance only and is not tested in manufacturing.

Parameter No.	Тур. ⁽¹⁾	Max.	Units			Conditions	
DC20	5.5	6.7	mA	-40°C			
	5.6	6.9	mA	+25°C	3.3V	10 MIPS (N = 1, N2 = 5, N3 = 2, $M = 50$, $E_{100} = 400$ MHz	
	6.3	9.5	mA	+85°C	3.3V	M = 50, Fvco = 400 MHz, Fpllo = 40 MHz)	
	8.5	18.0	mA	+125°C			
DC21	7.5	11.0	mA	-40°C			
	7.6	9.1	mA	+25°C	3.3V	20 MIPS (N = 1, N2 = 5, N3 = 1, M = 60, Fvco = 480 MHz,	
	8.3	11.7	mA	+85°C	3.3V	FPLLO = 280 MHz	
	10.5	20.2	mA	+125°C			
DC22	10.7	15.8	mA	-40°C			
	10.8	12.7	mA	+25°C	3.3V	40 MIPS (N = 1, N2 = 3, N3 = 1, M = 60, Fvco = 480 MHz,	
	11.6	15.3	mA	+85°C	3.3V	M = 60, FVCO = 460 MHz, FPLLO = 160 MHz)	
	13.9	23.8	mA	+125°C		,	
DC23	16.6	25.8	mA	-40°C			
	16.9	19.4	mA	+25°C	3.3V	70 MIPS (N = 1, N2 = 2, N3 = 1, M = 70, Fvco = 560 MHz,	
	17.7	22.0	mA	+85°C	3.3V	M = 70, FVCO = 500 MHz, FPLLO = 280 MHz)	
	20.0	30.4	mA	+125°C			
DC24	21.1	32.7	mA	-40°C			
	21.4	24.5	mA	+25°C	3.3V	90 MIPS (N = 1, N2 = 2, N3 = 1, M = 90, Except = 720 MHz	
	22.1	27.0	mA	+85°C	3.3V	M = 90, Fvco = 720 MHz, Fpllo = 360 MHz)	
	23.9	34.5	mA	+125°C			
DC25	20.7	33.9	mA	-40°C			
	21.0	24.1	mA	+25°C	2 21/	100 MIPS (N = 1, N2 = 1, N3 = 1,	
	21.4	26.2	mA	+85°C	3.3V	N3 = 1, M = 50, Fvco = 400 MHz, FPLLO = 400 MHz)	
	23.7	35.0	mA	+125°C	1		

TABLE 31-5: OPERATING CURRENT (IDD)⁽²⁾

Note 1: Data in the "Typ." column are for design guidance only and are not tested.

2: Base run current (IDD) is measured as follows:

- · Oscillator is switched to EC+PLL mode in software
- OSC1 pin is driven with external 8 MHz square wave with levels from 0.3V to VDD 0.3V
- OSC2 pin is configured as an I/O in the Configuration Words (OSCIOFCN (FOSC[2]) = 0)
- FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 01)
- Watchdog Timer is disabled (FWDTEN (FWDT[15]) = 0)
- · All I/O pins (except OSC1) are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
- JTAG is disabled (JTAGEN (FICD[5]) = 0)
- NOP instructions are executed

Parameter No.	Typ .(1	Max.	Units	Conditions		
DC30	4.5	6.5	mA	-40°C	3.3V	10 MIPS (N = 1, N2 = 5, N3 = 2, M = 50, Fvco = 400 MHz, FPLLO = 40 MHz)
	4.5	5.8	mA	+25°C		
	5.3	8.7	mA	+85°C		
	7.5	17.6	mA	+125°C		
DC31	5.1	7.8	mA	-40°C	3.3V	20 MIPS (N = 1, N2 = 5, N3 = 1, M = 50, Fvco = 400 MHz, FPLLo = 80 MHz)
	5.2	6.5	mA	+25°C		
	5.9	9.7	mA	+85°C		
	8.1	18.3	mA	+125°C		
DC32	6.7	9.2	mA	-40°C	3.3V	40 MIPS (N = 1, N2 = 3, N3 = 1, M = 60, Fvco = 480 MHz, FPLLO = 160 MHz)
	6.8	8.1	mA	+25°C		
	7.4	12.5	mA	+85°C		
	9.7	19.8	mA	+125°C		
DC33	8.9	12.5	mA	-40°C	3.3V	70 MIPS (N = 1, N2 = 2, N3 = 1, M = 70, Fvco = 560 MHz, FPLLO = 280 MHz)
	9.0	10.5	mA	+25°C		
	9.6	16.0	mA	+85°C		
	11.8	23.3	mA	+125°C		
DC34	10.6	16.6	mA	-40°C	3.3V	90 MIPS (N = 1, N2 = 2, N3 = 1, M = 90, Fvco = 720 MHz, FPLLO = 360 MHz)
	10.8	12.5	mA	+25°C		
	11.4	18.4	mA	+85°C		
	13.7	26.1	mA	+125°C		
DC35	10.2	15.3	mA	-40°C	3.3V	100 MIPS (N = 1, N2 = 1, N3 = 1, M = 50, Fvco = 400 MHz, FPLLO = 400 MHz)
	10.3	12.0	mA	+25°C		
	10.9	17.5	mA	+85°C		
	13.2	25.2	mA	+125°C		

TABLE 31-6: IDLE CURRENT (IIDLE)⁽²⁾

Note 1: Data in the "Typ." column are for design guidance only and are not tested.

2: Base Idle current (IIDLE) is measured as follows:

- Oscillator is switched to EC+PLL mode in software
- OSC1 pin is driven with external 8 MHz square wave with levels from 0.3V to VDD 0.3V
- OSC2 is configured as an I/O in the Configuration Words (OSCIOFCN (FOSC[2]) = 0)
- FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 01)
- Watchdog Timer is disabled (FWDTEN (FWDT[15]) = 0)
- · All I/O pins (except OSC1) are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
- JTAG is disabled (JTAGEN (FICD[5]) = 0)
- NOP instructions are executed

Parameter No.	Тур. ⁽¹⁾	Max.	Units	Conditions			
DC40 ⁽³⁾	0.3	0.7	mA	-40°C			
	0.5	1.3	mA	+25°C	3.3V	VREGS bit (RCON[8]) = 0	
	1.5	4.7	mA	+85°C			
DC41	0.9	_	mA	-40°C			
	1.1		mA	+25°C	3.3V	VREGS bit (RCON[8]) = 1	
	2.3	-	mA	+85°C	5.50		
	4.7	13.9	mA	+125°C			

TABLE 31-7:POWER-DOWN CURRENT (IPD)

Note 1: Data in the "Typ." column are for design guidance only and are not tested.

- 2: Base Sleep current (IPD) is measured with:
 - OSC1 pin is driven with external 8 MHz square wave with levels from 0.3V to VDD 0.3V
 - OSC2 is configured as an I/O in the Configuration Words (OSCIOFCN (FOSC[2]) = 0)
 - Low-Power mode for the regulators is enabled (LPWREN (VREGCON[15]) = 1)
 - FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 01)
 - Watchdog Timer is disabled (FWDTEN (FWDT[15]) = 0)
 - · All I/O pins (except OSC1) are configured as outputs and driving low
 - No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
 - JTAG is disabled (JTAGEN (FICD[5]) = 0)
- **3:** The Regulator Standby mode, when the VREGS bit = 0, is operational only in industrial temperature range: $-40^{\circ}C \le TA \le +85^{\circ}C$.

Parameter No.	Тур. ⁽¹⁾	Doze Ratio	Units	Conditions				
DC70	13.4	1:2	mA	-40°C				
	9.1	1:128	mA	-40 C				
	13.6	1:2	mA	1.25°C				
	9.2	1:128	mA	+25°C	2 2)/	70 MIPS (N = 1, N2 = 2, N3 = 1, $M = 70$ Figure 560 MHz		
	14.1	1:2	mA	+85°C	3.3V	M = 70, Fvco = 560 MHz, FPLLO = 280 MHz)		
	9.9	1:128	mA	+05 C				
	16.4	1:2	mA	+125°C				
	12.1	1:128	mA	+125 C				
DC71	16.6	1:2	mA	-40°C				
	10.5	1:128	mA	-40 C				
	16.9	1:2	mA	+25°C				
	10.6	1:128	mA	+23 C	3.3V	100 MIPS (N = 1, N2 = 1, N3 = 1, M = 50, Fvco = 400 MHz,		
	17.2	1:2	mA	+85°C	- 3.3V	FPLLO = 400 MHz		
	11.3	1:128	mA	+05 C				
	19.5	1:2	mA	+125°C				
	13.5	1:128	mA	+120 C				

TABLE 31-8: DOZE CURRENT (IDOZE)

Note 1: Data in the "Typ." column are for design guidance only and are not tested.

Parameter No.	Тур.	Units	Conditions		
DC61	1	μA	-40°C		
	2	μA	+25°C	2.21/	
	4	μA	+85°C	3.3V	
	11	μA	+125°C		

TABLE 31-9: WATCHDOG TIMER DELTA CURRENT (△IwDT)⁽¹⁾

Note 1: The \triangle IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are for design guidance only and are not tested.

Parameter No.	Тур.	Max.	Units			Conditions
DC100	5.96	6.6	mA	-40°C		PWM Output Frequency = 500 kHz,
	5.99	6.7	mA	+25°C	2 2)/	PWM Input (AFPLLO = 500 MHz)
	5.92	6.9	mA	+85°C	3.3V	(AVCO = 1000 MHz, PLLFBD = 125,
	5.47	7	mA	+125°C		APLLDIV1 = 2)
DC101	4.89	5.4	mA	-40°C		PWM Output Frequency = 500 kHz,
	4.91	5.5	mA	+25°C	3.3V	PWM Input (AFPLLO = 400 MHz),
	4.85	5.7	mA	+85°C	3.3V	(AVCO = 400 MHz, PLLFBD = 50,
	4.42	5.7	mA	+125°C		APLLDIV1 = 1)
DC102	2.77	3.7	mA	-40°C		PWM Output Frequency = 500 kHz,
	2.75	3.7	mA	+25°C	3.3V	PWM Input (AFPLLO = 200 MHz),
	2.7	3.7	mA	+85°C	3.3V	(AVCO = 400 MHz, PLLFBD = 50,
	2.26	3.7	mA	+125°C		APLLDIV1 = 2)
DC103	1.67	2	mA	-40°C		PWM Output Frequency = 500 kHz,
	1.66	2.2	mA	+25°C	3.3V	PWM Input (AFPLLO = 100 MHz),
	1.63	2.3	mA	+85°C	3.3V	(AVCO = 400 MHz, PLLFBD = 50,
	1.17	2.3	mA	+125°C		APLLDIV1 = 4)

TABLE 31-10: PWM DELTA CURRENT⁽¹⁾

Note 1: APLL current is not included. The APLL current will be the same if more than one PWM is running. Listed delta currents are for only one PWM instance when HREN (PGxCONL[7]) = 0. All parameters are characterized but not tested during manufacturing.

Parameter No.	Тур.	Max.	Units			Conditions ⁽¹⁾		
DC110	5.93	6.6	mA	-40°C				
	5.95	7	mA	+25°C	3.3V	AFPLLO = 500 MHz (AVCO = 1000 MHz, PLLFBD = 125,		
	6.15	7.6	mA	+85°C	3.3V	AVCO - 1000 MH2, PLLPBD - 123, APLLDIV1 = 2)		
	7.15	9	mA	+125°C				
DC111	2.72	3.3	mA	-40°C				
	2.74	3.7	mA	+25°C	3.3V	AFPLLO = 400 MHz (AVCO = 400 MHz, PLLFBD = 50,		
	2.92	4.3	mA	+85°C	5.50	AVCO = 400 Mil2, FLEFBD = 30, APLLDIV1 = 1)		
	3.87	5.6	mA	+125°C				
DC112	1.39	2.7	mA	-40°C				
	1.49	2.7	mA	+25°C	3.3V	$AF_{PLLO} = 200 \text{ MHz}$		
	1.65	3	mA	+85°C	3.3V	(AVCO = 400 MHz, PLLFBD = 50, APLLDIV1 = 2)		
	2.6	4.4	mA	+125°C				
DC113	0.79	1.1	mA	-40°C				
	0.84	1.4	mA	+25°C	3.3∨	$AF_{PLLO} = 100 \text{ MHz}$		
	0.96	2.3	mA	+85°C	3.30	(AVCO = 400 MHz, PLLFBD = 50, APLLDIV1 = 4)		
	1.93	3.6	mA	+125°C		, ,		

TABLE 31-11: APLL DELTA CURRENT

Note 1: The APLL current will be the same if more than one PWM or DAC is run to the APLL clock. All parameters are characterized but not tested during manufacturing.

TABLE 31-12: ADC DELTA CURRENT⁽¹⁾

Parameter No.	Тур.	Max.	Units	Conditions			
DC120	3.61	4	mA	-40°C			
	3.68	4.1	mA	+25°C	3.3V	TAD = 14.3 ns	
	3.69	4.2	mA	+85°C	3.3V	(3.5 Msps conversion rate)	
	3.89	4.6	mA	+125°C			

Note 1: Shared core continuous conversion. TAD = 14.3 nS (3.5 Msps conversion rate). Listed delta currents are for only one ADC core. All parameters are characterized but not tested during manufacturing.

Parameter No.	Тур.	Max.	Units	Conditions			
DC130	1.2	1.35	mA	-40°C			
	1.23	1.65	mA	+25°C	3.3V	A 5-11 A @ 500 MUL-(1)	
	1.23	1.65	mA	+85°C	3.3V	AFpllo @ 500 MHz ⁽¹⁾	
	1.24	1.65	mA	+125°C			

TABLE 31-13: COMPARATOR + DAC DELTA CURRENT

Note 1: APLL current is not included. Listed delta currents are for only one comparator + DAC instance. All parameters are characterized but not tested during manufacturing.

TABLE 31-14: OP AMP DELTA CURRENT⁽¹⁾

Parameter No.	Тур.	Max.	Units	Conditions	
DC140	0.25	1	mA	-40°C	
	0.27	1.1	mA	+25°C	3.3V
	0.32	1.4	mA	+85°C	3.3V
	0.46	1.7	mA	+125°C	

Note 1: Listed delta currents are for only one op amp instance. All parameters are characterized but not tested during manufacturing.

TABLE 31-15: I/O PIN INPUT SPECIFICATIONS

Operating	Conditions	(unless	otherwise	stated):
- p		(

 $3.0V \leq V\text{DD} \leq 3.6\text{V}\text{,}$

 $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended

-40°C ≤	IA ≤ +125	°C for Extended	-			
Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
DI10	VIL	Input Low-Level Voltage				
		Any I/O Pin and MCLR	Vss	0.2 Vdd	V	
		I/O Pins with SDAx, SCLx	Vss	0.3 Vdd	V	SMBus disabled
		I/O Pins with SDAx, SCLx	Vss	0.8	V	SMBus enabled
		I/O Pins with SDAx, SCLx	Vss	0.8	V	SMBus 3.0 enabled
DI20	VIH	Input High-Level Voltage ⁽¹⁾				
		I/O Pins Not 5V Tolerant	0.8 Vdd	Vdd	V	
		I/O Pins 5V Tolerant and MCLR	0.8 Vdd	5.5	V	
		I/O Pins 5V Tolerant with SDAx, SCLx	0.8 Vdd	5.5	V	SMBus disabled
		I/O Pins 5V Tolerant with SDAx, SCLx	2.1	5.5	V	SMBus enabled
		I/O Pins 5V Tolerant with SDAx, SCLx	1.35	Vdd	V	SMBus 3.0 enabled
		I/O Pins Not 5V Tolerant with SDAx, SCLx	0.8 Vdd	Vdd	V	SMBus disabled
		I/O Pins Not 5V Tolerant with SDAx, SCLx	2.1	Vdd	V	SMBus enabled
		I/O Pins Not 5V Tolerant with SDAx, SCLx	1.35	Vdd	V	SMBus 3.0 enabled
DI30	ICNPU	Input Current with Pull-up Resistor Enabled ⁽²⁾	175	545	μA	VDD = 3.3V, VPIN = VSS
DI31	ICNPD	Input Current with Pull-Down Resistor Enabled ⁽²⁾	65	360	μA	VDD = 3.3V, VPIN = VDD
DI50	lı∟	Input Leakage Current	-1	—	μA	VPIN = VSS
		I/O Pins and MCLR Pin	—	1	μA	VPIN = VDD

Note 1: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

2: Characterized but not tested.

TABLE 31-16: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

3.0V ≤ \ -40°C ≤	$\label{eq:state} \begin{array}{l} \mbox{Operating Conditions (unless otherwise stated):} \\ 3.0V \leq V_{DD} \leq 3.6V, \\ -40^{\circ}C \leq T_A \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq T_A \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	-5 ^(1,4)	mA	This parameter applies to all pins	
DI60b	Іісн	Input High Injection Current	0	+5 ^(2,3,4)	mA	This parameter applies to all pins, except all 5V tolerant pins and SOSCI	
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁵⁾	+20 ⁽⁵⁾	mA	Absolute instantaneous sum of all ± input injection currents from all I/O pins Σ (IICL + IICH) $\leq \Sigma$ IICT	

Note 1: VIL Source < (Vss - 0.3).

- 2: VIH Source > (VDD + 0.3) for non-5V tolerant pins only.
- **3:** 5V tolerant pins do not have an internal high-side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 4: Injection currents can affect the ADC results.
- 5: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted in the sum.

TABLE 31-17: I/O PIN OUTPUT SPECIFICATIONS

3.0V ≤ V -40°C ≤ 1	DD ≤ 3.6V, TA ≤ +85°C f	ns (unless otherwise stated): for Industrial for Extended			
Param.	Symbol	Characteristic	Тур. ⁽¹⁾	Units	Conditions
DO10	Vol	Sink Driver Voltage	0.2	V	ISINK = 3.0 mA, VDD = 3.3V
			0.4	V	ISINK = 6.0 mA, VDD = 3.3V
			0.6	V	ISINK = 9.0 mA, VDD = 3.3V
		Sink Driver Voltage	0.25	V	ISINK = 6.0 mA, VDD = 3.3V
		for RB1, RC8, RC9 and RD8 pins	0.5	V	ISINK = 12.0 mA, VDD = 3.3V
			0.75	V	ISINK = 18.0 mA, VDD = 3.3V
DO20	Vон	Source Driver Voltage	3.1	V	ISOURCE = 3.0 mA, VDD = 3.3V
			2.9	V	ISOURCE = 6.0 mA, VDD = 3.3V
			2.7	V	ISOURCE = 9.0 mA, VDD = 3.3V
		Source Driver Voltage	3.1	V	ISOURCE = 6.0 mA, VDD = 3.3V
		for RB1, RC8, RC9 and RD8 pins	2.8	V	ISOURCE = 12.0 mA, VDD = 3.3V
			2.6	V	ISOURCE = 18.0 mA, VDD = 3.3V

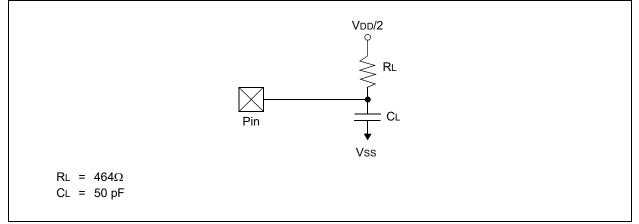
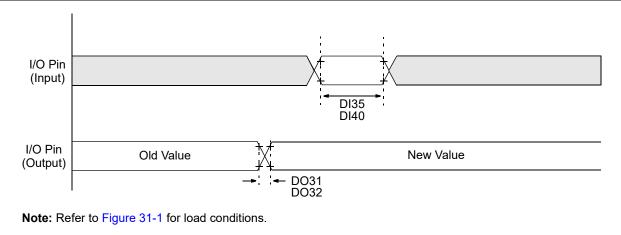

Note 1: Data in the "Typ." column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 31-18: PROGRAM FLASH MEMORY SPECIFICATIONS


3.0V ≤ V -40°C ≤	$\begin{array}{l} \textbf{Operating Conditions (unless otherwise stated):}\\ 3.0V \leq VDD \leq 3.6V,\\ -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial}\\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} \end{array}$								
Param No. Symbol Characteristic Min. Max. Units Conditions									
		Program Flash Memory							
D130	Ер	Cell Endurance	10,000	_	E/W				
D134	TRETD	Characteristic Retention	20	_	Year				
D137a	TPE	Self-Timed Page Erase Time	—	20	ms				
D137b	TCE	Self-Timed Chip Erase Time		20	ms				
D138a	Tww	Self-Timed Double-Word Write Cycle Time	—	20	μs	6 bytes, data are not all ʻ1's			
D138b	TRW	Self-Timed Row Write Cycle Time	—	1.28	ms	384 bytes, data are not all '1's			

31.2 AC Characteristics and Timing Parameters

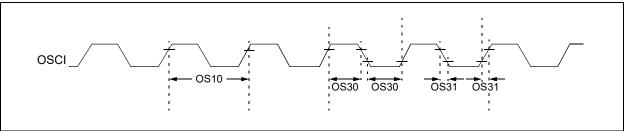


TABLE 31-19: I/O TIMING REQUIREMENTS

$3.0V \le VDD \le -40^{\circ}C \le TA \le 40^{\circ}$	•				
Param No.	Symbol	Characteristic	Min.	Max.	Units
DO31	TIOR	Port Output Rise Time ⁽¹⁾	_	10	ns
DO32	TIOF	Port Output Fall Time ⁽¹⁾	_	10	ns
DI35	TINP	INTx Input Pins High or Low Time	20	—	ns
DI40	Trbp	I/O and CNx Inputs High or Low Time	2	—	Тсү

Note 1: This parameter is characterized but not tested in manufacturing.

FIGURE 31-3: EXTERNAL CLOCK TIMING

TABLE 31-20: EXTERNAL CLOCK TIMING REQUIREMENTS

3.0V ≤ V -40°C ≤ 1	$\begin{array}{l} \textbf{Operating Conditions (unless otherwise stated):}\\ 3.0V \leq V_{DD} \leq 3.6V,\\ -40^{\circ}C \leq T_A \leq +85^{\circ}C \text{ for Industrial}\\ -40^{\circ}C \leq T_A \leq +125^{\circ}C \text{ for Extended} \end{array}$								
Param No.	Sym	Characteristic	Min.	Max.	Units	Conditions			
OS10	Fin	External CLKI Frequency	DC	64	MHz	EC			
		Oscillator Crystal Frequency	3.5	10	MHz	XT			
			10	32	MHz	HS			
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x OS10	0.55 x OS10	ns	EC			
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time ⁽¹⁾	—	10	ns	EC			

Note 1: This parameter is characterized but not tested in manufacturing.

TABLE 31-21: PLL CLOCK TIMING SPECIFICATIONS

3.0V ≤ VDD -40°C ≤ TA	•				
Param No.	Symbol	Characteristic	Min.	Max.	Units
OS50	Fplli	PLL Input Frequency Range	8	64	MHz
OS51	Fpfd	Phase-Frequency Detector Input Frequency (after first divider)	8	Fvco/16	MHz
OS52	Fvco	VCO Output Frequency	400	1600	MHz
OS53	TLOCK	Lock Time for PLL ⁽¹⁾	_	250	μS

Note 1: This parameter is characterized but not tested in manufacturing.

