

General Description

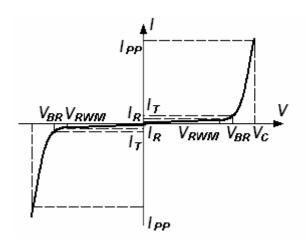
The LESD5D5.0CT1G is designed to protect voltage sensitive components from ESD and transient voltage events. Excellent clamping capability, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium.

Applications

- Cellular phones
- Portable devices
- Digital cameras
- Power supplies

Features

- Small Body Outline Dimensions
- Low Body Height
- Peak Power up to 150 Watts @ 8 x 20 _s
 Pulse
- Low Leakage current
- Response Time is Typically < 1 ns
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- IEC61000-4-2 Level 4 ESD Protection
- IEC61000-4-4 Level 4 EFT Protection


Absolute Ratings (T_{amb}=25°C)

Symbol	Parameter	Value	Units
P_{PP}	Peak Pulse Power ($t_p = 8/20 \mu s$)	150	W
TL	Maximum lead temperature for soldering during 10s	260	°C
T _{stg}	Storage Temperature Range	-55 to +155	°C
T_{op}	Operating Temperature Range	-40 to +125	°C
Tj	Maximum junction temperature	150	°C
	IEC61000-4-2 (ESD) air discharge contact discharge	±15 ±8	KV
	IEC61000-4-4 (EFT)	40	Α
	ESD Voltage Per Human Body Model	16	KV

Electrical Parameter

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V_{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
I _T	Test Current
V_{BR}	Breakdown Voltage @ I _T

Electrical Characteristics Ratings at 25°C ambient temperature unless otherwise specified.VF = 0.9V at IF = 10mA

Device	V _{RWM} (V)	I _R (uA) @ V _{RWM}		/)@ I _T te 1)	Ι _τ	V _C (V) @ I _{PP} =5 A*	V _C (V) @ Max I _{PP} *	I _{PP} (A)*	P _{PK} (W)*	C (pF)
	Max	Max	Min	Max	mA	Тур	Max	Max	Max	Тур
LESD5D5.0CT1G	5.0	1	5.6	7.8	1.0	11.6	18.6	9.4	174	15

^{*}Surge current waveform per Figure 1.

1. V_{BR} is measured with a pluse test current I_T at an ambient temperature of 25 $^\circ\!\!\!\!\!\!\!^\circ$.

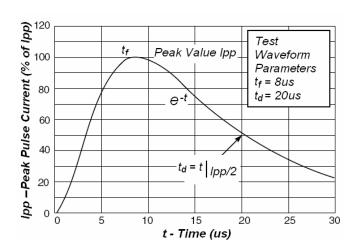


Fig1. Pulse Waveform

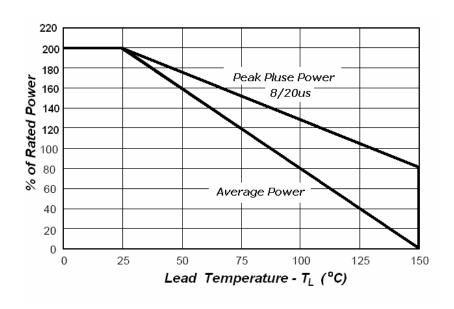
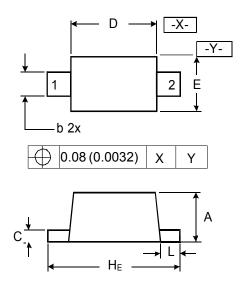


Fig2.Power Derating

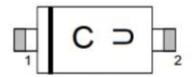
Application Note

Electrostatic discharge (ESD) is a major cause of failure in electronic systems. Transient Voltage Suppressors (TVS) are an ideal choice for ESD protection. They are capable of clamping the incoming transient to a low enough level such that damage to the protected semiconductor is prevented.


Surface mount TVS offers the best choice for minimal lead inductance. They serve as parallel protection elements, connected between the signal lines to ground. As the transient rises above the operating voltage of the device, the TVS becomes a low impedance path diverting the transient current to ground. The LESD5D5.0CT1G is the ideal board evel protection of ESD sensitive semiconductor components.

The tiny SOD-523 package allows design flexibility in the design of high density boards where the space saving is at a premium. This enables to shorten the routing and contributes to hardening against ESD.

Package outline dimensions


SOD-523

DIMENSIONS

SYMBOL	MILLIN	IETER	INCHES		
STIVIDOL	MIN	MAX	MIN	MAX	
Α	0.50	0.70	0.020	0.028	
b	0.25	0.35	0.010	0.014	
С	0.07	0.20	0.0028	0.0079	
D	1.10	1.30	0.043	0.051	
Е	0.70	0.90	0.028	0.035	
H _E	1.50	1.70	0.059	0.067	
L	0.15	0.25	0.006	0.010	

Marking

Ordering information

	Order