TABLE 31-22: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS

3.0V ≤ VDD -40°C ≤ TA	•				
Param No.	Symbol	Characteristic	Min.	Max.	Units
OS60	Fplli	APLL Input Frequency Range	8	64	MHz
OS61	Fpfd	Phase-Frequency Detector Input Frequency (after first divider)	8	Fvco/16	MHz
OS62	Fvco	VCO Output Frequency	400	1600	MHz
OS63	TLOCK	Lock Time for APLL ⁽¹⁾	—	250	μS

Note 1: This parameter is characterized but not tested in manufacturing.

TABLE 31-23: FRC OSCILLATOR SPECIFICATIONS

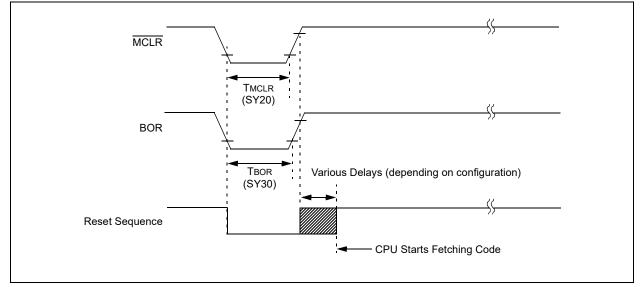
$\begin{array}{l} \textbf{Operating Conditions (unless otherwise stated):} \\ 3.0V \leq VDD \leq 3.6V, \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} \end{array}$										
Param No.SymbolCharacteristicMinTyp(2)MaxUnitsConditions										
F20	AFRC	FRC Accuracy @ 8 MHz ⁽¹⁾	-2.0		2.0	%	$-40^\circ C \le T A \le -5^\circ C$			
			-1.5	—	1.5	%	$\textbf{-5^{\circ}C} \leq \textbf{TA} \leq \textbf{85^{\circ}C}$			
			-2.0	—	2.0	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$			
F21	TFRC	FRC Oscillator Start-up Time ⁽³⁾		—	15	μS				
F22										

Note 1: To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB) must be kept to a minimum.

2: Data in the "Typ" column are 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: This parameter is characterized but not tested in manufacturing.

TABLE 31-24: LPRC OSCILLATOR SPECIFICATIONS


$3.0V \le VDD \le -40^{\circ}C \le TA \le +$					
Param No.	Symbol	Characteristic	Min	Мах	Units
F30	Alprc	LPRC Accuracy @ 32 kHz	-30	30	%
F31	TLPRC	LPRC Oscillator Start-up Time ⁽¹⁾	—	50	μS

Note 1: This parameter is characterized but not tested in manufacturing.

TABLE 31-25: BFRC OSCILLATOR SPECIFICATIONS

$3.0V \le VDD \le 3.0V \le 40^{\circ}C \le TA \le +$	•						
Param No.	Symbol	Characteristic	Min	Мах	Units		
F40 ABFRC BFRC Accuracy @ 8 MHz -17 17 %							

FIGURE 31-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

TABLE 31-26: RESET AND BROWN-OUT RESET REQUIREMENTS

3.0V ≤ V -40°C ≤	ng Condition $DD \le 3.6V$, $TA \le +85^{\circ}C$ fo $TA \le +125^{\circ}C$ f					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset		1.5	-	μs
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μs
SY30	TBOR	BOR Pulse Width (low)	1	_	—	μs
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	—	40	μs

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in the "Typ." column are at 3.3V, +25°C unless otherwise stated.

dsPIC33CK64MP105 FAMILY

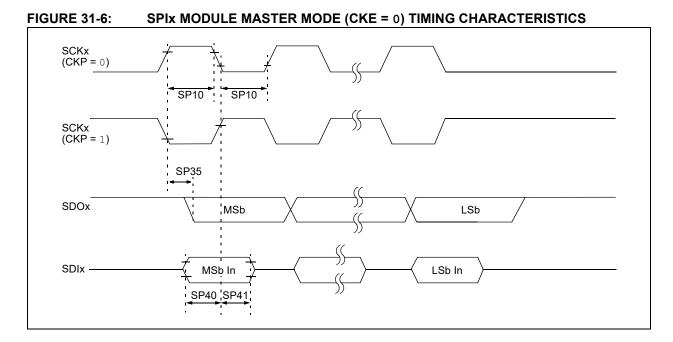
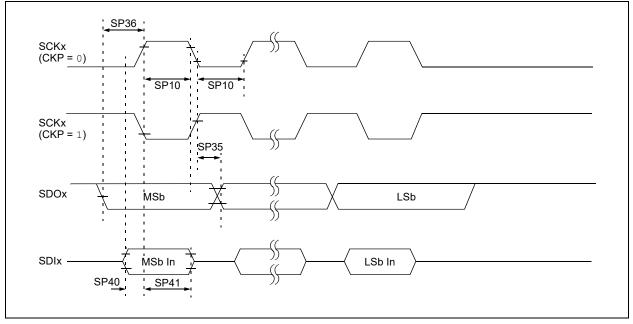
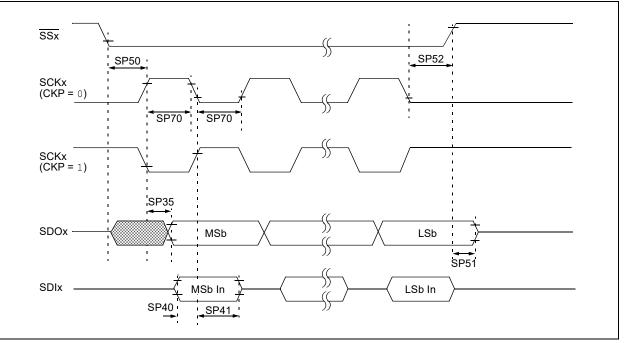

FIGURE 31-5: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

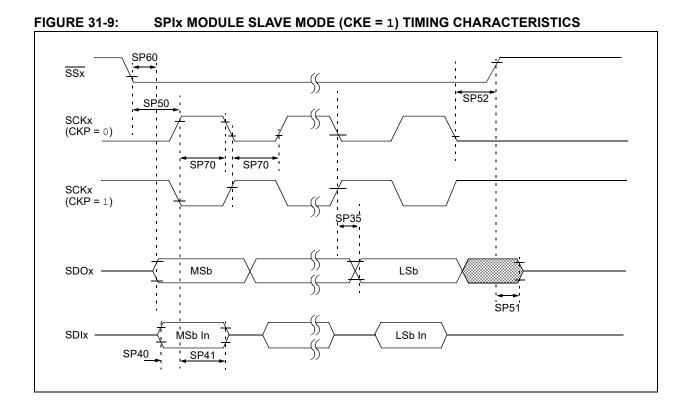
TABLE 31-27: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS


$3.0V \le VDD$ -40°C \le TA :	•				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Max.	Units
MP10	Fin	PWM Input Frequency ⁽²⁾	_	500	MHz
MP20	TFD	Fault Input ↓ to PWMx I/O Change	—	26	ns
MP30	Тғн	Fault Input Pulse Width	8	_	ns

Note 1: These parameters are characterized but not tested in manufacturing.

2: Input frequency of 500 MHz must be used for High-Resolution mode.



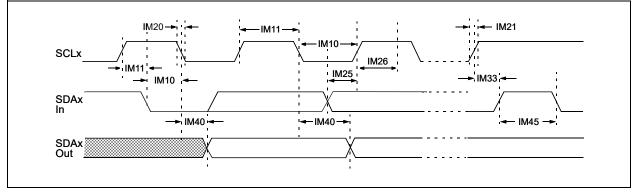

TABLE 31-28: SPIX MODULE MASTER MODE TIMING REQUIREMENTS

3.0V ≤ VDD -40°C ≤ TA	$\begin{array}{l} \textbf{Operating Conditions (unless otherwise stated):} \\ 3.0V \leq V \text{DD} \leq 3.6V, \\ -40^\circ\text{C} \leq \text{TA} \leq +85^\circ\text{C} \text{ for Industrial} \\ -40^\circ\text{C} \leq \text{TA} \leq +125^\circ\text{C} \text{ for Extended} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min	Мах	Units		
SP10	TscL, TscH	SCKx Output Low or High Time	15		ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	20	ns		
SP36	TDOV2sc, TDOV2scL	SDOx Data Output Setup to First SCKx Edge	3	—	ns		
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	15	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 31-8: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 31-29: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS


$3.0V \le VDD$ -40°C \le TA	•				
Param.No.	Symbol	Characteristics ⁽¹⁾	Min	Max	Units
SP70	TscL, TscH	SCKx Input Low Time or High Time	15	_	ns
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	20	ns
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	ns
SP41	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	15	_	ns
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	_	ns
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	8	50	ns
SP52	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—	ns
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	50	ns

Note 1: These parameters are characterized but not tested in manufacturing.

dsPIC33CK64MP105 FAMILY

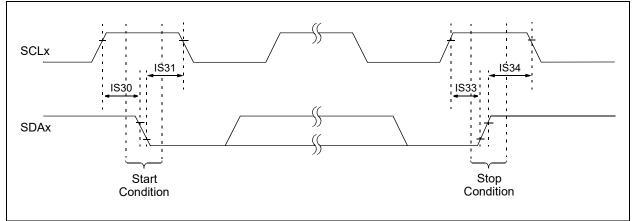
FIGURE 31-10: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

TABLE 31-30: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

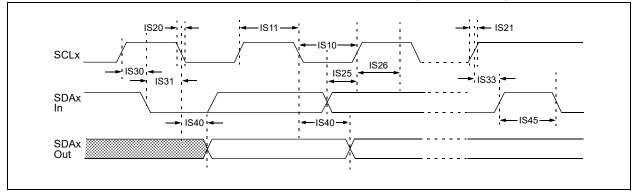
otherwise stated):	Operating Conditions
--------------------	----------------------

 $3.0V \leq V\text{DD} \leq 3.6\text{V}\text{,}$

-40°C \leq TA \leq +85°C for Industrial


-40°C \leq TA \leq +125°C for Extended

Param No.	Symbol	Characte	eristics	Min. ⁽¹⁾	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy * (BRG + 1)		μs	
			400 kHz mode	TCY * (BRG + 1)		μs	
			1 MHz mode	TCY * (BRG + 1)		μs	
IM11	THI:SCL	Clock High Time	100 kHz mode	TCY * (BRG + 1)		μs	
			400 kHz mode	TCY * (BRG + 1)		μs	
			1 MHz mode	TCY * (BRG + 1)		μs	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	
		Fall Time	400 kHz mode	20 x (VDD/5.5V)	300	ns	
			1 MHz mode	20 x (VDD/5.5V)	120	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode	_	120	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode	50		ns	
IM26	THD:DAT	Data Input	100 kHz mode	0		μs	
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode	0	0.3	μs	
IM30 Tsu	TSU:STA	Start Condition	100 kHz mode	Tcy * (BRG + 1)		μs	Only relevant for Repeated
		Setup Time	400 kHz mode	Tcy * (BRG + 1)		μs	Start condition
			1 MHz mode	Tcy * (BRG + 1)		μs	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy * (BRG + 1)		μs	After this period, the first clock
		Hold Time	400 kHz mode	Tcy * (BRG + 1)		μs	pulse is generated
			1 MHz mode	Tcy * (BRG + 1)		μs	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy * (BRG + 1)		μs	
		Setup Time	400 kHz mode	Tcy * (BRG + 1)		μs	
			1 MHz mode	Tcy * (BRG + 1)		μs	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy * (BRG + 1)		ns	
		Hold Time	400 kHz mode	Tcy * (BRG + 1)		ns	
			1 MHz mode	Tcy * (BRG + 1)		ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3450	ns	
		from Clock	400 kHz mode	_	900	ns	
			1 MHz mode	_	450	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	The amount of time the bus
			400 kHz mode	1.3		μs	must be free before a new
			1 MHz mode	0.5	_	μs	transmission can start
IM50	Св	Bus Capacitive	100 kHz mode	_	400	pF	
		Loading	400 kHz mode	_	400	pF	1
			1 MHz mode	_	10	pF	1
IM51	Tpgd	Pulse Gobbler D	elay	65	390	ns	

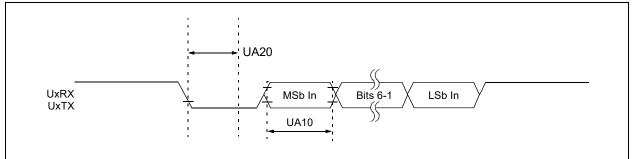

Note 1: BRG is the value of the I^2C Baud Rate Generator.

dsPIC33CK64MP105 FAMILY

FIGURE 31-12: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

TABLE 31-31: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Operating Conditions (unless otherwise stated):


 $3.0V \le VDD \le 3.6V$,

-40°C \leq TA \leq +85°C for Industrial

-40°C \leq TA \leq +125°C for Extended

Param No.	Symbol	Charac	teristics	Min.	Max.	Units	Conditions
IS10	TLO:SCL	Clock Low	100 kHz mode	4.7		μs	CPU clock must be minimum 800 kHz
		Time	400 kHz mode	1.3	_	μs	CPU clock must be minimum 3.2 MHz
			1 MHz mode	0.5	_	μs	
IS11	THI:SCL	Clock High	100 kHz mode	4.0	_	μs	CPU clock must be minimum 800 kHz
		Time	400 kHz mode	0.6	_	μs	CPU clock must be minimum 3.2 MHz
			1 MHz mode	0.26		μs	
IS20	TF:SCL	SDAx and	100 kHz mode	_	300	ns	
		SCLx Fall	400 kHz mode	20 x (VDD/5.5V)	300	ns	
		Time	1 MHz mode	20 x (VDD/5.5V)	120	ns	
IS21	TR:SCL	SDAx and	100 kHz mode		1000	ns	
		SCLx Rise	400 kHz mode	20 + 0.1 Св	300	ns	
		Time	1 MHz mode		120	ns]
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode	50		ns	
IS26	THD:DAT	Data Input	100 kHz mode	0		ns	
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode	0	0.3	μs	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	_	μs	Only relevant for Repeated Start
		Setup Time	400 kHz mode	0.6		μs	condition
			1 MHz mode	0.26	_	μs	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first clock pulse is
		Hold Time	400 kHz mode	0.6	_	μs	generated
			1 MHz mode	0.26	_	μs	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.0		μs	
		Setup Time	400 kHz mode	0.6	_	μs	
			1 MHz mode	0.26	_	μs	
IS34	THD:STO	-	100 kHz mode	> 0		μs	
		Hold Time	400 kHz mode	> 0	_	μs	
			1 MHz mode	> 0	_	μs	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3.45	μs	
		from Clock	400 kHz mode	0	0.9	μs	
			1 MHz mode	0	0.45	μs	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	The amount of time the bus must be
			400 kHz mode	1.3		μs	free before a new transmission can
			1 MHz mode	0.5	_	μs	start
IS50	Св		100 kHz mode	_	400	pF	
		Loading	400 kHz mode	—	400	pF]
			1 MHz mode	_	10	pF	

FIGURE 31-14: UARTX MODULE TIMING CHARACTERISTICS

TABLE 31-32: UARTX MODULE TIMING REQUIREMENTS

3.0V ≤ VDD -40°C ≤ TA	$\begin{array}{l} \textbf{Operating Conditions (unless otherwise stated):}\\ 3.0V \leq VDD \leq 3.6V,\\ -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial}\\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Max.	Units			
UA10	TUABAUD	UARTx Baud Time	40	_	ns			
UA11	FBAUD	UARTx Baud Rate	_	25	Mbps			
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	50	_	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 31-33: ADC MODULE SPECIFICATIONS

3.0V ≤ -40°C ≤	VDD ≤ 3.6V ⁽⁴ ≤ TA ≤ +85°C	ons (unless otherwise s) for Industrial C for Extended	tated):				
Param No.	Symbol	Characteristics	Min.	Тур. ⁽⁷⁾	Max.	Units	Conditions
			Clock Re	quiremen	ts		
AD9	FSRC	ADC Module Input Frequency	_	_	500	MHz	Clock frequency selected by the CLKSELx bits
AD10	FCORESRC	ADC Control Clock Frequency	_	_	250	MHz	Clock frequency after the first divider controlled by the CLKDIVx bits
AD11	Fadcore	ADC SAR Core Clock Frequency	—	_	70	MHz	SAR core frequency after the second divider controlled by the ADCSx or SHRADCSx bits
	•		Analo	g Input			•
AD12	VINH-VINL	Full-Scale Input Span	AVss		AVdd	V	
AD14	Vin	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V	
AD60	CHOLD ⁽¹⁾	Sample-and-Hold Capacitance	_	5		pF	Dedicated cores
AD61	CHOLD ⁽¹⁾	Sample-and-Hold Capacitance	—	15	—	pF	Shared core
AD62	Ric ⁽¹⁾	Internal Interconnection Resistance	—	_	1000	Ω	
AD66	Vbg	Internal Voltage Reference Source	1.14	1.2	1.26	V	
			ADC A	ccuracy			
AD20	Nr	Resolution		12 data bit	s	bits	
AD21a	INL_1D	Dedicated Core Integral Nonlinearity (1 Active Core)	—	-4.0/+4.0	—	LSb	3.5 Msps ⁽⁵⁾ , Tadc = 4nS (250 MHz), Tcoresrc = 8 nS (125 MHz),
AD22a	DNL_1D	Dedicated Core Differential Nonlinearity (1 Active Core)	-1.0	-1.0/+4.0		LSb	TADCORE = 16 nS (62.5 MHz), Sampling Time = 4 TADCORE, VDD = 3.3V, AVDD = 3.3V
AD21b	INL_1S	Shared Core Integral Nonlinearity (1 Active Core)	_	-4.0/+4.0	_	LSb	2.7 Msps ⁽⁶⁾ , Tadc = 4 nS (250 MHz), TCORESRC = 8 nS (125 MHz),
AD22b	DNL_1S	Shared Core Differential Nonlinearity (1 Active Core)	-1.0	-1.0/4.0		LSb	TADCORE = 16 nS (62.5 MHz), Sampling Time = 10 TADCORE, VDD = 3.3V, AVDD = 3.3V

Note 1: These parameters are not characterized or tested in manufacturing.

- 2: These parameters are characterized but not tested in manufacturing.
- **3:** Characterized with a 1 kHz sine wave.
- **4:** The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. The module functionality is ensured, but not characterized.
- **5:** For the dedicated core, the throughput includes 4 TADCORE sampling time and 13 TADCORE conversion time.
- 6: For the shared core, the throughput includes 10 TADCORE sampling time and 13 TADCORE conversion time.
- 7: Data in the "Typ" column are 3.3V, +25°C. Parameters are for design guidance only and are not tested.

TABLE 31-33: ADC MODULE SPECIFICATIONS (CONTINUED)

3.0V ≤ -40°C ≤	VDD ≤ 3.6V ⁽⁴ ≤ TA ≤ +85°C	ons (unless otherwise st) for Industrial C for Extended	ated):			I	
Param No.	Symbol	Characteristics	Min.	Тур. ⁽⁷⁾	Max.	Units	Conditions
AD21c	INL_3D	Dedicated Core Integral Nonlinearity (3 Active Cores)		-5.0/+5.0	_	LSb	3.5 Msps ⁽⁵⁾ , Tadc = 4 nS (250 MHz), TCORESRC = 8 nS (125 MHz),
AD22c	DNL_3D	Dedicated Core Differential Nonlinearity (3 Active Cores)	-1.0	-1.0/+7.0	_	LSb	TADCORE = 16 nS (62.5 MHz), Sampling Time= 4 TADCORE, VDD = 3.3V, AVDD = 3.3V, all core conversions are started simultaneously.
AD21d	INL_3S	Shared Core Integral Nonlinearity (3 Active Cores)	-11.5		11.5	LSb	2.7 Msps ⁽⁶⁾ , Tadc = 4 nS (250 MHz), TCORESRC = 8 nS (125 MHz),
AD22d	DNL_3S	Shared Core Differential Nonlinearity (3 Active Cores)	-1.0		11.5	LSb	TADCORE = 16 nS (62.5 MHz), Sampling Time = 10 TADCORE, VDD = 3.3V, AVDD = 3.3V, all core conversions are started simultaneously.
AD23c	Gerr	Gain Error	0	_	10.0	LSb	
AD24c	EOFF	Offset Error	-3.0	—	3.0	LSb	
			Dynamic I	Performan	ce		
	SINAD ^(2,3)	Signal-to-Noise and Distortion	56	—	70	dB	
AD34b	ENOB ^(2,3)	Effective Number of Bits	9.8	—	11.4	bits	
AD51	Ftp	Throughput Rate	_	—	3.5		Dedicated Cores 0 and 1 ⁽⁵⁾
			_	—	2.7	Msps	Shared core ⁽⁶⁾

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized but not tested in manufacturing.

- **3:** Characterized with a 1 kHz sine wave.
- **4:** The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. The module functionality is ensured, but not characterized.
- **5:** For the dedicated core, the throughput includes 4 TADCORE sampling time and 13 TADCORE conversion time.
- 6: For the shared core, the throughput includes 10 TADCORE sampling time and 13 TADCORE conversion time.
- 7: Data in the "Typ" column are 3.3V, +25°C. Parameters are for design guidance only and are not tested.

TABLE 31-34: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS

3.0V ≤ \ -40°C ≤	$DD \le 3.6$ TA $\le +85^{\circ}$	tions (unless otherwise /, ⁽²⁾ C for Industrial i°C for Extended	stated):				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments
CM09	FIN	Input Frequency	400	500	550	MHz	After the divider controlled by the CLKDIVx bits
CM10	VIOFF	Input Offset Voltage	-20	_	20	mV	
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	AVss	_	AVDD	V	
CM13	CMRR	Common-Mode Rejection Ratio ⁽¹⁾	65	_	_	dB	
CM14	TRESP	Large Signal Response	_	15	_	ns	V+ input step of 100 mV while V- input is held at AVDD/2
CM15	VHYST	Input Hysteresis	15	_	45	mV	Depends on HYSSEL[1:0]

Note 1: These parameters are for design guidance only and are not tested in manufacturing.

2: The module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. The module functionality is tested, but not characterized.

TABLE 31-35: DAC MODULE SPECIFICATIONS

3.0V ≤ ' -40°C ≤	$VDD \le 3.6V$ $\le TA \le +85^{\circ}C$	ions (unless otherwise stated (2) C for Industrial 'C for Extended):				
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Comments
DA02	CVRES	Resolution		12		bits	
DA03	INL	Integral Nonlinearity Error	-38	_	0	LSB	
DA04	DNL	Differential Nonlinearity Error	-5		5	LSB	
DA05	EOFF	Offset Error	-3.5	—	21.5	LSB	
DA06	EG	Gain Error	0	—	41	%	
DA07	TSET	Settling Time	—	750	_	ns	Output with 2% of desired output voltage with a 10-90% or 90-10% step
DA08	Vout	Voltage Output Range	0.165	—	3.135	V	VDD = 3.3V

Note 1: Data in the "Typ." column are 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. The module functionality is tested, but not characterized.

TABLE 31-36: DAC OUTPUT (DACOUT PIN) SPECIFICATIONS

3.0V ≤ -40°C ≤	$\begin{array}{l} \textbf{Operating Conditions (unless otherwise stated):} \\ 3.0V \leq V_{DD} \leq 3.6V,^{(1)} \\ -40^{\circ}C \leq T_A \leq +85^{\circ}C \text{ for Industrial} \\ -40^{\circ}C \leq T_A \leq +125^{\circ}C \text{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments		
DA11	RLOAD	Resistive Output Load Impedance	10K		_	Ohm			
DA11a	CLOAD	Output Load Capacitance	_	_	35	pF	Including output pin capacitance		
DA12	Ιουτ	Output Current Drive Strength	—	3		mA	Sink and source		

Note 1: The module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. The module functionality is tested, but not characterized.

TABLE 31-37: CURRENT BIAS GENERATOR SPECIFICATIONS⁽¹⁾

Operating Conditions (unless otherwise stated):

 $3.0V \le VDD \le 3.6V$,⁽²⁾

 $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial

 $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended

ParamNo.	Symbol	Characteristic	Min.	Max.	Units
CC03	I10SRC	10 µA Source Current	8.8	11.2	μA
CC04	I50SRC	50 µA Source Current	44	56	μA
CC05	150SNK	50 µA Sink Current	-44	-56	μA

Note 1: Parameters are characterized but not tested in manufacturing.

2: The module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. The module functionality is tested, but not characterized.

TABLE 31-38: OPERATIONAL AMPLIFIER SPECIFICATIONS

Operating Conditions (unless otherwise stated):

 $3.0V \le VDD \le 3.6V,^{(2)}$

 $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial

-40°C \leq TA \leq +125°C for Extended

Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Comments
OAMP1	GBWP	Gain Bandwidth Product	_	20	—	MHz	
OAMP2	SR	Slew Rate	—	40	—	V/µs	
OAMP3	VIOFF	Input Offset Voltage	-3 ⁽³⁾	-1/+1	+3 ⁽³⁾	mV	Unity gain configuration
			-8	-3/+3	+8	mV	Open-loop configuration
OAMP4	VICM	Common-Mode Input Voltage	AVss	—	AVdd	V	NCHDISx = 0
		Range	AVss	—	AVDD - 1.4	V	NCHDISx = 1
OAMP5	CMRR	Common-Mode Rejection Ratio	—	68	—	db	
OAMP6	PSRR	Power Supply Rejection Ratio	—	74	—	dB	
OAMP7	Vor	Output Voltage Range	AVss	_	AVDD	mV	0.3V input overdrive, no output loading

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. The module functionality is tested, but not characterized.

3: Parameters are characterized but not tested in manufacturing.

32.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33CK64MP105 family devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40°C to +150°C are identical to those shown in **Section 31.0 "Electrical Characteristics"** for operation between -40°C to +125°C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC20 in **Section 31.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC20.

Absolute maximum ratings for the dsPIC33CK64MP105 family high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device, at these or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +150°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$	0.3V to +3.6V
Maximum current out of Vss pin	300 mA
Maximum current into Vod pin ⁽²⁾	300 mA
Maximum current sunk/sourced by any regular I/O pin	15 mA
Maximum current sunk/sourced by an I/O pin with increased current drive strength (RB1, RC8, RC	9 and RD8)25 mA
Maximum current sunk by a group of I/Os between two Vss pins ⁽⁴⁾	75 mA
Maximum current sourced by a group of I/Os between two VDD pins ⁽⁴⁾	75 mA
Maximum current sunk by all I/Os ^(2,5)	200 mA
Maximum current sourced by all I/Os ^(2,5)	200 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 32-2).
- 3: See the "Pin Diagrams" section for the 5V tolerant pins.
- **4:** Not applicable to AVDD and AVss pins.
- 5: For 28-pin packages, the maximum current sunk/sourced by all I/Os is limited by 150 mA.

32.1 DC Characteristics

TABLE 32-1: OPERATING MIPS vs. VOLTAGE

VDD Range	Temperature Range	Maximum CPU Clock Frequency		
3.0V to 3.6V	-40°C to +150°C	70		

TABLE 32-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Max.	Unit
High-Temperature Devices				
Operating Junction Temperature Range	TJ	-40	+165	°C
Operating Ambient Temperature Range	TA	-40	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT	+ Pi/o	W
Maximum Allowed Power Dissipation	Pdmax	(TJ – 1	ΓΑ)/θJΑ	W

TABLE 32-3: THERMAL PACKAGING CHARACTERISTICS⁽¹⁾

Package	Symbol	Тур.	Unit
28-Pin UQFN 4x4 mm	θJA	26.0	°C/W
48-Pin TQFP 7x7 mm	θJA	62.76	°C/W
48-Pin UQFN 6x6 mm	θJA	27.6	°C/W
36-Pin UQFN 5x5 mm	θJA	29.2	°C/W
28-Pin UQFN 6x6 mm	θJA	22.41	°C/W
28-Pin SSOP 5.30 mm	θJA	52.84	°C/W

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 32-4: OPERATING VOLTAGE SPECIFICATIONS

Operating Conditions (unless otherwise stated): -40°C \leq TA \leq +150°C for High										
Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions				
HDC10	Vdd	Supply Voltage	3.0	3.6	V					
HDC11	AVdd	Supply Voltage	Greater of: VDD – 0.3 or 3.0		V	The difference between AVDD supply and VDD supply must not exceed ±300 mV at all times, including during device power-up				
HDC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	Vss	V					
HDC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	—	V/ms	0V-3V in 100 ms				
HBO10	VBOR ⁽¹⁾	BOR Event on VDD Transition High-to- Low	2.68	2.99	V					

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC and comparators) may have degraded performance. The VBOR parameter is for design guidance only and is not tested in manufacturing.

Parameter No.	Typ. ⁽¹⁾	Max.	Units	Conditions			
HDC20	10.2	24.1	mA	+150°C	3.3V	10 MIPS (N1 = 1, N2 = 5, N3 = 2, M = 50, Fvco = 400 MHz, FPLLO = 40 MHz)	
HDC21	12.2	25.4	mA	+150°C	3.3V	20 MIPS (N1 = 1, N2 = 5, N3 = 1, M = 50, Fvco = 400 MHz, FPLLO = 80 MHz)	
HDC22	15.5	29.0	mA	+150°C	3.3V	40 MIPS (N1 = 1, N2 = 3, N3 = 1, M = 60, Fvco = 480 MHz, FPLLO = 160 MHz)	
HDC23	21.2	34.1	mA	+150°C	3.3V	70 MIPS (N1 = 1, N2 = 2, N3 = 1, M = 70, Fvco = 560 MHz, FPLLO = 280 MHz)	

TABLE 32-5: OPERATING CURRENT (IDD)⁽²⁾

Note 1: Data in the "Typ." column are for design guidance only and are not tested.

- 2: Base Run current (IDD) is measured as follows:
 - · Oscillator is switched to EC+PLL mode in software
 - OSC1 pin is driven with external 8 MHz square wave with levels from 0.3V to VDD 0.3V
 - OSC2 is configured as an I/O in the Configuration Words (OSCIOFCN (FOSC[2]) = 0)
 - FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 01)
 - Watchdog Timer is disabled (FWDT[15] = 0 and WDTCONL[15] = 0)
 - · All I/O pins (except OSC1) are configured as outputs and driving low
 - No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
 - JTAG is disabled (JTAGEN (FICD[5]) = 0)
 - NOP instructions are executed in while (1) loop

TABLE 32-6:	DLE CURRENT (I	lidle) ⁽²⁾
-------------	-----------------------	-----------------------

Parameter No.	Typ. ⁽¹⁾	Max.	Units	Conditions			
HDC40	9.0	17.1	mA	+150°C	3.3V	10 MIPS (N1 = 1, N2 = 5, N3 = 2, M = 50, Fvco = 400 MHz, FPLLO = 40 MHz)	
HDC41	9.7	22.6	mA	+150°C	3.3V	20 MIPS (N1 = 1, N2 = 5, N3 = 1, M = 50, Fvco = 400 MHz, FPLLO = 80 MHz)	
HDC42	11.2	24	mA	+150°C	3.3V	40 MIPS (N1 = 1, N2 = 3, N3 = 1, M = 60, Fvco = 480 MHz, FPLLO = 160 MHz)	
HDC43	13.4	25.8	mA	+150°C	3.3V	70 MIPS (N1 = 1, N2 = 2, N3 = 1, M = 70, Fvco = 560 MHz, FPLLO = 280 MHz)	

Note 1: Data in the "Typ." column are for design guidance only and are not tested.

2: Base Idle current (IIDLE) is measured as follows:

- Oscillator is switched to EC+PLL mode in software
- + OSC1 pin is driven with external 8 MHz square wave with levels from 0.3V to VDD 0.3V
- OSC2 is configured as an I/O in the Configuration Words (OSCIOFCN (FOSC[2]) = 0)
- FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 01)
- Watchdog Timer is disabled (FWDT[15] = 0 and WDTCONL[15] = 0)
- · All I/O pins (except OSC1) are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
- JTAG is disabled (JTAGEN (FICD[5]) = 0)
- Flash in standby with NVMSIDL (NVMCON[12]) = 1

TABLE 32-7: POWER-DOWN CURRENT (IPD)⁽²⁾

Parameter No.	Characteristic	Тур. ⁽¹⁾	Max.	Units	Cond	itions
HDC60	Base Power-Down Current	6.3	19.8	mA	+150°C	3.3V

Note 1: Data in the "Typ." column are for design guidance only and are not tested.

2: Base Sleep current (IPD) is measured as follows:

- OSC1 pin is driven with external 8 MHz square wave with levels from 0.3V to VDD 0.3V
- OSC2 is configured as an I/O in the Configuration Words (OSCIOFCN (FOSC[2]) = 0)
- FSCM is disabled (FCKSM[1:0] (FOSC[7:6]) = 01)
- Watchdog Timer is disabled (FWDT[15] = 0 and WDTCONL[15] = 0)
- · All I/O pins (except OSC1) are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
- JTAG is disabled (JTAGEN (FICD[5]) = 0)
- The regulators are in Active mode, VREGS bit = 1 (Standby mode only valid up to +85°C)
- The regulators are in Full-Power mode, LPWREN bit = 0 (Low-Power mode only valid to +85°C)

Parameter No.	Typ. ⁽¹⁾	Max.	Doze Ratio	Units		Con	ditions
HDC70	17.9	30.1	1:2	mA			70 MIPS (N = 1, N2 = 2, N3 = 1,
	13.6	26	1:128	mA	+150°C	3.3V	M = 70, Fvco = 560 MHz, Fpllo = 280 MHz)

TABLE 32-8: DOZE CURRENT (IDOZE)

Note 1: Data in the "Typ." column are for design guidance only and are not tested.

TABLE 32-9: WATCHDOG TIMER DELTA CURRENT (△IwDT)⁽¹⁾

Parameter No.	Тур.	Max.	Units	Conditions	
HDC61	24	120	μA	+150°C	3.3V

Note 1: The △IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

Parameter No.	Тур.	Max.	Units	Conditions					
HDC100	5.48	7.2	mA	+150°C	3.3V	PWM Output Frequency = 500 kHz, PWM Input (AFPLLO = 500 MHz) (AVCO = 1000 MHz, PLLFBD = 125, APLLDIV1 = 2)			
HDC101	4.44	6.8	mA	+150°C	3.3V	PWM Output Frequency = 500 kHz, PWM Input (AFPLLO = 400 MHz), (AVCO = 400 MHz, PLLFBD = 50, APLLDIV1 = 1)			
HDC102	2.31	3.7	mA	+150°C	3.3V	PWM Output Frequency = 500 kHz, PWM Input (AFPLLO = 200 MHz), (AVCO = 400 MHz, PLLFBD = 50, APLLDIV1 = 2)			
HDC103	1.22	2.3	mA	+150°C	3.3V	PWM Output Frequency = 500 kHz, PWM Input (AFPLLO = 100 MHz), (AVCO = 400 MHz, PLLFBD = 50, APLLDIV1 = 4)			

TABLE 32-10: PWM DELTA CURRENT⁽¹⁾

Note 1: APLL current is not included. The APLL current will be the same if more than one PWM is running. Listed delta currents are for only one PWM instance when HREN = 0 (PGxCONL[7]). All parameters are characterized but not tested during manufacturing.

TABLE 32-11: APLL DELTA CURRENT

Parameter No.	Тур.	Max.	Units		Conditions ⁽¹⁾				
HDC110	7.04	9.3	mA	+150°C	3.3V	AF _{PLLO} = 500 MHz (AVCO = 1000 MHz, PLLFBD = 125, APLLDIV1 = 2)			
HDC111	3.78	5.8	mA	+150°C	3.3V	AF _{PLLO} = 400 MHz (AVCO = 400 MHz, PLLFBD = 50, APLLDIV1 = 1)			
HDC112	2.49	4.5	mA	+150°C	3.3V	AF _{PLLO} = 200 MHz (AVCO = 400 MHz, PLLFBD = 50, APLLDIV1 = 2)			
HDC113	1.83	3.6	mA	+150°C	3.3V	AF _{PLLO} = 100 MHz (AVCO = 400 MHz, PLLFBD = 50, APLLDIV1 = 4)			

Note 1: The APLL current will be the same if more than one PWM or DAC is run to the APLL clock. All parameters are characterized but not tested during manufacturing.

Parameter No.	Тур.	Max.	Units	Conditions			
HDC120	3.76	6.1	mA	+150°C	3.3V	T _{AD} = 14.3 ns (3.5 Msps conversion rate)	

TABLE 32-12: ADC DELTA CURRENT⁽¹⁾

Note 1: Shared core continuous conversion. TAD = 14.3 nS (3.5 Msps conversion rate). Listed delta currents are for only one ADC core. All parameters are characterized but not tested during manufacturing.

TABLE 32-13: COMPARATOR + DAC DELTA CURRENT

Parameter No.	Тур.	Max.	Units	Conditions			
HDC130	1.25	1.65	mA	+150°C 3.3V AFPLLO @ 500 MHz ⁽¹⁾			

Note 1: APLL current is not included. Listed delta currents are for only one comparator + DAC instance. All parameters are characterized but not tested during manufacturing.

TABLE 32-14: OP AMP DELTA CURRENT⁽¹⁾

Parameter No.	Тур.	Max.	Units	Conditions	
HDC140	0.58 2.3		mA	+150°C	3.3V

Note 1: Listed delta currents are for only one op amp instance. All parameters are characterized but not tested during manufacturing.

TABLE 32-15: I/O PIN INPUT SPECIFICATIONS

3.0V < VDI		(unless otherwise stated):			
Param No.	Symbol	Characteristic	Min. ⁽³⁾	Max. ⁽⁴⁾	Units
HDI50	lı∟	Input Leakage Current ⁽¹⁾			
		I/O Pins 5V Tolerant ⁽²⁾	-1	1	μA
		I/O Pins Not 5V Tolerant ⁽²⁾	-1	1	μA
		MCLR	-1	1	μA
		OSCI	-1	1	μA

Note 1: Negative current is defined as current sourced by the pin.

2: See the Pin Diagrams section for the 5V tolerant I/O pins.

3: VPIN = VSS.

4: VPIN = VDD.

TABLE 32-16: INTERNAL FRC ACCURACY

Operating Conditions (unless otherwise stated): 3.0V < VDD < 3.6V -40°C < TA < +150°C								
Param No.	Param No. Characteristic Min. Max. Units							
HF20a	F20a FRC @ 8 MHz -3 +3 %							

TABLE 32-17: INTERNAL LPRC ACCURACY

Operating Conditions (unless otherwise stated): 3.0V < VDD < 3.6V -40°C < TA < +150°C								
Param No.	. Characteristic Min. Max. Units							
HF21	LPRC @ 32 kHz -30 +30 %							

TABLE 32-18: ADC MODULE ACCURACY

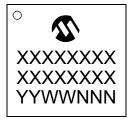
Operating Conditions (unless otherwise stated): $3.0V < V_{DD} < 3.6V^{(1)}$ $-40^{\circ}C < TA < +150^{\circ}C$									
Param No.	Symbol	Characteristics	Min.	Max.	Units	Conditions			
HAD23c	Gerr	Gain Error	> -17.5	< 17.5	LSb	AVss = 0V, AVDD = 3.3V			
HAD24c									

Note 1: The module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. The module functionality is ensured, but not characterized.

TABLE 32-19: DAC MODULE SPECIFICATIONS

Operating Conditions (unless otherwise stated): $3.0V < V_{DD} < 3.6V^{(1)}$ $-40^{\circ}C < T_A < +150^{\circ}C$							
Param No.	Symbol	Characteristic	Min.	Max.	Units	Comments	
HDA03	INL	Integral Nonlinearity Error	-35	0	LSB		

Note 1: The module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. The module functionality is ensured, but not characterized.


33.0 PACKAGING INFORMATION

33.1 Package Marking Information

28-Lead SSOP (5.30 mm)

28-Lead UQFN (4x4 mm)

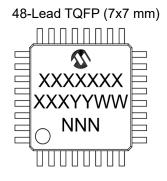
28-Lead UQFN (6x6 mm)

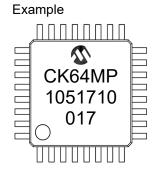
36-Lead UQFN (5x5 mm)

Example

Example

Example

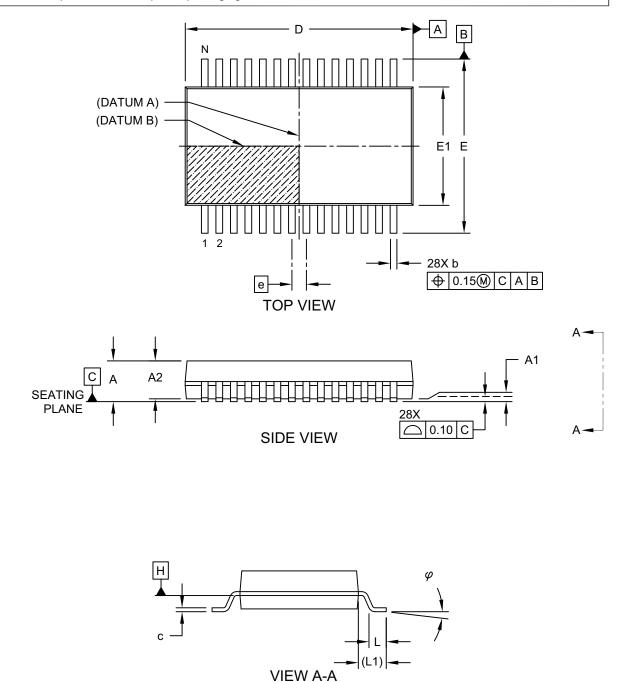



Example

Legenc	I: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

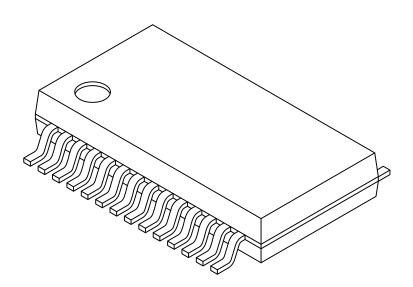
33.1 Package Marking Information (Continued)

48-Lead UQFN (6x6 mm)


Example

33.2 Package Details

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

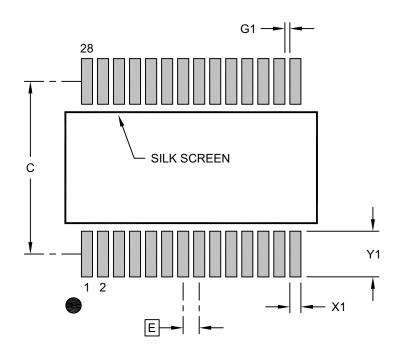
Microchip Technology Drawing C04-073 Rev C Sheet 1 of 2

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	Ν		28				
Pitch	е		0.65 BSC				
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073 Rev C Sheet 2 of 2

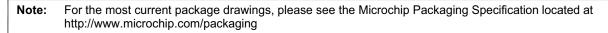
28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

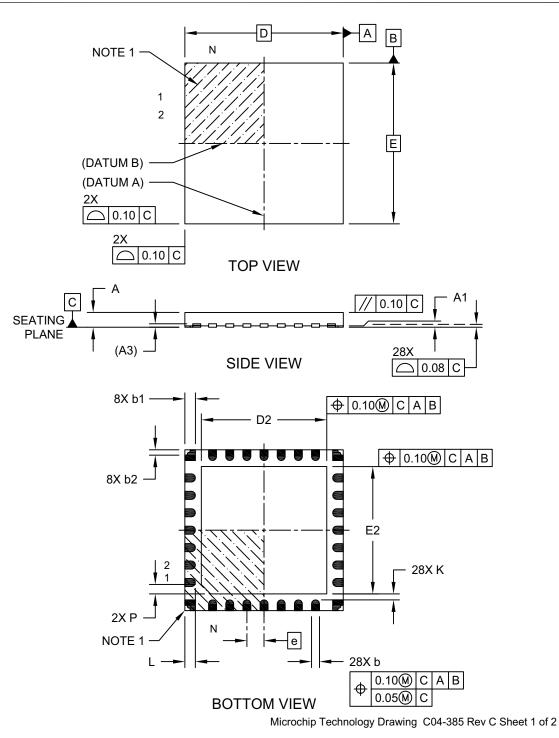
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		0.65 BSC	
Contact Pad Spacing	С		7.00	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.85
Contact Pad to Center Pad (X26)	G1	0.20		

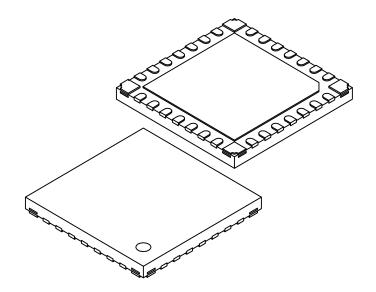
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2073 Rev B


28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

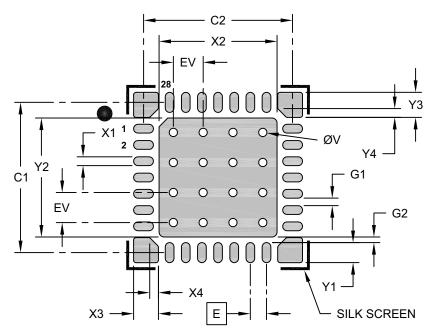
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		28	
Pitch	е		0.65 BSC	_
Overall Height	A	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.127 REF	
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	4.55	4.65	4.75
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	4.55	4.65	4.75
Exposed Pad Corner Chamfer	Р	-	0.35	-
Terminal Width	b	0.25	0.30	0.35
Corner Anchor Pad	b1	0.35	0.40	0.43
Corner Pad, Metal Free Zone	b2	0.15	0.20	0.25
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-385 Rev C Sheet 2 of 2

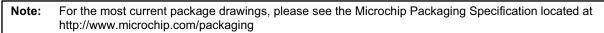
28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

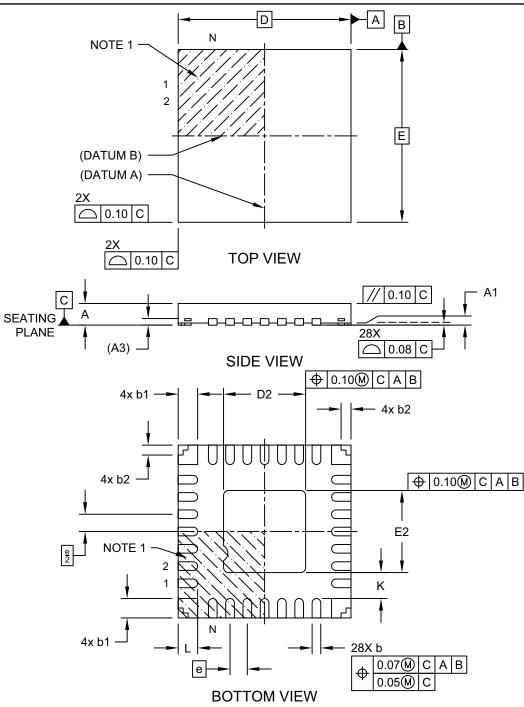
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			4.75
Optional Center Pad Length	Y2			4.75
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.35
Contact Pad Length (X28)	Y1			0.80
Corner Anchor (X4)	X3			1.00
Corner Anchor (X4)	Y3			1.00
Corner Anchor Chamfer (X4)	X4			0.35
Corner Anchor Chamfer (X4)	Y4			0.35
Contact Pad to Pad (X28)	G1	0.20		
Contact Pad to Center Pad (X28)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

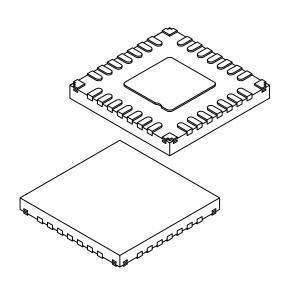

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2385B

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors



Microchip Technology Drawing C04-333-M6 Rev B Sheet 1 of 2

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

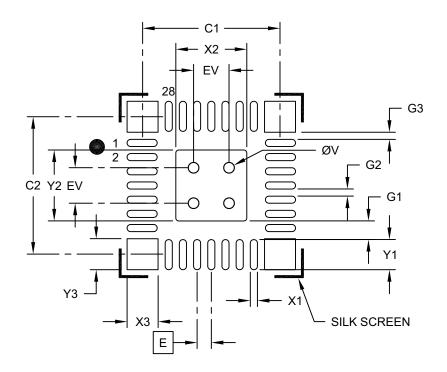
	Units	N	IILLIMETER:	S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.40 BSC	
Overall Height	A	-	-	0.60
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.152 REF	
Overall Width	E		4.00 BSC	
Exposed Pad Width	E2	1.80 1.90 2.00		
Overall Length	D	4.00 BSC		
Exposed Pad Length	D2	1.80	1.90	2.00
Terminal Width	b	0.15	0.20	0.25
Corner Anchor Pad	b1	0.40	0.45	0.50
Corner Pad, Metal Free Zone	b2	0.18	0.23	0.28
Terminal Length	L	0.30	0.45	0.50
Terminal-to-Exposed-Pad	K	-	0.60	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-333-M6 Rev A Sheet 2 of 2

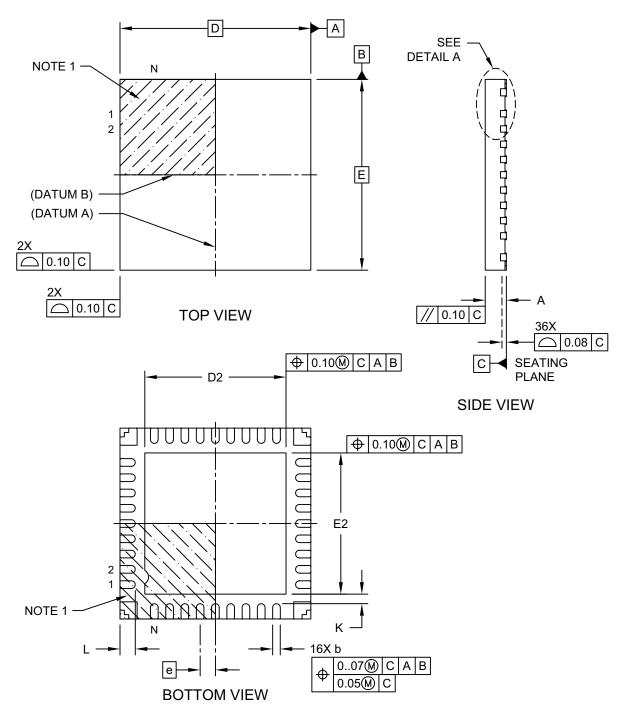
28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Center Pad Width	X2			2.00
Center Pad Length	Y2			2.00
Contact Pad Spacing	C1		3.90	
Contact Pad Spacing	C2		3.90	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.85
Contact Pad to Center Pad (X28)	G1		0.52	
Contact Pad to Pad (X24)	G2	0.20		
Contact Pad to Corner Pad (X8)	G3	0.20		
Corner Anchor Width (X4)	X3			0.78
Corner Anchor Length (X4)	Y3			0.78
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

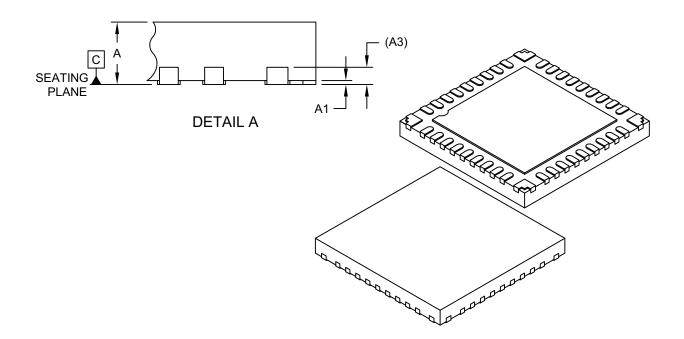
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2333-M6 Rev B

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-436–M5 Rev B Sheet 1 of 2

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

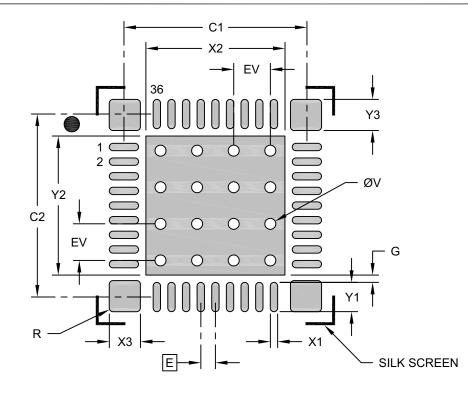
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		36	
Pitch	е		0.40 BSC	
Overall Height	А	0.50	0.55	0.60
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.152 REF		
Overall Length	D		5.00 BSC	
Exposed Pad Length	D2	3.60	3.70	3.80
Overall Width	E		5.00 BSC	
Exposed Pad Width	E2	3.60	3.70	3.80
Terminal Width	b	0.15	0.20	0.25
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	К		0.25 REF	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-436–M5 Rev B Sheet 2 of 2

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

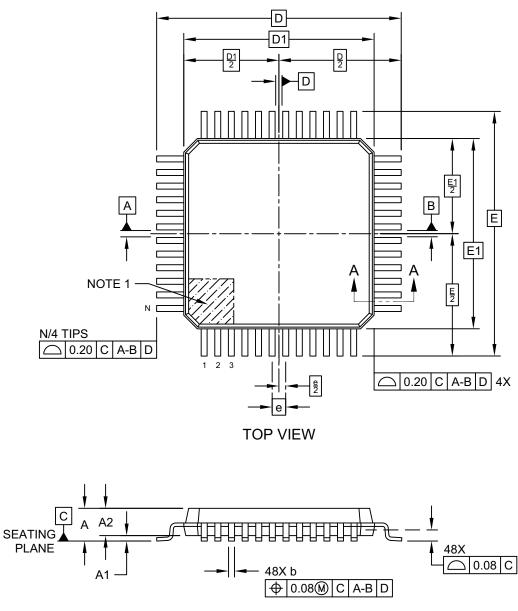
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Center Pad Width	X2			3.80
Center Pad Length	Y2			3.80
Contact Pad Spacing	C1		5.00	
Contact Pad Spacing	C2		5.00	
Contact Pad Width (X36)	X1			0.20
Contact Pad Length (X36	Y1			0.80
Corner Pad Width (X4)	X3			0.85
Corner Pad Length (X4)	Y3			0.85
Corner Pad Radius	R		0.10	
Contact Pad to Center Pad (X36)	G	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

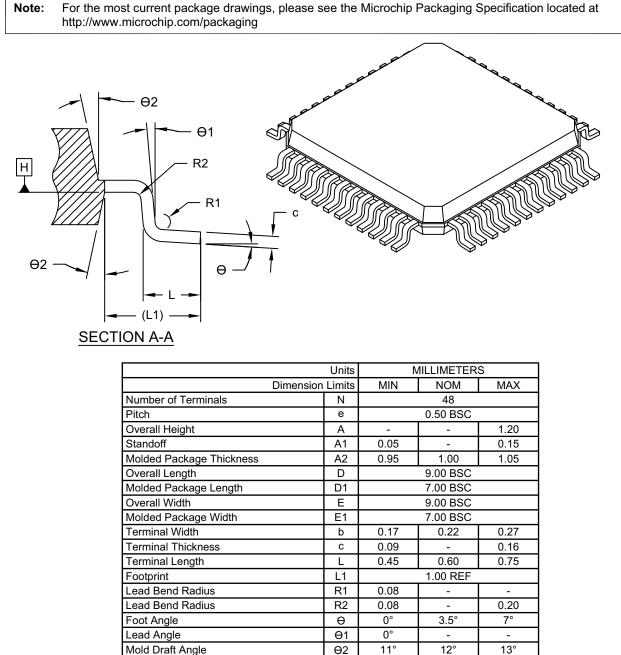
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2436–M5 Rev B

48-Lead Plastic Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

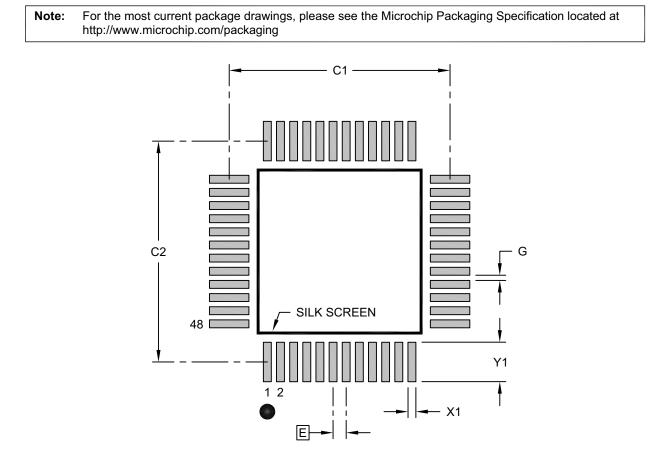
SIDE VIEW

Microchip Technology Drawing C04-300-PT Rev D Sheet 1 of 2

48-Lead Plastic Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-300-PT Rev D Sheet 2 of 2

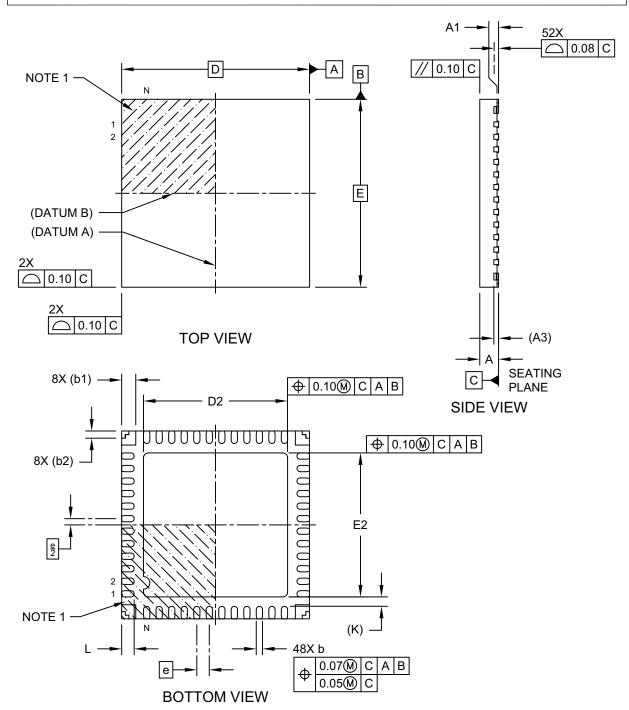
48-Lead Plastic Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

RECOMMENDED LAND PATTERN

	Units		MILLIMETER	S
Dimensio	on Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		8.40	
Contact Pad Spacing	C2		8.40	
Contact Pad Width (X48)	X1			0.30
Contact Pad Length (X48)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

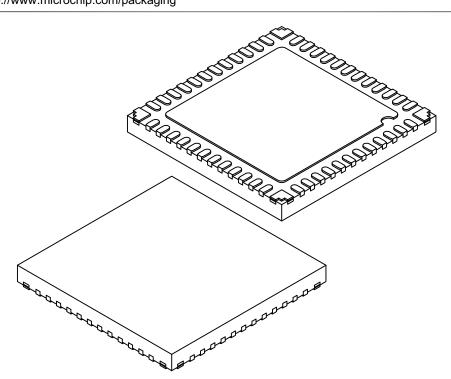
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2300-PT Rev D

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-442A-M4 Sheet 1 of 2

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

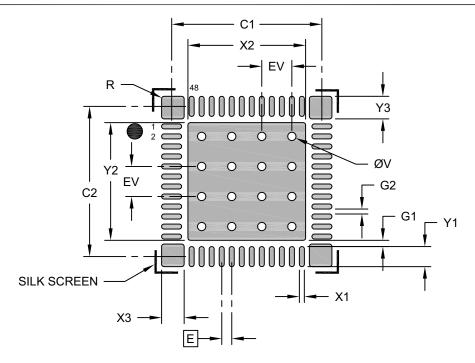
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	IILLIMETER	S
Dimensior	n Limits	MIN	NOM	MAX
Number of Terminals	Ν		48	
Pitch	е		0.40 BSC	
Overall Height	Α	0.50	0.55	0.60
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.15 REF	
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	4.50	4.60	4.70
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	4.50	4.60	4.70
Terminal Width	b	0.15	0.20	0.25
Corner Anchor Pad	b1		0.45 REF	
Corner Anchor Pad, Metal-free Zone	b2		0.23 REF	
Terminal Length	L	0.35	0.40	0.45
Terminal-to-Exposed-Pad	K		0.30 REF	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-442A-M4 Sheet 2 of 2

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	1	MILLIMETER	S
Dimensior	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Center Pad Width	X2			4.70
Center Pad Length	Y2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X48)	X1			0.20
Contact Pad Length (X48)	Y1			0.80
Corner Anchor Pad Width (X4)	X3			0.90
Corner Anchor Pad Length (X4)	Y3			0.90
Pad Corner Radius (X 20)	R			0.10
Contact Pad to Center Pad (X48)	G1	0.25		
Contact Pad to Contact Pad	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2442A-M4

APPENDIX A: REVISION HISTORY

Revision A (May 2018)

This is the initial version of the document.

Revision B (January 2019)

This revision incorporates the following updates:

- Sections:
 - Updated "Microcontroller Features", "Qualification and Class B Support", Section 8.5.6 "Output Mapping", Section 5.0 "Flash Program Memory", Section 5.2 "RTSP Operation" and Section 31.0 "Electrical Characteristics".
 - Removed Section 5.3.1 "Programming Algorithm for Flash Program Memory".
 - Replaced Section 8.5.3 "Controlling Peripheral Pin Select" with Section 8.5.3 "Controlling Configuration Changes".
 - Added Section 11.3 "PWM4H Output on PPS" and Section 12.3 "Temperature Sensor".
- Tables:
 - Updated Table 5, Table 1-1, Table 4-9, Table 4-11, Table 7-3, Table 8-4, Table 8-5, Table 8-6, Table 8-13, Table 10-1, Table 22-1, Table 28-2, Table 31-3, Table 31-15, Table 31-17, Table 31-19, Table 31-20, Table 31-21, Table 31-22, Table 31-23, Table 31-24, Table 31-26, Table 31-27, Table 31-28, Table 31-29, Table 31-30, Table 31-32, Table 31-33, Table 31-34, Table 31-35 and Table 31-36.
 - Added Table 31-10, Table 31-11, Table 31-12, Table 31-13 and Table 31-14.
- · Figures:
 - Updated Figure 1-1, Figure 4-5, Figure 8-2, Figure 8-3 and Figure 31-3.
- Registers:
 - Updated Register 4-1, Register 5-1, Register 8-63, Register 8-64, Register 8-65 (was Register 8-67), Register 8-66 (was Register 8-68), Register 8-67 (was Register 8-69), Register 9-4, Register 11-1, Register 11-2, Register 11-21, Register 12-3, Register 12-6, Register 12-12, Register 15-3, Register 17-1, Register 17-2, Register 17-3, Register 18-2, Register 25-5, Register 25-6, Register 25-7, Register 25-8, Register 25-9, Register 25-10, Register 25-11, Register 28-1, Register 28-2, Register 28-3, Register 28-4, Register 28-5, Register 28-6, Register 28-7, Register 28-8, Register 28-9, Register 28-10, Register 28-11, Register 28-12, Register 28-13,

Register 28-14, Register 28-15, Register 28-16 and Register 28-17.

- Deleted Register 8-65 and Register 8-66.
- Packaging Information:
 - Added 28-Lead UQFN (M6) packaging diagram to Section 33.0 "Packaging Information".

Revision C (February 2019)

This revision incorporates the following updates:

- Tables:
 - Updated Table 31-4, Table 31-24, Table 31-34 and Table 31-37.

Revision D (July 2019)

This revision incorporates the following updates:

- Sections:
 - Added correct web link for the
 "CodeGuard™ Security" in the
 "dsPIC33/PIC24 Family Reference Manual"
 in "Referenced Sources".
 - Removed Programmable High/Low-Voltage Detect (HLVD) bullet from the "Microcontroller Features" section.
 - Updated Section 9.8 "Reference Clock Output" and Section 33.0 "Packaging Information".
 - Added Section 32.0 "High-Temperature Electrical Characteristics".
- Tables:
 - Updated Table 4-13, Table 7-1 and Table 7-5.
- Registers:
 - Updated Register 9-11, Register 11-13, Register 11-14, Register 11-17, Register 21-4 and Register 21-5.

^{© 2018-2020} Microchip Technology Inc.

Revision E (October 2020)

This revision incorporates the following updates:

- · Sections:
 - Updated "Operating Conditions", "Microcontroller Features", "Safety Features", "Functional Safety Collateral", "Qualification Support", "Pin Diagrams", Section 5.5 "Flash OTP by ICSP™ Write Inhibit", Section 9.6 "Low-Power RC (LPRC) Oscillator", Section 16.0 "Serial Peripheral Interface (SPI)", Section 28.5 "Brown-out Reset (BOR)" and Section 28.7 "JTAG Interface".
 - Added Section 2.5 "External Oscillator Pins", Section 2.6 "External Oscillator Layout Guidance" and Section 12.2 "Sampling Time Requirements".

- Tables:
 - Updated Table 4-6 and Table 31-33, Table 31-34, Table 31-35, Table 31-36, Table 31-37, Table 31-38, Table 32-3, Table 32-5, Table 32-6, Table 32-7, Table 32-8, Table 32-9, Table 32-10, Table 32-12, Table 32-13, Table 32-14, Table 32-16, Table 32-18 and Table 32-19.
- · Figures:
 - Updated Figure 1-1, Figure 12-4 and Figure 19-1.
- · Registers:
 - Updated Register 12-3, Register 12-6, Register 12-12, Register 13-1 and Register 14-2.

INDEX

Α

Absolute Maximum Ratings	465, 493
AC Characteristics	
Alternate Interrupt Vector Table	85
Analog-to-Digital Converter. See ADC.	
Arithmetic Logic Unit (ALU)	
,	

В

At Run Time	41
At Start-up	
Bit-Reversed Addressing	
Example	
Implementation	
Sequence Table (16-Entry)	61
Block Diagrams	47
16-Bit Timer1 Module	
32-Bit Timer Mode	
ADC Analog Input Model	
ADC Module	
ADC Shared Core	
Addressing for Table Registers APLL and VCO Detail1	60
CALL Stack Frame	
CLCx Input Source Selection	
CLCx Input Source Selection	
CLCx Module	
Conceptual SCCPx Modules	
Constant-Current Source	
CPU Core	
CRC Module	
Data Access from Program Space Address	••
Generation	62
Deadman Timer Module	
Dedicated ADC Core	
dsPIC33CK64MP105 Core Clock Sources1	
dsPIC33CK64MP105 Core Oscillator Subsystem 1	
dsPIC33CK64MP105 Family	
Dual 16-Bit Timer Mode	
Functional Direct Memory Access (DMA)	
	82
High-Speed Analog Comparator2	56
High-Speed Analog Comparator2 I2Cx Module	56 28
High-Speed Analog Comparator2	56 28 56
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3	56 28 56 21
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3	56 28 56 21 44
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 4	56 28 56 21 44 79
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4	56 28 56 21 44 79 18
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 4	56 28 56 21 44 79 18 19
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 4 Multiplexing Remappable Outputs for RPn 1	56 28 56 21 44 79 18 19 23
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 4 Multiplexing Remappable Outputs for RPn 1 Off-Line UPS 1	56 28 56 21 44 79 18 19 23 20
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 4 Multiplexing Remappable Outputs for RPn 1 Off-Line UPS 0 Oscillator Circuit Placement 3 Phase-Shifted Full-Bridge Converter 3	56 28 56 21 44 79 18 19 23 20 55 22
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 4 Multiplexing Remappable Outputs for RPn 1 Off-Line UPS 0 Oscillator Circuit Placement 3	56 28 56 21 44 79 18 19 23 20 55 22
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 1 Off-Line UPS 0 Oscillator Circuit Placement 3 Phase-Shifted Full-Bridge Converter 1 PLL and VCO 1 Programmer's Model 1	56 28 56 21 44 79 18 19 23 20 55 22 59 28
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 4 Multiplexing Remappable Outputs for RPn 1 Off-Line UPS 0 Oscillator Circuit Placement 3 Phase-Shifted Full-Bridge Converter 4	56 28 56 21 44 79 18 19 23 20 55 22 59 28
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 4 Multiplexing Remappable Outputs for RPn 1 Off-Line UPS 0 Oscillator Circuit Placement 3 Phase-Shifted Full-Bridge Converter 1 PLL and VCO 1 Programmer's Model 9 PSV Read Address Generation 3	56 28 56 21 44 79 18 19 23 52 25 22 59 28 53 80
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 4 Multiplexing Remappable Outputs for RPn 1 Off-Line UPS 0 Oscillator Circuit Placement 3 Phase-Shifted Full-Bridge Converter 1 PLL and VCO 1 Programmer's Model 3 PSV Read Address Generation 3 PTG Module 3 PWM High-Level Module 1	56 28 56 21 44 79 18 19 23 20 55 22 59 28 53 80 92
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 4 Multiplexing Remappable Outputs for RPn 1 Off-Line UPS 0 Oscillator Circuit Placement 3 Phase-Shifted Full-Bridge Converter 1 PLL and VCO 1 Programmer's Model 3 PSV Read Address Generation 3 PWM High-Level Module 3 QEI Module 2	56 28 56 21 44 79 18 20 55 22 59 28 50 92 69
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 4 Multiplexing Remappable Outputs for RPn 1 Off-Line UPS 0 Oscillator Circuit Placement 3 Phase-Shifted Full-Bridge Converter 9 PLL and VCO 1 Programmer's Model 3 PSV Read Address Generation 3 PWM High-Level Module 1 QEI Module 2 Recommended Minimum Connection 2	56 28 56 21 44 79 18 20 55 29 25 25 28 53 80 29 18
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 1 Off-Line UPS 0 Oscillator Circuit Placement 0 Output Compare x Module 3 Phase-Shifted Full-Bridge Converter 1 Programmer's Model 1 PSV Read Address Generation 3 PWM High-Level Module 1 QEI Module 2 Recommended Minimum Connection 1 Reference Clock Generator 1	56 28 56 21 47 718 718 718 718 718 718 718 718 720 75 22 75 22 75 22 75 22 75 23 80 29 618 60 718 75 75 75 75 75 75 75 75 75 75 75 75 75
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 1 Off-Line UPS 0 Oscillator Circuit Placement 3 Phase-Shifted Full-Bridge Converter 9 PLL and VCO 1 Programmer's Model 3 PSV Read Address Generation 3 PWM High-Level Module 1 QEI Module 2 Recommended Minimum Connection 7 Remappable Input for U1RX 1	56 28 52 24 79 19 20 52 25 28 50 25 29 80 29 80 20 52 52 52 53 80 20 52 52 52 53 80 20 52 52 52 52 52 52 52 52 52 52 52 52 52
High-Speed Analog Comparator 2 I2Cx Module 3 Input Capture x Module 3 Interleaved PFC 3 Internal Regulator 4 Master Reset System 4 MCLR Pin Connections 1 Off-Line UPS 0 Oscillator Circuit Placement 0 Output Compare x Module 3 Phase-Shifted Full-Bridge Converter 1 Programmer's Model 1 PSV Read Address Generation 3 PWM High-Level Module 1 QEI Module 2 Recommended Minimum Connection 1 Reference Clock Generator 1	56 28 52 24 71 89 20 52 52 52 52 52 52 52 52 52 52 52 52 52

Shared Port Structure	. 105
Simplified UARTx	. 288
Single Operational Amplifier	. 399
SPIx Master, Frame Master Connection	. 325
SPIx Master, Frame Slave Connection	. 326
SPIx Master/Slave Connection	
(Enhanced Buffer Modes)	. 325
SPIx Master/Slave Connection (Standard Mode)	. 324
SPIx Module (Enhanced Mode)	. 312
SPIx Module (Standard Mode)	
SPIx Slave, Frame Master Connection	. 326
SPIx Slave, Frame Slave Connection	. 326
Timer Clock Generator	352
Watchdog Timer (WDT)	. 447
Brown-out Reset (BOR) 427	, 446
Built-In Self-Test. See BIST.	

С

Capture/Compare/PWM/Timer	
Auto-Shutdown and Gating Sources	362
Auxiliary Output	
Control/Status Registers	358
General Purpose Timer	
Input Capture Mode	
Output Compare Mode	
Synchronization Sources	
Time Base Generator	
Capture/Compare/PWM/Timer (SCCP/MCCP)	351
CLC	
Control Registers	370
Code Examples	
PWRSAV Instruction Syntax	415
Using Auxiliary PLL with Internal FRC Oscillator	
Using PLL (50 MIPS) with POSC	
Using PLL with 8 MHz Internal FRC	161
Code Memory Map for dsPIC33CK32MP10X Devices	
Code Memory Map for dsPIC33CK64MP10X Devices	
Code Protection	
CodeGuard Security	
Comparator/DAC	401
Control Registers	257
Features Overview	
Configurable Logic Cell (CLC)	
Configurable Logic Cell. See CLC.	507
Configuration Bits	127
Bit Values for Clock Selection	
CPU	
Addressing Modes	
Control Registers	
Data Space Addressing	
Instruction Set	
Registers	
Resources	29
CRC Control Registers	440
•	412
Current Bias Generator	
Control Registers	
Current Bias Generator (CBG)	395
Current Bias Generator. See CBG.	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	530
Cyclic Redundancy Check. See CRC.	

D

Data Address Space	
Memory Map for dsPIC33CK64MPX0X and	
dsPIC33CK32MPX0X Devices	
Near Data Space	
Organization, Alignment	
SFR Space	
Width	
X and Y Data Spaces	41
Data Memory Test (BIST)	
Flowchart	41
Data Space	
Extended X	
Paged Data Memory Space (figure)	54
Paged Memory Scheme	
DC Characteristics	
Operating Conditions	466
Deadman Timer (DMT)	403
Control/Status Registers	404
Deadman Timer. See DMT.	
Development Support	463
Device Identification	442
Device Overview	13
Direct Memory Access Controller. See DMA.	
DMA	
Channel Trigger Sources	189
Control Registers	
Peripheral Module Disable (PMD)	185
Summary of Operations	183
Types of Data Transfers	184
Typical Setup	185
Doze Mode	417
DSP Engine	
Dual Watchdog Timer (Dual WDT)	447

Е

ECC	
Control Registers	74
Electrical Characteristics	465
AC	476
ADC Delta Current	471
ADC Specifications	489
APLL Delta Current	471
Auxiliary PLL Clock Timing Specifications	478
BFRC Oscillator Specifications	479
Comparator + DAC Delta Current	472
Current Bias Generator Specifications	492
DAC Output (DACOUT Pin) Specifications	492
DAC Specifications	491
Doze Current (IDOZE)	469
External Clock Timing Requirements	477
FRC Oscillator Specifications	478
High-Speed Analog Comparator Specifications	491
High-Speed PWMx Timing Requirements	480
I/O Pin Input Injection Current Specifications	474
I/O Pin Input Specifications	473
I/O Pin Output Specifications	474
I/O Timing Requirements	476
I2Cx Bus Data Requirements (Master Mode)	485
I2Cx Bus Data Timing Requirements	
(Slave Mode)	487
Idle Current (IIDLE)	468
Load Conditions for I/O Specifications	476

LPRC Oscillator Specifications	478
Op Amp Delta Current	472
Operating Current (IDD)	467
Operating Voltage Specifications	
Operational Amplifier Specifications	492
Package Thermal Resistance	466
PLL Clock Timing Specifications	
Power-Down Current (IPD)	469
Program Flash Memory Specifications	475
PWM Delta Current	470
Reset and Brown-out Reset Requirements	479
SPIx Master Mode Requirements	482
SPIx Slave Mode Timing Requirements	483
Thermal Operating Conditions	466
UARTx Timing Requirements	488
Watchdog Timer Delta Current (∆IwDT)	470
Equations	
AFPLLO Calculation	163
AFvco Calculation	163
Calculating Frequency Output	166
FPLLO Calculation	160
Frame Time Calculations	339
Fvco Calculation	160
I ² C Baud Rate Reload Calculation	329
Relationship Between Device and	
SPIx Clock Speed	326
SYNCMINx and SYNCMAXx Calculations	340
Tick Period Calculation	339
Errata	
Error Correcting Code (ECC)	73
Fault Injection	73

F

65
67
66
427

G

Getting Started Guidelines	17
Connection Requirements	17
Decoupling Capacitors	17
External Oscillator Layout Guidance	19
External Oscillator Pins	19
ICSP Pins	19
Master Clear (MCLR) Pin	18
Oscillator Value Conditions on Start-up	20
Targeted Applications	20
Unused I/Os	20

Н

High-Resolution PWM (HSPWM) with	
Fine Edge Placement	191
High-Speed Analog Comparator with	
Slope Compensation DAC	255
High-Speed, 12-Bit Analog-to-Digital	
Converter (ADC)	225
Control/Status Registers	229
Features Overview	225
Resources	228
Sampling Time Requirements	228
Temperature Sensor	228

High-Temperature DC Characteristics	
ADC Delta Current 499	Э
ADC Module Accuracy500)
APLL Delta Current	3
Comparator + DAC Delta Current	9
DAC Specifications)
Doze Current (IDOZE)	7
I/O Pin Input Specifications 499	9
Idle Current (IIDLE)	3
Internal FRC Accuracy499	9
Internal LPRC Accuracy500)
Op Amp Delta Current	9
Operating Current (IDD)	5
Operating MIPS vs. Voltage494	4
Operating Voltage Specifications	1
Power-Down Current (IPD)	7
PWM Delta Current498	3
Thermal Operating Conditions 494	1
Thermal Packaging Characteristics	4
Watchdog Timer Delta Current (∆IwDT)	7
High-Temperature Electrical Characteristics	3
HSPWM	
Architecture	2
Control Registers 193	3
PWM4H Output on PPS192	
Write Restrictions	2

I

I/O Ports	
Configuring Analog/Digital Port Pins	106
Control Registers	106
Helpful Tips	
Parallel I/O (PIO)	103
Resources	124
Write/Read Timing	106
I ² C	
Clock Rates	329
Communicating as Master in Single	
Master Environment	327
Control/Status Registers	331
Reserved Addresses	330
Setting Baud Rate as Bus Master	
Slave Address Masking	329
ICSP Write Inhibit	77
Activation	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	427, 450
Input Change Notification (ICN)	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	57
MAC Instructions	
MCU Instructions	
Move and Accumulator Instructions	58
Other Instructions	
Instruction Set Summary	453
Overview	456
Symbols Used in Opcode Descriptions	454
Instruction-Based Power-Saving Modes	
ldle	
Sleep	416
-	

Inter-Integrated Circuit. See I ² C.	
Internet Address	530
Interrupt Controller	
Alternate Interrupt Vector Table (AIVT)	83
Control and Status Registers	93
INTCON1	93
INTCON2	93
INTCON3	93
INTCON4	93
INTTREG	93
Interrupt Vector Details	87
Interrupt Vector Table (IVT)	83
Reset Sequence	83
Resources	93
Trap Vector Details	86
Interrupt Vector Table	84
Interrupts Coincident with Power Save Instructions	416
1	

J

JTAG Boundary Scan Interface	. 427
JTAG Interface	. 450

L

Low-Power Sleep Modes	(table)	416
	lanc]	- 10

Μ

35
43
530
59
60
59
59
59

0

Operational Amplifier 39	99
Control Registers 40	00
Oscillator	
Auxiliary PLL 16	62
Backup Internal Fast RC (BFRC) 16	65
Configuration 16	67
Control Registers 16	68
CPU Clocking 16	64
Internal Fast RC (FRC)16	65
Low-Power RC (LPRC) 16	65
OSCCON Unlock Sequence	67
Primary (POSC)16	65
Primary PLL	59
Reference Clock Output 16	66
Oscillator with High-Frequency PLL 15	57

Ρ

Packaging	501
Details	503
Marking	501
Peripheral Module Disable (PMD)	417
Control Registers	418

Peripheral Pin Select (PPS)	113
Available Peripherals	113
Available Pins	113
Configuration Change Control	
Control Registers	
Input Mapping	114
Output Mapping	
Output Selection for Remappable Pins	
Remappable Output Pin Registers	
Remappable Pin Inputs	
Selectable Input Sources	117
Peripheral Trigger Generator (PTG)	
Peripheral Trigger Generator. See PTG.	
Pin and ANSELx Availability	104
Pinout I/O Descriptions (table)	
Power-Saving Features	415
Clock Frequency and Switching	
Resources	417
Program Address Space	
Memory Map for dsPIC33CK32MP10X Devices	35
Program Memory	
Address Space	35
Construction	62
Data Access from Program Memory Using	
Table Instructions	63
Table Read High Instructions (TBLRDH)	63
Table Read Low Instructions (TBLRDL)	63
Interfacing with Data Memory Spaces	62
Organization	37
Reset Vector	37
Programmer's Model	
Register Descriptions	27
PTG	
Command Options	391
Control/Status Registers	381
Features	379
Input Descriptions	
Output Descriptions	
Step Command Format/Description	390
0	

QEI	
Control/Status Registers	
Truth Table	
Quadrature Encoder Interface (QEI)	
Quadrature Encoder Interface. See QEI.	

R

Referenced Sources	11
Register Maps	
Configuration	
Interrupt Enable	91
Interrupt Flag	91
Interrupt Priority	
PMD	
PORTA	125
PORTB	
PORTC	126
PORTD	126
PPS Input Control	
PPS Output Control	
Registers	
ACLKCON1 (Auxiliary Clock Control)	
ADCMPxCON (ADC Digital Comparator x	
Control)	

ADCMPxENH (ADC Digital Comparator x
Channel Enable High) 251
ADCMPxENL (ADC Digital Comparator x
Channel Enable Low) 251
ADCON1H (ADC Control 1 High) 230
ADCON1L (ADC Control 1 Low) 229
ADCON2H (ADC Control 2 High)
ADCON2L (ADC Control 2 Low) 231
ADCON3H (ADC Control 3 High) 234
ADCON3L (ADC Control 3 Low) 233
ADCON4H (ADC Control 4 High) 236
ADCON4L (ADC Control 4 Low) 235
ADCON5H (ADC Control 5 High) 238
ADCON5L (ADC Control 5 Low) 237
ADCORExH (Dedicated ADC Core x
Control High) 240
ADCORExL (Dedicated ADC Core x
Control Low) 239
ADEIEH (ADC Early Interrupt Enable High)
ADEIEL (ADC Early Interrupt Enable Low) 242
ADEISTATH (ADC Early Interrupt Status High) 243
ADEISTATL (ADC Early Interrupt Status Low) 243
ADFLxCON (ADC Digital Filter x Control)
ADIEH (ADC Interrupt Enable High) 246
ADIEL (ADC Interrupt Enable Low)
ADLVLTRGH (ADC Level-Sensitive Trigger
Control High) 241
ADLVLTRGL (ADC Level-Sensitive Trigger
Control Low)
ADMOD0H (ADC Input Mode Control 0 High)
ADMOD0L (ADC Input Mode Control 0 Low)
ADMOD1L (ADC Input Mode Control 1 Low)
ADSTATH (ADC Data Ready Status High) 247
ADSTATH (ADC Data Ready Status High)
ADSTATH (ADC Data Ready Status High)247ADSTATL (ADC Data Ready Status Low)247ADTRIGNL/ADTRIGXH (ADC Channel Trigger n(x)248Selection Low/High)248AMPCON1H (Op Amp Control High)401AMPCON1L (Op Amp Control Low)400ANSELx (Analog Select for PORTx)106APLLDIV1 (APLL Output Divider)177APLLFBD1 (APLL Feedback Divider)176BIASCON (Current Bias Generator Control)396CCPxCON1H (CCPx Control 1 High)360CCPxCON1L (CCPx Control 2 High)363CCPxCON2L (CCPx Control 2 Low)362CCPxCON3L (CCPx Control 3 High)365CCPxCON3L (CCPx Control 3 Low)364CCPxCONH (CLCx Control High)371
ADSTATH (ADC Data Ready Status High)247ADSTATL (ADC Data Ready Status Low)247ADTRIGNL/ADTRIGXH (ADC Channel Trigger n(x)248Selection Low/High)248AMPCON1H (Op Amp Control High)401AMPCON1L (Op Amp Control Low)400ANSELx (Analog Select for PORTx)106APLLDIV1 (APLL Output Divider)177APLLFBD1 (APLL Feedback Divider)176BIASCON (Current Bias Generator Control)396CCPxCON1H (CCPx Control 1 High)360CCPxCON2L (CCPx Control 2 High)363CCPxCON3H (CCPx Control 3 High)365CCPxCON3L (CCPx Control 3 Low)364CCPxSTATL (CCPx Status)366CLCxCONL (CLCx Control High)371CLCxCONL (CLCx Control Low)370
ADSTATH (ADC Data Ready Status High)
ADSTATH (ADC Data Ready Status High)
ADSTATH (ADC Data Ready Status High) 247 ADSTATL (ADC Data Ready Status Low) 247 ADTRIGNL/ADTRIGXH (ADC Channel Trigger n(x) 248 Selection Low/High) 248 AMPCON1H (Op Amp Control High) 401 AMPCON1L (Op Amp Control Low) 400 ANSELx (Analog Select for PORTx) 106 APLLDIV1 (APLL Output Divider) 177 APLLFBD1 (APLL Feedback Divider) 176 BIASCON (Current Bias Generator Control) 396 CCPxCON1H (CCPx Control 1 High) 360 CCPxCON1L (CCPx Control 2 High) 363 CCPxCON2L (CCPx Control 2 Low) 362 CCPxCON3H (CCPx Control 3 High) 365 CCPxCON3L (CCPx Control 3 Low) 364 CCPxSTATL (CCPx Status) 366 CLCxCONH (CLCx Control High) 371 CLCxCONL (CLCx Control Low) 370 CLCxGLSH (CLCx Gate Logic Input 376 CLCxGLSL (CLCx Gate Logic Input Select Low) 374
ADSTATH (ADC Data Ready Status High) 247 ADSTATL (ADC Data Ready Status Low) 247 ADTRIGNL/ADTRIGXH (ADC Channel Trigger n(x) 248 Selection Low/High) 248 AMPCON1H (Op Amp Control High) 401 AMPCON1L (Op Amp Control Low) 400 ANSELx (Analog Select for PORTx) 106 APLLDIV1 (APLL Output Divider) 177 APLLFBD1 (APLL Feedback Divider) 176 BIASCON (Current Bias Generator Control) 396 CCPxCON1H (CCPx Control 1 High) 360 CCPxCON1L (CCPx Control 2 Low) 358 CCPxCON3L (CCPx Control 3 High) 365 CCPxCON3L (CCPx Control 3 Low) 364 CCPxCON1L (CCPx Control 3 Low) 370 CLCxGLSH (CLCx Gate Logic Input 376 CLCxGLSL (CLCx Input MUX Select) 374
ADSTATH (ADC Data Ready Status High) 247 ADSTATL (ADC Data Ready Status Low) 247 ADTRIGNL/ADTRIGXH (ADC Channel Trigger n(x) 248 Selection Low/High) 248 AMPCON1H (Op Amp Control High) 401 AMPCON1L (Op Amp Control Low) 400 ANSELx (Analog Select for PORTx) 106 APLLDIV1 (APLL Output Divider) 177 APLLFBD1 (APLL Feedback Divider) 176 BIASCON (Current Bias Generator Control) 396 CCPxCON1H (CCPx Control 1 High) 360 CCPxCON2L (CCPx Control 2 High) 363 CCPxCON3H (CCPx Control 3 Low) 364 CCPxCON3L (CCPx Control 3 Low) 370 CLCxGLSH (CLCx Gate Logic Input 376 CLCxGLSL (CLCx Gate Logic Input 374 CLCxSEL (CLCx Input MUX Select) 372 CLKDIV (Clock Divider) 370
ADSTATH (ADC Data Ready Status High) 247 ADSTATL (ADC Data Ready Status Low) 247 ADTRIGNL/ADTRIGXH (ADC Channel Trigger n(x) 248 Selection Low/High) 248 AMPCON1H (Op Amp Control High) 401 AMPCON1L (Op Amp Control Low) 400 ANSELx (Analog Select for PORTx) 106 APLLDIV1 (APLL Output Divider) 177 APLLFBD1 (APLL Feedback Divider) 176 BIASCON (Current Bias Generator Control) 396 CCPxCON1H (CCPx Control 1 High) 360 CCPxCON2L (CCPx Control 2 High) 363 CCPxCON3H (CCPx Control 2 Low) 362 CCPxCON3L (CCPx Control 3 Low) 364 CCPxCON3L (CCPx Control 3 Low) 366 CLCxCONH (CLCx Control High) 371 CLCxCONH (CLCx Control Low) 370 CLCxGLSH (CLCx Gate Logic Input 376 CLCxGLSL (CLCx Gate Logic Input 374 CLCxSEL (CLCx Input MUX Select) 372 CLKDIV (Clock Divider) 170 CMBTRIGH (Combinational Trigger High) 198
ADSTATH (ADC Data Ready Status High) 247 ADSTATL (ADC Data Ready Status Low) 247 ADTRIGNL/ADTRIGXH (ADC Channel Trigger n(x) 248 Selection Low/High) 248 AMPCON1H (Op Amp Control High) 401 AMPCON1L (Op Amp Control Low) 400 ANSELx (Analog Select for PORTx) 106 APLLDIV1 (APLL Output Divider) 177 APLLFBD1 (APLL Feedback Divider) 176 BIASCON (Current Bias Generator Control) 396 CCPxCON1H (CCPx Control 1 High) 360 CCPxCON2L (CCPx Control 2 High) 363 CCPxCON3H (CCPx Control 2 Low) 362 CCPxCON3H (CCPx Control 3 High) 365 CCPxCON3L (CCPx Control 3 Low) 364 CCPxCON1L (CCPx Status) 366 CLCxCONH (CLCx Control High) 371 CLCxCONH (CLCx Control Low) 370 CLCxGLSH (CLCx Gate Logic Input 376 CLCxGLSL (CLCx Gate Logic Input Select Low) 374 CLCxSEL (CLCx Input MUX Select) 372 CLKDIV (Clock Divider) 170 CMBTRIGH (Combinational Trigger High) 198
ADSTATH (ADC Data Ready Status High)
ADSTATH (ADC Data Ready Status High) 247 ADSTATL (ADC Data Ready Status Low) 247 ADTRIGNL/ADTRIGXH (ADC Channel Trigger n(x) 248 Selection Low/High) 248 AMPCON1H (Op Amp Control High) 401 AMPCON1L (Op Amp Control Low) 400 ANSELx (Analog Select for PORTx) 106 APLLDIV1 (APLL Output Divider) 177 APLLFBD1 (APLL Feedback Divider) 176 BIASCON (Current Bias Generator Control) 396 CCPxCON1H (CCPx Control 1 High) 360 CCPxCON2L (CCPx Control 2 High) 363 CCPxCON3L (CCPx Control 2 Low) 362 CCPxCON3L (CCPx Control 3 Low) 364 CCPxCON3L (CCPx Control 3 Low) 366 CLCxCONH (CLCx Control High) 371 CLCxCONH (CLCx Control Low) 370 CLCxGLSH (CLCx Gate Logic Input 376 CLCxGLSL (CLCx Gate Logic Input 374 CLCxGLSL (CLCx Input MUX Select) 372 CLKDIV (Clock Divider) 170 CMBTRIGH (Combinational Trigger High) 198 CMBTRIGL (Combinational Trigger Low) 197 CNCONx (Change Notification Control
ADSTATH (ADC Data Ready Status High) 247 ADSTATL (ADC Data Ready Status Low) 247 ADTRIGNL/ADTRIGXH (ADC Channel Trigger n(x) 248 Selection Low/High) 248 AMPCON1H (Op Amp Control High) 401 AMPCON1L (Op Amp Control Low) 400 ANSELx (Analog Select for PORTx) 106 APLLDIV1 (APLL Output Divider) 177 APLLFBD1 (APLL Feedback Divider) 176 BIASCON (Current Bias Generator Control) 396 CCPxCON1H (CCPx Control 1 High) 360 CCPxCON1L (CCPx Control 2 High) 363 CCPxCON2L (CCPx Control 2 Low) 362 CCPxCON3L (CCPx Control 3 Low) 364 CCPxCON3L (CCPx Control 3 Low) 366 CLCxCONH (CLCx Control High) 371 CLCxCONH (CLCx Control Low) 370 CLCxGLSH (CLCx Gate Logic Input 376 CLCxGLSL (CLCx Gate Logic Input 372 CLKDIV (Clock Divider) 170 CMBTRIGH (Combinational Trigger Low) 197 CNCONx (Change Notification Control 197 CNCONX (Interrupt Change Notification Enable 110
ADSTATH (ADC Data Ready Status High) 247 ADSTATL (ADC Data Ready Status Low) 247 ADTRIGNL/ADTRIGXH (ADC Channel Trigger n(x) 248 Selection Low/High) 248 AMPCON1H (Op Amp Control High) 401 AMPCON1L (Op Amp Control Low) 400 ANSELx (Analog Select for PORTx) 106 APLLDIV1 (APLL Output Divider) 177 APLLFBD1 (APLL Feedback Divider) 176 BIASCON (Current Bias Generator Control) 396 CCPxCON1H (CCPx Control 1 High) 360 CCPxCON1L (CCPx Control 2 High) 363 CCPxCON3L (CCPx Control 3 High) 363 CCPxCON3L (CCPx Control 3 Low) 364 CCPxCON3L (CCPx Control 3 Low) 364 CCPxCON3L (CCPx Control 3 Low) 370 CLCxGONH (CLCx Control High) 371 CLCxCONH (CLCx Control Low) 370 CLCxGLSH (CLCx Gate Logic Input 376 CLCxGLSL (CLCx Input MUX Select) 372 CLKDIV (Clock Divider) 170 CMBTRIGH (Combinational Trigger Low) 197 CNCONx (Change Notification Control 197 CNCONx (Interrupt Change Notification Enable
ADSTATH (ADC Data Ready Status High) 247 ADSTATL (ADC Data Ready Status Low) 247 ADTRIGNL/ADTRIGXH (ADC Channel Trigger n(x) 248 Selection Low/High) 248 AMPCON1H (Op Amp Control High) 401 AMPCON1L (Op Amp Control Low) 400 ANSELx (Analog Select for PORTx) 106 APLLDIV1 (APLL Output Divider) 177 APLLFBD1 (APLL Feedback Divider) 176 BIASCON (Current Bias Generator Control) 396 CCPxCON1H (CCPx Control 1 High) 360 CCPxCON1L (CCPx Control 2 High) 363 CCPxCON2L (CCPx Control 2 Low) 362 CCPxCON3L (CCPx Control 3 Low) 364 CCPxCON3L (CCPx Control 3 Low) 366 CLCxCONH (CLCx Control High) 371 CLCxCONH (CLCx Control Low) 370 CLCxGLSH (CLCx Gate Logic Input 376 CLCxGLSL (CLCx Gate Logic Input 372 CLKDIV (Clock Divider) 170 CMBTRIGH (Combinational Trigger Low) 197 CNCONx (Change Notification Control 197 CNCONX (Interrupt Change Notification Enable 110

dsPIC33CK64MP105 FAMILY

for PORTx)112CNPDx (Change Notification Pull-Down Enable for PORTx)109CNPUx (Change Notification Pull-up Enable for PORTx)109CNSTATx (Interrupt Change Notification Status for PORTx)111CORCON (Core Control)32, 95CRCCONL (CRC Control Low)412CRCXORH (CRC XOR Polynomial, High Byte)414CRTSTAT (CPU W Register Context Status)33DACCTRL1L (DAC Control 1 Low)258DACCTRL2H (DAC Control 2 High)259DACCTRL2L (DAC Control 1 Low)260DACXCONL (DACx Control High)260DACXCONL (DACx Control High)260DACXCONL (DACx Control High)260DACXCONL (DACx Control High)260DACXCONL (DACx Control High)262DACXCONL (DACx Data High)262DACXCONL (DACx Data High)262DACXDATH (DACx Data Low)262DEVID (Device ID)443DEVREV (Device Revision)442DMACON (DMA Engine Control)186DMITNT (DMA Channel n Interrupt)188DMTCRTH (Deadman Timer Count Low)407DMTCON (Deadman Timer Count Low)404DMTPSCNTL (DMT Post-Configure Count314Status High)408DMTPSCNTL (DMT Post-Configure Interval314Status High)408DMTPSCNTH (DMT Post-Configure Interval314Status Low)409DMTSTAT (Deadman Timer Status)406ECCADDRL (ECC Fault Inject Address75ECCADDRL (ECC Fault Inject Address76 <th>CNFx (Interrupt Change Notification Flag</th>	CNFx (Interrupt Change Notification Flag
for PORTx) 109 CNPUx (Change Notification Pull-up Enable for PORTx) 109 CNSTATx (Interrupt Change Notification Status for PORTx) 111 CORCON (Core Control) 2,95 CRECONL (CRC Control Low) 413 CRCCONL (CRC Control Low) 414 CRCXORH (CRC XOR Polynomial, High Byte) 414 CRTXTSAT (CPU W Register Context Status) 33 DACCTRL1L (DAC Control 1 Low) 258 DACCTRL2H (DAC Control 2 High) 260 DACXCONL (DACx Control 1 Low) 260 DACXCONL (DACx Control 1 Low) 260 DACXCONL (DACx Control Low) 260 DACXCONL (DACx Control 1 Low) 261 DACXCONL (DACx Control 1 Low) 262 DEVID (Device ID) 443 DEVREV (Device Revision) 442 DMACHN (DMA Channel n Control) 187 DMACON (DMA Engine Control) 188 DMTCLR (Deadman Timer Count High) 401 DMTONTH (DMA Channel n Interrupt) 188 DMTCLR (Deadman Timer Count High) 404 DMTPSCNTH (DMT Post-Configure Count 404	for PORTx)
CNPUx (Change Notification Pull-up Enable for PORTx). 109 CNSTATx (Interrupt Change Notification Status for PORTx). 111 CORCON (Core Control) 32, 95 CRCCONH (CRC Control Low). 413 CRCCONH (CRC Control Low). 414 CRCXORH (CRC XOR Polynomial, High Byte). 414 CRCXORL (CRC XOR Polynomial, Low Byte) 414 CRXCORL (CRC Control 1 Low). 258 DACCTRL1L (DAC Control 2 Low). 259 DACCTRL2H (DAC Control 2 Low). 259 DACXCONH (DACx Control High). 260 DACXCONH (DACx Control Low). 260 DACXDATH (DACx Data High). 262 DEVREV (Device Revision) 443 DEVREV (Device Revision) 443 DEVREV (Device Revision) 443 DMACON (DMA Engine Control) 187 DMACON (DMA Engine Control) 186 DMINTIN (DMA Channel n Control) 404 DMTCNTL (Deadman Timer Count High) 407 DMTCNTL (Deadman Timer Count Low) 407 DMTCNTL (Deadman Timer Count Low) 404 DMTPSCNTH (DMT Post-Configure Interval status High) Status High) 408 <td></td>	
CNSTATx (Interrupt Change Notification Status for PORTx). 111 CORCON (Core Control) 32, 95 CRCCONL (CRC Control Low). 413 CRCCONL (CRC Control Low). 414 CRCXORL (CRC XOR Polynomial, High Byte). 414 CRCXORL (CRC XOR Polynomial, Low Byte). 414 CRCXORL (CRC XOR Polynomial, Low Byte). 414 CRCXORL (CRC Control 1 Low). 259 DACCTRL2L (DAC Control 2 Ligh). 259 DACXCONL (DACx Control Low). 260 DACXCONL (DACx Control Low). 260 DACXCONL (DACx Control Low). 260 DACXCONL (DACx Control Low). 262 DACXONH (DACx Data High). 262 DACXONT (DACx Data Low). 262 DACXONT (DACx Data Low). 262 DACXONT (DACx Data Interrupt). 188 DMTCH (DACx Data Interrupt). 188 DMTCLR (Deadman Timer Count Low). 407 DMTCNT (Deadman Timer Count High). 407 DMTCNTU (Deadman Timer Count Low). 404 DMTPSCNTH (DMT Post-Configure Interval \$24 Status Low). 408 <t< td=""><td>CNPUx (Change Notification Pull-up Enable</td></t<>	CNPUx (Change Notification Pull-up Enable
for PORTx). 111 CORCON (Core Control) 32, 95 CRCCONH (CRC Control Low) 412 CRCXORH (CRC XOR Polynomial, High Byte). 414 CRCXORL (CRC XOR Polynomial, Low Byte) 414 CRXCORL (CRC XOR Polynomial, Low Byte). 414 CTXTSTAT (CPU W Register Context Status) 33 DACCTRL2H (DAC Control 1 Low). 259 DACCTRL2L (DAC Control 2 Low). 259 DACXCONH (DACx Control High) 260 DACXCONH (DACx Control Low). 260 DACXDATH (DACx Data High). 262 DEVID (Device ID) 443 DEVREV (Device Revision) 443 DEVREV (Device Revision) 443 DWACHN (DMA Channel n Control) 187 DMACON (DMA Engine Control) 188 DMTCLR (Deadman Timer Count Low) 407 DMTCNTL (Deadman Timer Count Low) 407 DMTPSCNTH (DMT Post-Configure Count 3tatus High) MATS 408 DMTPSCNTH (DMT Post-Configure Interval 3tatus Low) DMTPSINTVH (DMT Post-Configure Interval 3tatus Low) DMT	
CRCCONH (CRC Control High) 413 CRCCONL (CRC Control Low) 412 CRCXORH (CRC XOR Polynomial, High Byte) 414 CRXTSTAT (CPU W Register Context Status) 33 DACCTRL1L (DAC Control 1 Low) 258 DACCTRL2H (DAC Control 2 High) 259 DACCCONH (DACx Control 1 Low) 259 DACXCONL (DAC control 2 Low) 260 DACXCONH (DACx Control Low) 260 DACXCONL (DACx Control Low) 260 DACXCONL (DACx Data High) 262 DACXDATH (DACx Data Low) 262 DEVID (Device ID) 443 DEVREV (Device Revision) 442 DMACHn (DMA Channel n Control) 187 DMACON (DMA Engine Control) 186 DMTICNTH (Deadman Timer Count Low) 407 DMTCNTH (Deadman Timer Count Low) 407 DMTCNTL (Deadman Timer Control) 404 DMTPRECLR (Deadman Timer Control) 404 DMTPSCNTH (DMT Post-Configure Count Status High) Status High) 408 DMTPSINTVH (DMT Post-Configure Interval Status High) DMTPSINT	for PORTx)111
CRCCONL (CRC Control Low) 412 CRCXORH (CRC XOR Polynomial, High Byte) 414 CRCXORL (CRC XOR Polynomial, Low Byte) 414 CRCXORL (CRC XOR Polynomial, Low Byte) 414 CRCXORL (CRC XOR Polynomial, Low Byte) 413 CTXTSTAT (CPU W Register Context Status) 33 DACCTRL2L (DAC Control 1 Low) 259 DACXCONL (DACx Control 2 Low) 260 DACXCONL (DACx Control High) 262 DACXDATH (DACx Data High) 262 DEVID (Device Revision) 442 DMACHn (DMA Channel n Control) 187 DMACON (DMA Engine Control) 186 DMTCIR (Deadman Timer Count High) 407 DMTCNT (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Count Low) 404 DMTPS (DMT Post-Configure Count 5tatus High) 408 DMTPSCNTH (DMT Post-Configure Interval Status High) 408 DMTPSINTVL (DMT Post-Configure Interval Status High) 409 DMTPSINTVL (DMT Post-Configure Interval Status High) 409 DMTPSINTVL (DMT Post-Configure Interval Status High) 75 </td <td></td>	
CRCXORH (CRC XOR Polynomial, High Byte) 414 CRCXORL (CRC XOR Polynomial, Low Byte) 414 CTXTSTAT (CPU W Register Context Status) 33 DACCTRL1L (DAC Control 1 Low) 259 DACCTRL2L (DAC Control 2 Low) 259 DACXCONH (DACx Control High) 260 DACXCONH (DACx Control Low) 260 DACXDATH (DACx Data High) 262 DEVID (Device ID) 443 DEVREV (Device Revision) 442 DMACHN (DMA Channel n Control) 187 DMACCN (DMA Channel n Interrupt) 188 DMTCLR (Deadman Timer Count High) 407 DMTCNTH (Deadman Timer Count Low) 407 DMTCNTH (Deadman Timer Count Low) 404 DMTPSCNTL (DMT Post-Configure Count 3tatus High) 408 DMTPSINTVL (DMT Post-Configure Interval 3tatus Low) 408 DMTPSINTVL (DMT Post-Configure Interval 3tatus Low) 409 DMTSTAT (Deadman Timer Status) 406 404 DMTPSINTVL (DMT Post-Configure Interval 3tatus Low) 409 DMTSTAT (Deadman Timer Status) 406 406 ECCADDRH (ECC Fault Inject Address Compare High) <td></td>	
CRCXORL (CRC XOR Polynomial, Low Byte) 414 CTXTSTAT (CPU W Register Context Status) 33 DACCTRL1L (DAC Control 1 Low) 258 DACCTRL2L (DAC Control 2 Low) 259 DACXCONH (DACx Control 1 Low) 260 DACXCONH (DACx Control Low) 260 DACXCONL (DACx Control Low) 262 DACXDATH (DACx Data High) 262 DEVID (Device ID) 443 DEVREV (Device Revision) 442 DMACH (DMA Channel n Control) 187 DMACON (DMA Engine Control) 186 DMITONTH (Deadman Timer Count High) 407 DMTCNTL (Deadman Timer Count Low) 404 DMTPON (Deadman Timer Control) 404 DMTPON (Deadman Timer Count Low) 404 DMTPSCNTH (DMT Post-Configure Count Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval Status Low) 408 DMTPSINTVL (DMT Post-Configure Interval Status Low) 409 DMTSAT (Deadman Timer Status) 406 DMTPSINTVL (DMT Post-Configure Interval Status Low) 75 ECCADDRH (ECC Fault Inject Address Compare Low) 75 ECCCONL (ECC Fault Injection Configuration High) 74	
CTXTSTAT (CPU W Register Context Status)	
DACCTRL2H (DAC Control 2 High) 259 DACXCORL2L (DAC Control 2 Low) 259 DACXCONH (DACx Control Low) 260 DACXCONL (DACx Data High) 262 DACXDATH (DACx Data Low) 262 DEVID (Device ID) 443 DEVREV (Device Revision) 442 DMACCN (DMA Channel n Control) 187 DMACCN (DMA Channel n Control) 188 DMTCLR (Deadman Timer Clear) 405 DMTCNTH (Deadman Timer Count High) 407 DMTCON (Deadman Timer Count Low) 404 DMTPCNTL (Deadman Timer Count Low) 404 DMTPRECLR (Deadman Timer Count Low) 404 DMTPSCNTH (DMT Post-Configure Count Status High) 408 DMTPSCNTL (DMT Post-Configure Interval Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCCONL (ECC Fault Inject Address 76 COTFIGURATION HIGH 76 FALTREG Configuration 76 FALTREG Configuration 76 <	CTXTSTAT (CPU W Register Context Status)
DACCTRL2L (DAC Control 2 Low) 259 DACxCONH (DACx Control Low) 260 DACxCONL (DACx Control Low) 260 DACxDATH (DACx Data High) 262 DACXDATL (DACx Data Low) 262 DEVID (Device ID) 443 DEVREV (Device Revision) 442 DMACHn (DMA Channel n Control) 187 DMACON (DMA Engine Control) 186 DMTCLR (Deadman Timer Clear) 405 DMTCNTH (Deadman Timer Count High) 407 DMTCNTL (Deadman Timer Control) 404 DMTPECLR (Deadman Timer Control) 404 DMTPSCNTH (DMT Post-Configure Count Status High) 408 DMTPSINTVL (DMT Post-Configure Count Status Low) 408 DMTPSINTVL (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCCONH (ECC Fault Inject Address Compare Low) 75 ECCCONH (ECC Fault Inject Address Compare Low) 76 FALTREG Configuration 430 FDEVOPT Configuration 430 FDEVOPT Configuration 431 FDMTONTH (ECC System Status Display High)	DACCTRL1L (DAC Control 1 Low)258
DACxCONH (DACx Control High) 260 DACxCONL (DACx Control Low) 260 DACxDATH (DACx Data High) 262 DACXDATL (DACx Data Low) 262 DEVID (Device ID) 443 DEVREV (Device Revision) 442 DMACHn (DMA Channel n Control) 187 DMACON (DMA Engine Control) 186 DMAINTn (DMA Channel n Interrupt) 188 DMTCLR (Deadman Timer Cear) 405 DMTCNTL (Deadman Timer Count High) 407 DMTCON (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Count Low) 404 DMTPRECLR (Deadman Timer Count Low) 404 DMTPRECLR (Deadman Timer Count Low) 404 DMTPRECLR (Deadman Timer Count Low) 408 DMTPSCNTH (DMT Post-Configure Count Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCCONH (ECC Fault Inject Address 75 COMpare Low) 74 ECCCONH (ECC Fault Injection Configuration Low) 74 ECCCONH (ECC Fault Injection Configuration L	
DACxCONL (DACx Control Low) 260 DACxDATH (DACx Data High) 262 DACXDATL (DACX Data Low) 262 DEVID (Device ID) 443 DEVREV (Device Revision) 442 DMACHn (DMA Channel n Control) 187 DMACON (DMA Engine Control) 186 DMAINTn (DMA Channel n Interrupt) 188 DMTCLR (Deadman Timer Clear) 405 DMTCNTH (Deadman Timer Count Low) 407 DMTCNTL (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Count Low) 404 DMTPCON (Deadman Timer Count Low) 404 DMTPRECLR (Deadman Timer Count Low) 404 DMTPSCNTH (DMT Post-Configure Count Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval Status Low) 408 DMTPSINTVL (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCCONH (ECC Fault Injection Configuration Low) 74 ECCCONH (ECC Fault Injection Configuration Low) 74 ECCCONH (ECC Fault Injection Configuration Low) 76 FALTREG Configuration 430 <t< td=""><td></td></t<>	
DACXDATH (DACX Data High) 262 DACXDATL (DACX Data Low) 262 DEVID (Device ID) 443 DEVREV (Device Revision) 442 DMACHn (DMA Channel n Control) 187 DMACON (DMA Engine Control) 188 DMITCLR (Deadman Timer Clear) 405 DMTCNTH (Deadman Timer Count High) 407 DMTCNTL (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Count Low) 404 DMTPCNTE (Deadman Timer Count Low) 404 DMTPCON (Deadman Timer Count Low) 404 DMTPSCNTH (DMT Post-Configure Count Status High) 408 DMTPSCNTH (DMT Post-Configure Count Status Low) 408 DMTPSINTVL (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCCONH (ECC Fault Inject Address 75 Configuration Low) 74 ECCCONH (ECC Fault Injection Configuration Low) 74 ECCCONH (ECC Fault Injection Configuration Low) 74 ECCCONH (ECC Fault Injection Configuration Low) 76 FALTREG Configuration 430	
DACXDATL (DACx Data Low) 262 DEVID (Device ID) 443 DEVREV (Device Revision) 442 DMACHn (DMA Channel n Control) 187 DMACON (DMA Engine Control) 188 DMITIN (DMA Channel n Interrupt) 188 DMTCNTH (Deadman Timer Clear) 405 DMTCNTL (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Count Low) 404 DMTPSCNTH (DMT Post-Configure Count Status High) Status High) 408 DMTPSCNTH (DMT Post-Configure Interval Status Low) Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval Status Low) Status Low) 408 DMTPSINTVL (DMT Post-Configure Interval Status Low) MMTSAAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) Compare Low) 75 ECCCONH (ECC Fault Injection Configuration Low) Configuration High) 74 ECCCONH (ECC Fault Injection 74 ECCCONH (ECC System Status Display High) 76 FALTREG C	
DEVREV (Device Revision) 442 DMACHn (DMA Channel n Control) 187 DMACON (DMA Engine Control) 186 DMAINTn (DMA Channel n Interrupt) 188 DMTCLR (Deadman Timer Clear) 405 DMTCNTH (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Control) 404 DMTPCON (Deadman Timer Control) 404 DMTPRECLR (Deadman Timer Preclear) 404 DMTPSCNTH (DMT Post-Configure Count Status High) 408 DMTPSCNTL (DMT Post-Configure Count Status Low) 408 DMTPSINTVL (DMT Post-Configure Interval Status Low) 409 DMTSINTVL (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCCONH (ECC Fault Inject Address Compare Low) 75 ECCCONL (ECC Fault Injection Configuration High) 74 ECCSTATH (ECC System Status Display High) 76 FALTREG Configuration 430 FDEVOPT Configuration 430 FDEVOPT Configuration 433 FDMTCNTH Configuration 436	DACxDATL (DACx Data Low)
DMACHn (DMA Channel n Control) 187 DMACON (DMA Engine Control) 186 DMAINTn (DMA Channel n Interrupt) 188 DMTCLR (Deadman Timer Clear) 405 DMTCNTH (Deadman Timer Count High) 407 DMTCON (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Count Low) 404 DMTPNECLR (Deadman Timer Control) 404 DMTPRECLR (Deadman Timer Preclear) 404 DMTPSCNTH (DMT Post-Configure Count Status High) 408 DMTPSCNTL (DMT Post-Configure Count Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCADDRL (ECC Fault Inject Address Compare Low) 75 ECCCONL (ECC Fault Injection Configuration High) 74 ECCCONL (ECC Fault Injection Configuration Low) 74 ECCCONL (ECC Fault Injection Configuration Low) 76 FALTREG Configuration 430 FDEVOPT Configuration 430 FDEVOPT Configuration 433 FDMTONT Configuration 436 FDMTONT Configuration 436 </td <td></td>	
DMACON (DMA Engine Control) 186 DMAINTn (DMA Channel n Interrupt) 188 DMTCLR (Deadman Timer Clear) 405 DMTCNTH (Deadman Timer Count High) 407 DMTCNTL (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Control) 404 DMTCON (Deadman Timer Control) 404 DMTPCNTE (Deadman Timer Control) 404 DMTPRECLR (Deadman Timer Preclear) 404 DMTPSCNTH (DMT Post-Configure Count Status High) 408 DMTPSCNTL (DMT Post-Configure Interval Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCADDRH (ECC Fault Inject Address 75 CONFiguration High) 74 ECCCONL (ECC Fault Injection Configuration Low) 74 ECCSTATH (ECC System Status Display High) 76 FALTREG Configuration 430 FDEVOPT Configuration 433 FDMT Configuration 436 FDMT Configuration 436 FDMT Configuration 436 FDEVOPT Configuration	
DMAINTn (DMA Channel n Interrupt) 188 DMTCLR (Deadman Timer Clear) 405 DMTCNTH (Deadman Timer Count High) 407 DMTCNTL (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Control) 404 DMTHOLDREG (DMT Hold) 410 DMTPSCNTH (DMT Post-Configure Count \$tatus High) Status High) 408 DMTPSCNTL (DMT Post-Configure Count \$tatus Low) Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval \$tatus Low) Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) Compare High) 75 ECCADDRL (ECC Fault Injection Configuration High) Configuration Low) 74 ECCSTATH (ECC System Status Display High) 76 FALTREG Configuration 430 FDEVOPT Configuration 433 FDMT Configuration 436 FDMT Configuration 436 FDEVOPT Configuration 437 FDATCR Configuration 436 FDMT Configuration 436	
DMTCLR (Deadman Timer Clear) 405 DMTCNTH (Deadman Timer Count High) 407 DMTCNTL (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Control) 404 DMTHOLDREG (DMT Hold) 410 DMTPRECLR (Deadman Timer Preclear) 404 DMTPSCNTH (DMT Post-Configure Count status High) Status High) 408 DMTPSCNTL (DMT Post-Configure Interval status Low) Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval status High) Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) Compare Low) 75 ECCCONL (ECC Fault Injection 74 CONFiguration High) 74 ECCCONL (ECC Fault Injection 76 Configuration Low) 74 ECCSTATH (ECC System Status Display High) 76 FALTREG Configuration 430 FDEVOPT Configuration 433 FDMTCNTH Configuration 436 FDMTONTL Configuration 437 FDMTCNTH Configuration 436	
DMTCNTH (Deadman Timer Count High) 407 DMTCNTL (Deadman Timer Count Low) 407 DMTCON (Deadman Timer Control) 404 DMTHOLDREG (DMT Hold) 410 DMTPRECLR (Deadman Timer Preclear) 404 DMTPSCNTH (DMT Post-Configure Count 408 Status High) 408 DMTPSCNTL (DMT Post-Configure Count 408 Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval 409 Status Low) 409 DMTPSINTVL (DMT Post-Configure Interval 5 Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address 75 Compare High) 75 ECCCONL (ECC Fault Injection 75 CONFiguration High) 74 ECCCONL (ECC Fault Injection 76 Configuration Low) 74 ECCSTATH (ECC System Status Display High) 76 FALTREG Configuration 430 FDEVOPT Configuration 437 FDMTCNTH Configuration 437 FDMTCNTH Configuration 436 FDMTCNTH Configuration	DMTCLR (Deadman Timer Clear)
DMTCON (Deadman Timer Control) 404 DMTHOLDREG (DMT Hold) 410 DMTPRECLR (Deadman Timer Preclear) 404 DMTPSCNTH (DMT Post-Configure Count 408 Status High) 408 DMTPSCNTL (DMT Post-Configure Count 408 Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval 409 Status High) 409 DMTPSINTVL (DMT Post-Configure Interval 409 Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address 6 Compare High) 75 ECCADDRL (ECC Fault Injection 75 CCONL (ECC Fault Injection 74 COSTATH (ECC System Status Display High) 76 ECCONL (ECC Fault Injection 76 CONfiguration Low) 74 ECCSTATH (ECC System Status Display High) 76 FALTREG Configuration 430 FDEVOPT Configuration 433 FDMTCNTH Configuration 434 FDMTCNTH Configuration 435 FOMTCNTH Configuration 436 FDMTCNTH Configuration	DMTCNTH (Deadman Timer Count High) 407
DMTHOLDREG (DMT Hold) 410 DMTPRECLR (Deadman Timer Preclear) 404 DMTPSCNTH (DMT Post-Configure Count 408 DMTPSCNTL (DMT Post-Configure Interval 408 DMTPSINTVH (DMT Post-Configure Interval 409 DMTPSINTVL (DMT Post-Configure Interval 409 DMTPSINTVL (DMT Post-Configure Interval 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address 75 Compare High) 75 ECCADDRL (ECC Fault Inject Address 75 CONPare Low) 75 ECCONL (ECC Fault Injection 74 CONFiguration High) 74 ECCONL (ECC Fault Injection 76 CONFiguration Low) 74 ECCSTATH (ECC System Status Display High) 76 FALTREG Configuration 430 FDEVOPT Configuration 433 FDMTCNTH Configuration 434 FDMTCNTL Configuration 435 FOSC Configuration 431 FPOR Configuration 431 FPOR Configuration 431	
DMTPRECLR (Deadman Timer Preclear) 404 DMTPSCNTH (DMT Post-Configure Count 408 DMTPSCNTL (DMT Post-Configure Interval 408 DMTPSINTVH (DMT Post-Configure Interval 409 Status High) 409 DMTPSINTVL (DMT Post-Configure Interval 409 Status Low) 409 DMTPSINTVL (DMT Post-Configure Interval 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address 6 Compare High) 75 ECCADDRL (ECC Fault Inject Address 6 Compare Low) 75 ECCONH (ECC Fault Injection 74 COCONL (ECC Fault Injection 74 CCCONL (ECC Fault Injection 76 Configuration Low) 74 ECCCONL (ECC System Status Display High) 76 ECCSTATH (ECC System Status Display Low) 76 FALTREG Configuration 430 FDEVOPT Configuration 433 FDMTCNTH Configuration 434 FDMTCNTH Configuration 435 FOMTCNTL Configuration 436 FDMTIVTH Configuration 436 <t< td=""><td></td></t<>	
DMTPSCNTH (DMT Post-Configure Count Status High) 408 DMTPSCNTL (DMT Post-Configure Interval Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval Status High) 409 DMTPSINTVL (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCADDRL (ECC Fault Inject Address Compare Low) 75 ECCCONH (ECC Fault Injection Configuration High) 74 ECCCONL (ECC Fault Injection Configuration Low) 74 ECCSTATH (ECC System Status Display High) 76 FALTREG Configuration 430 FDEVOPT Configuration 438 FDMTCNTH Configuration 437 FDMTCNTH Configuration 436 FDMTCNTL Configuration 436 FICD Configuration 436 FICD Configuration 436 FOMTIVTH Configuration 436 FOMTIVTL Configuration 436 FOMTIVTL Configuration 436 FOMTIVTL Configuration 436 FOMTIVTL Configuration 437 FOMTIVTL Configuration 436 FOMTIVTL Configuration 43	
Status High)408DMTPSCNTL (DMT Post-Configure Count408DMTPSINTVH (DMT Post-Configure Interval409DMTPSINTVL (DMT Post-Configure Interval409DMTPSINTVL (DMT Post-Configure Interval409DMTSTAT (Deadman Timer Status)406ECCADDRH (ECC Fault Inject Address6Compare High)75ECCADDRL (ECC Fault Inject Address75ECCONH (ECC Fault Injection74CONfiguration High)74ECCCONL (ECC Fault Injection74CCCSTATH (ECC System Status Display High)76ECCSTATL (ECC System Status Display High)76FALTREG Configuration430FDEVOPT Configuration439FDMTCNTH Configuration437FDMTCNTH Configuration436FDMTIVTH Configuration436FDMTIVTH Configuration436FDMTIVTH Configuration436FDMTONTL Configuration436FDMTONTL Configuration436FDMTONTL Configuration436FDMTONTL Configuration436FDMTONTL Configuration436FDMTONTL Configuration436FONC Configuration431FPOR Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
DMTPSCNTL (DMT Post-Configure Count Status Low) 408 DMTPSINTVH (DMT Post-Configure Interval Status High) 409 DMTPSINTVL (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCADDRL (ECC Fault Inject Address Compare Low) 75 ECCCONH (ECC Fault Injection Configuration High) 74 ECCCONL (ECC Fault Injection Configuration Low) 74 ECCSTATH (ECC System Status Display High) 76 FCCSTATL (ECC System Status Display High) 76 FALTREG Configuration 430 FDEVOPT Configuration 439 FDMTCNTH Configuration 437 FDMTCNTL Configuration 436 FDMTIVTH Configuration 436 FICD Configuration 436 FICD Configuration 436 FOMTIVTL Configuration 436 FONC Configuration 431 <td></td>	
DMTPSINTVH (DMT Post-Configure Interval Status High) 409 DMTPSINTVL (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCADDRL (ECC Fault Inject Address Compare Low) 75 ECCONH (ECC Fault Injection Configuration High) 74 ECCCONL (ECC Fault Injection Configuration Low) 74 ECCSTATH (ECC System Status Display High) 76 FALTREG Configuration 430 FDEVOPT Configuration 439 FDMT Configuration 437 FDMTCNTH Configuration 436 FDMTIVTH Configuration 436 FICD Configuration 437 FOMTIVTL Configuration 436 FICD Configuration 436 FICD Configuration 431 FPOR Configuration 431 FPOR Configuration 434	DMTPSCNTL (DMT Post-Configure Count
Status High)409DMTPSINTVL (DMT Post-Configure Interval Status Low)409DMTSTAT (Deadman Timer Status)406ECCADDRH (ECC Fault Inject Address Compare High)75ECCADDRL (ECC Fault Inject Address Compare Low)75ECCONH (ECC Fault Injection Configuration High)74ECCCONL (ECC Fault Injection Configuration Low)74ECCCONL (ECC Fault Injection Configuration Low)74ECCSTATH (ECC System Status Display High)76ECCSTATL (ECC System Status Display Low)76FALTREG Configuration430FDEVOPT Configuration439FDMT Configuration437FDMTCNTH Configuration436FDMTIVTH Configuration436FICD Configuration435FOSC Configuration431FPOR Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
DMTPSINTVL (DMT Post-Configure Interval Status Low) 409 DMTSTAT (Deadman Timer Status) 406 ECCADDRH (ECC Fault Inject Address Compare High) 75 ECCADDRL (ECC Fault Inject Address Compare Low) 75 ECCCONH (ECC Fault Injection Configuration High) 74 ECCCONL (ECC Fault Injection Configuration Low) 74 ECCSTATH (ECC System Status Display High) 76 FALTREG Configuration 440 FBSLIM Configuration 430 FDEVOPT Configuration 437 FDMTCNTH Configuration 436 FDMTIVTH Configuration 436 FICD Configuration 436 FICD Configuration 436 FICD Configuration 431 FPOR Configuration 431 FPOR Configuration 434	
DMTSTAT (Deadman Timer Status)	DMTPSINTVL (DMT Post-Configure Interval
ECCADDRH (ECC Fault Inject Address Compare High)	
Compare High)75ECCADDRL (ECC Fault Inject AddressCompare Low)75ECCCONH (ECC Fault InjectionConfiguration High)74ECCCONL (ECC Fault InjectionConfiguration Low)74ECCSTATH (ECC System Status Display High)76ECCSTATL (ECC System Status Display High)76FALTREG Configuration440FBSLIM Configuration430FDEVOPT Configuration439FDMT Configuration437FDMTCNTH Configuration437FDMTCNTL Configuration436FDMTIVTH Configuration436FDCD Configuration435FOSC Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
ECCADDRL (ECC Fault Inject Address Compare Low)	
Compare Low)75ECCCONH (ECC Fault Injection Configuration High)74ECCCONL (ECC Fault Injection Configuration Low)74ECCSTATH (ECC System Status Display High)76ECCSTATL (ECC System Status Display Low)76FALTREG Configuration440FBSLIM Configuration430FDEVOPT Configuration439FDMT Configuration437FDMTCNTH Configuration437FDMTCNTL Configuration436FDMTIVTH Configuration436FDMTIVTL Configuration435FOSC Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
ECCCONH (ECC Fault Injection 74 Configuration High) 74 ECCCONL (ECC Fault Injection 74 Configuration Low) 74 ECCSTATH (ECC System Status Display High) 76 ECCSTATL (ECC System Status Display Low) 76 FALTREG Configuration 440 FBSLIM Configuration 430 FDEVOPT Configuration 439 FDMT Configuration 437 FDMTCNTH Configuration 437 FDMTIVTL Configuration 436 FDMTIVTL Configuration 436 FICD Configuration 435 FOSC Configuration 431 FPOR Configuration 434 FSCL (Frequency Scale) 194	
ECCCONL (ECC Fault Injection Configuration Low)	ECCCONH (ECC Fault Injection
Configuration Low)74ECCSTATH (ECC System Status Display High)76ECCSTATL (ECC System Status Display Low)76FALTREG Configuration440FBSLIM Configuration430FDEVOPT Configuration439FDMT Configuration438FDMT Configuration437FDMTCNTH Configuration436FDMTIVTH Configuration436FDMTIVTL Configuration435FOSC Configuration432FOSC SEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
ECCSTATH (ECC System Status Display High)76ECCSTATL (ECC System Status Display Low)76FALTREG Configuration440FBSLIM Configuration430FDEVOPT Configuration439FDMT Configuration437FDMTCNTH Configuration437FDMTCNTL Configuration436FDMTIVTH Configuration436FDCD Configuration435FOSC Configuration432FOSCSEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
ECCSTATL (ECC System Status Display Low)76FALTREG Configuration440FBSLIM Configuration430FDEVOPT Configuration439FDMT Configuration438FDMTCNTH Configuration437FDMTCNTL Configuration437FDMTIVTH Configuration436FDMTIVTL Configuration436FDCD Configuration435FOSC Configuration432FOSCSEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	Configuration Low)
FALTREG Configuration440FBSLIM Configuration430FDEVOPT Configuration439FDMT Configuration437FDMTCNTH Configuration437FDMTCNTL Configuration436FDMTIVTH Configuration436FDMTIVTL Configuration436FICD Configuration435FOSC Configuration432FOSCSEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
FDEVOPT Configuration439FDMT Configuration438FDMTCNTH Configuration437FDMTCNTL Configuration437FDMTIVTH Configuration436FDMTIVTL Configuration436FICD Configuration435FOSC Configuration432FOSCSEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
FDMT Configuration438FDMTCNTH Configuration437FDMTCNTL Configuration437FDMTIVTH Configuration436FDMTIVTL Configuration436FICD Configuration435FOSC Configuration432FOSCSEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
FDMTCNTH Configuration437FDMTCNTL Configuration437FDMTIVTH Configuration436FDMTIVTL Configuration436FICD Configuration435FOSC Configuration432FOSCSEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
FDMTCNTL Configuration437FDMTIVTH Configuration436FDMTIVTL Configuration436FICD Configuration435FOSC Configuration432FOSCSEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
FDMTIVTH Configuration436FDMTIVTL Configuration436FICD Configuration435FOSC Configuration432FOSCSEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
FDMTIVTL Configuration436FICD Configuration435FOSC Configuration432FOSCSEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	EDMTCNTL Configuration 427
FICD Configuration435FOSC Configuration432FOSCSEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	
FOSCSEL Configuration431FPOR Configuration434FSCL (Frequency Scale)194	FDMTIVTH Configuration
FPOR Configuration	FDMTIVTH Configuration436FDMTIVTL Configuration436FICD Configuration435
FSCL (Frequency Scale) 194	FDMTIVTH Configuration436FDMTIVTL Configuration436FICD Configuration435FOSC Configuration432
	FDMTIVTH Configuration436FDMTIVTL Configuration436FICD Configuration435FOSC Configuration432FOSCSEL Configuration431
	FDMTIVTH Configuration436FDMTIVTL Configuration436FICD Configuration435FOSC Configuration432FOSCSEL Configuration431FPOR Configuration434

FSIGN Configuration	430
FSMINPER (Frequency Scaling	
Minimum Period)	. 194
FWDT Configuration	
I2CxCONH (I2Cx Control High)	333
I2CxCONL (I2Cx Control Low)	331
I2CxMSK (I2Cx Slave Mode Address Mask)	335
I2CxSTAT (I2Cx Status)	334
IBIASCONH (Current Bias Generator Current	
Source Control High)	397
IBIASCONL (Current Bias Generator Current	
Source Control Low)	398
INDXxCNTH (Index x Counter High)	282
INDXxCNTL (Index x Counter Low)	
INDXxHLD (Index x Counter Hold)	
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
INTCON3 (Interrupt Control 3)	99
INTCON4 (Interrupt Control 4)	100
INTTREG (Interrupt Control and Status)	
INTxTMRH (Interval x Timer High)	
INTxTMRL (Interval x Timer Low)	
INTXHLDH (Interval x Timer Hold High)	
INTXxHLDL (Interval x Timer Hold Low)	
LATx (Output Data for PORTx)	
LFSR (Linear Feedback Shift)	203
LOGCONy (Combinatorial PWM Logic	400
Control y)	
MBISTCON (MBIST Control)	
MDC (Master Duty Cycle)	195
MPER (Master Period)	
MPHASE (Master Phase)	
NVMADR (Nonvolatile Memory Lower Address)	
NVMADRU (Nonvolatile Memory Upper Address)	70
NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control)	70 68
NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key)	70 68
NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data	70 68 71
NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High)	70 68 71
NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data	70 68 71 72
NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low)	70 68 71 72 72
NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx)	70 68 71 72 72 .108
NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control)	70 68 71 72 72 . 108 . 168
NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning)	70 68 71 72 72 72 72 108 168 173
NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control)	70 68 71 72 72 72 72 72 108 168 173 193
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) 	70 68 71 72
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) 	70 68 71 72
NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control)	70 68 71 72
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) 	70 68 71 72
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONH (PWM Generator x Control High) 	70 68 71 72
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCCON (Oscillator Control) PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) PGxDC (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x 	70 68 71 72
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCCUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) PGxDC (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Duty Cycle Adjustment) 	70 68 71 72 108 168 173 205 204 219 220
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) PGxDCA (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Duty Cycle) PGxDTH (PWM Generator x Dead-Time High) 	70 68 71 72 108 168 173 205 204 219 220 222
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) PGxDCA (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Dead-Time High) PGxDTL (PWM Generator x Dead-Time Low) 	70 68 71 72 108 168 173 205 204 219 220 222 222
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) PGxDCA (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Dead-Time High) PGxDTL (PWM Generator x Dead-Time Low) PGxEVTH (PWM Generator x Event High) 	70 68 71 72 108 168 173 205 204 219 220 222 222 212
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCONL (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) PGxDCA (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Dead-Time High) PGxDTL (PWM Generator x Event High) PGxEVTH (PWM Generator x Event High) 	70 68 71 72 108 168 173 205 204 219 220 222 222 212
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low). ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) PGxDCA (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Dead-Time High) PGxEVTH (PWM Generator x Event High) PGxEVTL (PWM Generator x Event High) PGxEVTL (PWM Generator x Event High) PGxEVTL (PWM Generator x Event Low) PGxIOCONH (PWM Generator x Event Low) 	70 68 71 72 108 168 173 205 204 219 220 222 222 212 211
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCCON (Oscillator Control)	70 68 71 72 108 168 173 205 204 219 220 222 222 212 211
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low). ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) PGxDCA (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Dead-Time High) PGxDTH (PWM Generator x Dead-Time High) PGxDTH (PWM Generator x Event High) PGxEVTH (PWM Generator x Event High) PGxEVTL (PWM Generator x Isolar-Time Low) PGxIOCONH (PWM Generator x Isolar-Time Low) PGxEVTL (PWM Generator x Isolar-Time Low) PGxIOCONH (PWM Generator x Isolar-Time Low) PGXIOCONL (PWM Generator x Isolar-Time Low) 	70 68 71 72 108 168 173 205 204 219 220 222 222 212 211 210
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low). ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCOAP (PWM Generator x Capture) PGxDCA (PWM Generator x Control High) PGxDCA (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Dead-Time High) PGxDTL (PWM Generator x Dead-Time Low) PGxEVTL (PWM Generator x Event High) PGxLCONH (PWM Generator x Levent High) PGxLCONH (PWM Generator x Levent High) PGxLOCONH (PWM Generator x Is the construction of the con	70 68 71 72 108 168 173 205 204 219 220 222 222 212 211 210
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low). ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning). PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) PGxCONL (PWM Generator x Control Low) PGxDCA (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Dead-Time High) PGxDTH (PWM Generator x Dead-Time Low) PGxEVTL (PWM Generator x Event High) PGxEVTL (PWM Generator x Event Low) PGxIOCONH (PWM Generator x Iterator x I/O Control High) PGxIOCONL (PWM Generator x Iterator X I/O Control High) 	70 68 71 72 108 168 173 205 204 219 220 222 212 211 210 209
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low). ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control). OSCTUN (FRC Oscillator Tuning). PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxDCA (PWM Generator x Control High) PGxDCA (PWM Generator x Control Low) PGxDCA (PWM Generator x Dead-Time High) PGxDTH (PWM Generator x Dead-Time High) PGxDTH (PWM Generator x Event High) PGxLVTL (PWM Generator x Event High) PGxIOCONH (PWM Generator x Is provide the second the second to the second	70 68 71 72 108 168 173 205 204 219 220 222 212 211 210 209
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low). ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PCLKCON (PWM Clock Control) PGxCONH (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) PGxCONL (PWM Generator x Control Low) PGxDCA (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Dead-Time High) PGxDTH (PWM Generator x Dead-Time Low) PGxEVTH (PWM Generator x Event High) PGxIOCONH (PWM Generator x Is provide the second the second to t	70 68 71 72 108 168 173 205 204 219 220 222 212 211 210 209 218
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning). PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONH (PWM Generator x Control High) PGxCONL (PWM Generator x Control Low) PGxDCA (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Dead-Time High) PGxDTH (PWM Generator x Event High) PGxEVTH (PWM Generator x Event High) PGxLOCONH (PWM Generator x Leading-Edge Blanking High) PGxLEBL (PWM Generator x Leading-Edge Blanking Low) 	70 68 71 72 108 168 173 205 204 219 220 222 212 211 210 209 218 217
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low). ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control). OSCTUN (FRC Oscillator Tuning). PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONL (PWM Generator x Control High) PGxCONL (PWM Generator x Control Low) PGxDC (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Dead-Time High) PGxDTH (PWM Generator x Event High) PGxDTL (PWM Generator x Event High) PGxLOCONH (PWM Generator x Leading-Edge Blanking High) PGxLEBL (PWM Generator x Period) 	70 68 71 72 108 168 173 193 223 205 224 219 220 222 212 211 210 209 218 217 220
 NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (NVM Source Data Address High) NVMSRCADRL (NVM Source Data Address Low) ODCx (Open-Drain Enable for PORTx) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning). PCLKCON (PWM Clock Control) PGxCAP (PWM Generator x Capture) PGxCONH (PWM Generator x Control High) PGxCONL (PWM Generator x Control Low) PGxDCA (PWM Generator x Duty Cycle) PGxDCA (PWM Generator x Dead-Time High) PGxDTH (PWM Generator x Event High) PGxEVTH (PWM Generator x Event High) PGxLOCONH (PWM Generator x Leading-Edge Blanking High) PGxLEBL (PWM Generator x Leading-Edge Blanking Low) 	70 68 71 72 108 168 173 193 223 205 224 219 220 222 212 211 210 209 218 217 220 218 217 220 219

$DO_{T}TDIOA_{T}(DA_{T}A_{T}OA_{T}OA_{T}OOA_{T}OOA_{T}OOA_{T}OOA_{T}OOA_{T}OOOA_{T}OOOOOOOOO$
PGxTRIGA (PWM Generator x Trigger A) 221
PGxTRIGB (PWM Generator x Trigger B)221
PGxTRIGC (PWM Generator x Trigger C)221
PGxyPCIH (PWM Generator xy PCI High)
PGxyPCIL (PWM Generator xy PCI Low)213
PLLDIV (PLL Output Divider)174
PLLFBD (PLL Feedback Divider)
PMD1 (PMD1 Control)
PMD2 (PMD2 Control)
PMD3 (PMD3 Control)
PMD4 (PMD4 Control)421
PMD6 (PMD6 Control)
PMD7 (PMD7 Control)423
PMD8 (PMD8 Control)
PORTx (Input Data for PORTx) 107
POSxCNTH (Position x Counter High)276
POSxCNTL (Position x Counter Low)
POSxHLD (Position x Counter Hold)277
PTGADJ (PTG Adjust)
PTGBTE (PTG Broadcast Trigger Enable Low) 384
PTGBTEH (PTG Broadcast Trigger
Enable High)
PTGC0LIM (PTG Counter 0 Limit)
PTGC1LIM (PTG Counter 1 Limit)
PTGCON (PTG Control/Status High)
PTGCST (PTG Control/Status Low)
PTGHOLD (PTG Hold)
PTGL0 (PTG Literal 0)
PTGQPTR (PTG Step Queue Pointer)
PTGQUEn (PTG Step Queue n Pointer)
PTGSDLIM (PTG Step Delay Limit)
PTGT0LIM (PTG Timer0 Limit)
PTGT1LIM (PTG Timer1 Limit)
PWMEVTy (PWM Event Output Control y)201
QEIxCON (QEIx Control)
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 Compare High) 286 QEIxGECL (QEIx Greater Than or Equal 286 Compare Low) 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxIOC (QEIx I/O Control) 272
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 Compare High) 286 QEIxGECL (QEIx Greater Than or Equal 286 Compare Low) 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxIOC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 Compare High) 286 QEIxGECL (QEIx Greater Than or Equal 286 Compare Low) 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxIOC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 273
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 Compare High) 286 QEIxGECL (QEIx Greater Than or Equal 286 Compare Low) 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxIOC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 273
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxIOC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxIOC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal Compare High) Compare High) 285 QEIxLECL (QEIx Less Than or Equal 285
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture High) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxIOC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Less Than or Equal 200 Compare Low) 285
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture High) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxIOC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Less Than or Equal 200 Compare Low) 285
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 Compare High) 286 QEIxGECL (QEIx Greater Than or Equal 286 Compare Low) 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 285 QEIxLECL (QEIx Less Than or Equal 285 QEIxSTAT (QEIx Status) 274
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 Compare High) 286 QEIxGECL (QEIx Greater Than or Equal 286 Compare Low) 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 285 QEIxLECL (QEIx Less Than or Equal 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxIOC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Less Than or Equal 200 Compare Low) 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONH (Reference Clock Control High) 179
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxIOC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Less Than or Equal 200 Compare Low) 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONH (Reference Clock Control High) 179
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture High) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Less Than or Equal 200 Compare Low) 285 QEIXSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONH (Reference Clock Control High) 179 REFOCONL (Reference Clock Control Low) 178
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Less Than or Equal 200 Compare Low) 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONH (Reference Clock Control High) 179 REFOCONL (Reference Clock Control Low) 178 REFOTRIM (Reference Oscillator Trim) 179
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 265 Compare Low) 285 QEIXECL (QEIx Status) 274 RCON (Reset Control) 81 REFOCONL (Reference Clock Control High) 179 REFOCONL (Reference Oscillator Trim) 179 RPCON (Peripheral Remapping Configuration) 127
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 265 Compare Low) 285 QEIXECL (QEIx Status) 274 RCON (Reset Control) 81 REFOCONL (Reference Clock Control High) 179 REFOCONL (Reference Oscillator Trim) 179 RPCON (Peripheral Remapping Configuration) 127
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICH (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxIOCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Less Than or Equal 200 Compare Low) 285 QEIXSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONL (Reference Clock Control High) 179 REFOCONL (Reference Oscillator Trim) 179 RPCON (Peripheral Remapping Configuration) 127 RPINR0 (Peripheral Pin Select Input 0) 127
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal Compare High) 286 QEIxGECL (QEIx Greater Than or Equal Compare Low) 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture High) 284 QEIXICC (QEIx Initialization/Capture Low) 284 QEIXICC (QEIx I/O Control) 272 QEIXICCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal Compare High) 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONH (Reference Clock Control High) 179 REFOCONL (Reference Oscillator Trim) 179 REFOTRIM (Reference Oscillator Trim) 177 RPINR0 (Peripheral Remapping Configuration) 127 RPINR1 (Peripheral Pin Select Input 0) 127
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal Compare High) 286 QEIxGECL (QEIx Greater Than or Equal Compare Low) 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxICCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal Compare High) 285 QEIxLECL (QEIx Less Than or Equal Compare Low) 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONL (Reference Clock Control High) 179 REFOCONL (Reference Oscillator Trim) 179 REFOTRIM (Reference Oscillator Trim) 172 RPINR0 (Peripheral Remapping Configuration) 127 RPINR1 (Peripheral Pin Select Input 1) 128 RPINR11 (Peripheral Pin Select Input 11) 131
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal Compare High) 286 QEIxGECL (QEIx Greater Than or Equal Compare Low) 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxICCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal Compare High) 285 QEIxLECL (QEIx Less Than or Equal Compare Low) 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONL (Reference Clock Control High) 179 REFOCONL (Reference Oscillator Trim) 179 REFOTRIM (Reference Oscillator Trim) 172 RPINR0 (Peripheral Remapping Configuration) 127 RPINR1 (Peripheral Pin Select Input 1) 128 RPINR11 (Peripheral Pin Select Input 11) 131
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxICCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 273 Compare High) 285 QEIxLECL (QEIx Less Than or Equal 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONL (Reference Clock Control High) 179 REFOCONL (Reference Oscillator Trim) 179 REFOTRIM (Reference Oscillator Trim) 179 RPCON (Peripheral Remapping Configuration) 127 RPINR0 (Peripheral Pin Select Input 0) 127 RPINR1 (Peripheral Pin Select Input 1) 131 RPINR12 (Peripheral Pin Select Input 12) 132
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxICCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Status) 274 RCON (Reset Control) 81 REFOCONL (Reference Clock Control High) 179 REFOCONL (Reference Clock Control Low) 178 REFOCONL (Reference Oscillator Trim) 179 RPOCON (Peripheral Remapping Configuration) 127 RPINR1 (Peripheral Pin Select Input 1) 131 RPINR11 (Peripheral Pin Select Input 11) 131 RPINR12 (Peripheral Pin Select Input 12) 132 RPINR13 (Peripheral Pin Select Input 13) 132
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxICCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Status) 274 RCON (Reset Control) 81 REFOCONL (Reference Clock Control High) 179 REFOCONL (Reference Oscillator Trim) 179 REFOCONL (Reference Oscillator Trim) 177 RPINR0 (Peripheral Pin Select Input 0) 127 RPINR1 (Peripheral Pin Select Input 1) 131 RPINR11 (Peripheral Pin Select Input 1) 132 RPINR13 (Peripheral Pin Select Input 13) 132 RPINR14 (Peripheral Pin Select Input 14) 133
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxICCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Status) 274 RCON (Reset Control) 81 REFOCONL (Reference Clock Control High) 179 REFOCONL (Reference Clock Control Low) 178 REFOCONL (Reference Oscillator Trim) 179 RPOCON (Peripheral Remapping Configuration) 127 RPINR1 (Peripheral Pin Select Input 1) 131 RPINR11 (Peripheral Pin Select Input 11) 131 RPINR12 (Peripheral Pin Select Input 12) 132 RPINR13 (Peripheral Pin Select Input 13) 132
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxICCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Status) 274 RCON (Reset Control) 81 REFOCONL (Reference Clock Control High) 179 REFOCONL (Reference Clock Control Low) 178 REFOCONL (Reference Clock Control Low) 179 RPCON (Peripheral Remapping Configuration) 127 RPINR1 (Reference Input 1) 128 RPINR1 (Peripheral Pin Select Input 1) 131 RPINR11 (Peripheral Pin Select Input 1) 132 RPINR13 (Peripheral Pin Select Input 13) 132 RPINR14 (Peripheral Pin Select Input 14) 133 RPINR15 (Peripheral Pin Select Input 15) 133
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxICCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxLECL (QEIx Less Than or Equal 200 Compare Low) 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONL (Reference Clock Control High) 179 REFOCONL (Reference Clock Control Low) 178 REFOCONL (Reference Oscillator Trim) 179 RPCON (Peripheral Remapping Configuration) 127 RPINR1 (Peripheral Pin Select Input 1) 128 RPINR11 (Peripheral Pin Select Input 1) 131 RPINR12 (Peripheral Pin Select Input 1) 132 RPINR13 (Peripheral Pin Select Input 13) 132 RPINR14 (Periphera
QEIxCON (QEIx Control)270QEIxGECH (QEIx Greater Than or Equal Compare High)286QEIxGECL (QEIx Greater Than or Equal Compare Low)286QEIxICH (QEIx Initialization/Capture High)284QEIxICL (QEIx Initialization/Capture Low)284QEIxICC (QEIx I/O Control)272QEIxICCH (QEIx I/O Control High)273QEIxLECH (QEIx Less Than or Equal Compare High)285QEIxLECL (QEIx Less Than or Equal Compare Low)285QEIxSTAT (QEIx Status)274RCON (Reset Control)81REFOCONH (Reference Clock Control High)179REFOCONL (Reference Clock Control Low)178REFOTRIM (Reference Oscillator Trim)179RPCON (Peripheral Remapping Configuration)127RPINR1 (Peripheral Pin Select Input 1)131RPINR12 (Peripheral Pin Select Input 1)132RPINR13 (Peripheral Pin Select Input 12)133RPINR14 (Peripheral Pin Select Input 14)133RPINR15 (Peripheral Pin Select Input 15)133RPINR16 (Peripheral Pin Select Input 16)134RPINR17 (Peripheral Pin Select Input 17)134
QEIxCON (QEIx Control)270QEIxGECH (QEIx Greater Than or Equal Compare High)286QEIxGECL (QEIx Greater Than or Equal Compare Low)286QEIxICH (QEIx Initialization/Capture High)284QEIxICL (QEIx Initialization/Capture Low)284QEIxICC (QEIx I/O Control)272QEIxICCH (QEIx I/O Control High)273QEIxLECH (QEIx Less Than or Equal Compare High)285QEIxLECL (QEIx Less Than or Equal Compare Low)285QEIxSTAT (QEIx Status)274RCON (Reset Control)81REFOCONH (Reference Clock Control High)179REFOCONL (Reference Clock Control Low)178REFOTRIM (Reference Oscillator Trim)179RPCON (Peripheral Remapping Configuration)127RPINR1 (Peripheral Pin Select Input 1)131RPINR12 (Peripheral Pin Select Input 1)132RPINR13 (Peripheral Pin Select Input 12)133RPINR14 (Peripheral Pin Select Input 14)133RPINR15 (Peripheral Pin Select Input 15)133RPINR16 (Peripheral Pin Select Input 16)134RPINR17 (Peripheral Pin Select Input 17)134
QEIxCON (QEIx Control)270QEIxGECH (QEIx Greater Than or Equal Compare High)286QEIxGECL (QEIx Greater Than or Equal Compare Low)286QEIxICH (QEIx Initialization/Capture High)284QEIxICL (QEIx Initialization/Capture Low)284QEIxICC (QEIx I/O Control)272QEIxICCH (QEIx I/O Control High)273QEIxLECH (QEIx Less Than or Equal Compare High)285QEIxLECL (QEIx Less Than or Equal Compare Low)285QEIxSTAT (QEIx Status)274RCON (Reset Control)81REFOCONH (Reference Clock Control High)179REFOCONL (Reference Clock Control High)179REFOTRIM (Reference Oscillator Trim)179RPCON (Peripheral Remapping Configuration)127RPINR1 (Peripheral Pin Select Input 1)131RPINR11 (Peripheral Pin Select Input 1)132RPINR13 (Peripheral Pin Select Input 1)133RPINR14 (Peripheral Pin Select Input 14)133RPINR15 (Peripheral Pin Select Input 15)133RPINR16 (Peripheral Pin Select Input 15)134RPINR16 (Peripheral Pin Select Input 16)134RPINR17 (Peripheral Pin Select Input 17)134RPINR18 (Peripheral Pin Select Input 18)135
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxICH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONH (Reference Clock Control High) 179 REFOCONL (Reference Clock Control Low) 178 REFOCONL (Reference Oscillator Trim) 179 RPCON (Peripheral Pin Select Input 0) 127 RPINR1 (Peripheral Pin Select Input 1) 131 RPINR1 (Peripheral Pin Select Input 1) 128 RPINR12 (Peripheral Pin Select Input 1) 132 RPINR13 (Peripheral Pin Select Input 13) 132 RPINR14 (Peripheral Pin Select Input 14) 133 RPINR15 (Peripheral Pin Select Input 15) 133 RPINR16 (Peripheral Pin Select Input 16) 134
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxICCH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONH (Reference Clock Control High) 179 REFOCONL (Reference Oscillator Trim) 177 REFOCONL (Reference Oscillator Trim) 177 RPINR0 (Peripheral Pin Select Input 0) 127 RPINR1 (Peripheral Pin Select Input 1) 131 RPINR1 (Peripheral Pin Select Input 1) 132 RPINR13 (Peripheral Pin Select Input 13) 132 RPINR14 (Peripheral Pin Select Input 14) 133 RPINR15 (Peripheral Pin Select Input 15) 133 RPINR16 (Peripheral Pin Select Input 16) 134
QEIxCON (QEIx Control) 270 QEIxGECH (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxGECL (QEIx Greater Than or Equal 286 QEIxICH (QEIx Initialization/Capture High) 284 QEIxICL (QEIx Initialization/Capture Low) 284 QEIxICC (QEIx I/O Control) 272 QEIxICH (QEIx I/O Control High) 273 QEIxLECH (QEIx Less Than or Equal 200 Compare High) 285 QEIxSTAT (QEIx Status) 274 RCON (Reset Control) 81 REFOCONH (Reference Clock Control High) 179 REFOCONL (Reference Clock Control Low) 178 REFOCONL (Reference Oscillator Trim) 179 RPCON (Peripheral Pin Select Input 0) 127 RPINR1 (Peripheral Pin Select Input 1) 131 RPINR1 (Peripheral Pin Select Input 1) 128 RPINR12 (Peripheral Pin Select Input 1) 132 RPINR13 (Peripheral Pin Select Input 13) 132 RPINR14 (Peripheral Pin Select Input 14) 133 RPINR15 (Peripheral Pin Select Input 14) 133 RPINR15 (Peripheral Pin Select Input 16) 134

RPINR21 (Peripheral Pin Select Input 21)	136
RPINR22 (Peripheral Pin Select Input 22)	137
RPINR23 (Peripheral Pin Select Input 23)	
RPINR27 (Peripheral Pin Select Input 27)	
RPINR29 (Peripheral Pin Select Input 29)	
RPINR3 (Peripheral Pin Select Input 3)	
RPINR30 (Peripheral Pin Select Input 30)	
RPINR37 (Peripheral Pin Select Input 37)	139
RPINR38 (Peripheral Pin Select Input 38)	140
RPINR4 (Peripheral Pin Select Input 4)	129
RPINR42 (Peripheral Pin Select Input 42)	140
RPINR43 (Peripheral Pin Select Input 43)	
RPINR44 (Peripheral Pin Select Input 44)	
RPINR45 (Peripheral Pin Select Input 45)	
RPINR46 (Peripheral Pin Select Input 46)	
RPINR47 (Peripheral Pin Select Input 47)	
RPINR48 (Peripheral Pin Select Input 48)	
RPINR49 (Peripheral Pin Select Input 49)	
RPINR5 (Peripheral Pin Select Input 5)	
RPINR6 (Peripheral Pin Select Input 6)	130
RPINR7 (Peripheral Pin Select Input 7)	
RPOR0 (Peripheral Pin Select Output 0)	
RPOR1 (Peripheral Pin Select Output 1)	
RPOR10 (Peripheral Pin Select Output 10)	
RPOR11 (Peripheral Pin Select Output 11)	
RPOR12 (Peripheral Pin Select Output 12)	
RPOR13 (Peripheral Pin Select Output 13)	
RPOR14 (Peripheral Pin Select Output 14)	
RPOR15 (Peripheral Pin Select Output 15)	152
RPOR16 (Peripheral Pin Select Output 16)	153
RPOR17 (Peripheral Pin Select Output 17)	153
RPOR18 (Peripheral Pin Select Output 18)	
RPOR19 (Peripheral Pin Select Output 19)	
RPOR2 (Peripheral Pin Select Output 2)	
RPOR3 (Peripheral Pin Select Output 3)	
RPOR4 (Peripheral Pin Select Output 4)	
RPOR5 (Peripheral Pin Select Output 4)	
RPOR6 (Peripheral Pin Select Output 6)	
RPOR7 (Peripheral Pin Select Output 7)	
RPOR8 (Peripheral Pin Select Output 8)	
RPOR9 (Peripheral Pin Select Output 9)	
SENTxCON1 (SENTx Control 1)	341
SENTxDATH (SENTx Receive Data High)	345
SENTxDATL (SENTx Receive Data Low)	
SENTxSTAT (SENTx Status)	343
SLPxCONH (DACx Slope Control High)	263
SLPxCONL (DACx Slope Control Low)	
SLPxDAT (DACx Slope Data)	265
SPIxCON1H (SPIx Control 1 High)	316
SPIxCON1L (SPIx Control 1 Low)	
SPIxCON2L (SPIx Control 2 Low)	
SPIxIMSKH (SPIx Interrupt Mask High)	
SPIxIMSKL (SPIx Interrupt Mask Low)	322
SPIxSTATH (SPIx Status High)	321
SPIxSTATL (SPIx Status Low)	319
SR (CPU STATUS)	30, 94
T1CON (Timer1 Control)	
TRISx (Output Enable for PORTx)	
UxBRG (UARTx Baud Rate)	298
UxBRGH (UARTx Baud Rate High)	298
UxINT (UARTx Interrupt)	
UxMODE (UARTx Configuration)	
UxMODEH (UARTx Configuration High)	
UxP1 (UARTx Timing Parameter 1)	
UxP2 (UARTx Timing Parameter 2)	
UxP3 (UARTx Timing Parameter 3)	302

dsPIC33CK64MP105 FAMILY

UxP3H (UARTx Timing Parameter 3 High)	302
UxRXCHK (UARTx Receive Checksum)	304
UxRXREG (UARTx Receive Buffer)	
UxSCCON (UARTx Smart Card Configuration)	
UxSCINT (UARTx Smart Card Interrupt)	
UxSTA (UARTx Status)	
UxSTAH (UARTx Status High)	
UxTXCHK (UARTx Transmit Checksum)	
UxTXREG (UARTx Transmit Buffer)	
VELxCNT (Velocity x Counter)	278
VELxCNTH (Velocity x Counter High)	
VELxHLD (Velocity x Counter Hold)	
VREGCON (Voltage Regulator Control)	
WDTCONH (Watchdog Timer Control High)	
WDTCONL (Watchdog Timer Control Low)	448
Resets	
Brown-out Reset (BOR)	79
Configuration Mismatch Reset (CM)	
Illegal Condition Reset (IOPUWR)	
Illegal Opcode	
Security	
Uninitialized W Register	79
Master Clear (MCLR) Pin Reset	
Power-on Reset (POR)	79
RESET Instruction (SWR)	
Resources	80
Trap Conflict Reset (TRAPR)	79
Watchdog Timer Time-out Reset (WDTO)	
Revision History	

S

•	
SENTx Protocol Data Frames	
Serial Peripheral Interface (SPI) 309	ļ
Serial Peripheral Interface. See SPI.	
SFR Blocks	
000h	,
100h	
200h	;
300h-400h	5
800h	,
900h	5
A00h	,
B00h	1
C00h	1
D00h51	
E00h51	
F00h52	2
Single-Edge Nibble Transmission (SENT)	/
Control/Status Registers	
Receive Mode	
Configuration	
Transmit Mode	1
Configuration	1
Single-Edge Nibble Transmission for	
Automotive Applications	,
Single-Edge Nibble Transmission. See SENT.	
Special Features of the CPU	,
SPI	
Control/Status Registers	,

Т

-	
Timer1	347
Control Register	348
Timing Diagrams	
BOR and Master Clear Reset Characteristics	479
Clock/Instruction Cycle	164
External Clock	477
High-Speed PWMx Characteristics	480
I/O Characteristics	476
I2Cx Bus Data (Master Mode)	484
I2Cx Bus Data (Slave Mode)	486
I2Cx Bus Start/Stop Bits (Master Mode)	484
I2Cx Bus Start/Stop Bits (Slave Mode)	486
QEI Interface Signals	267
SPIx Master Mode (CKE = 0) Characteristics	481
SPIx Master Mode (CKE = 1) Characteristics	481
SPIx Slave Mode (CKE = 0) Characteristics	482
SPIx Slave Mode (CKE = 1) Characteristics	483
UARTx Characteristics	488

U

W

Watchdog Timer (WDT)	427
WWW Address	530
WWW, On-Line Support	10

NOTES:

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support

dsPIC33CK64MP105

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Architecture Flash Memor Program Mer Product Grou Pin Count Tape and Ree Temperature Package	dsPIC 33 CK 64 MP 105 T 1 / PT - XXX ademark	Examples: dsPIC33CK64MP105-I/PT: dsPIC33, Motor Control, 64-Kbyte Program Memory, SMPS, 48-Pin, Industrial Temperature, TQFP Package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Product Group:	MP = Motor Control/Power Supply	
Pin Count:	02 = 28-pin 03 = 36-pin 05 = 48-pin	
Temperature Range:	$ \begin{array}{rcl} I &=& -40^{\circ}\text{C to } +85^{\circ}\text{C (Industrial)} \\ E &=& -40^{\circ}\text{C to } +125^{\circ}\text{C (Extended)} \\ H &=& -40^{\circ}\text{C to } +150^{\circ}\text{C (High)} \end{array} $	
Package:	SS = Plastic Shrink Small Outline - (28-pin) 5.30 mm body (SSOP)M6 = Ultra Thin Plastic Quad Flat, No Lead - (28-pin) 4x4 mm body (UQFN)2N = Ultra Thin Plastic Quad Flat, No Lead - (28-pin) 6x6 mm body (UQFN)M5 = Ultra Thin Plastic Quad Flat, No Lead - (36-pin) 5x5 mm body (UQFN)PT = Thin Quad Flatpack - (48-pin) 7x7 mm body (TQFP)M4 = Ultra Thin Plastic Quad Flat, No Lead - (48-pin) 6x6 mm body (UQFN)	

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- · Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are
 committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection
 feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or
 other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc 0}}$ 2018-2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-6952-0

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 **Technical Support:** http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 81-6-6152-7160

Tel: 81-3-6880- 3770

Tel: 82-53-744-4301

Tel: 82-2-554-7200

Tel: 60-3-7651-7906

Tel: 63-2-634-9065

Tel: 65-6334-8870

Taiwan - Kaohsiung

Tel: 886-2-2508-8600

Thailand - Bangkok

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim

Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Tel: 91-20-4121-0141 Japan - Osaka

Japan - Tokyo

Korea - Daegu

Korea - Seoul

Malaysia - Kuala Lumpur

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila

Singapore

Taiwan - Hsin Chu Tel: 886-3-577-8366

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 66-2-694-1351

Fax: 31-416-690340

Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg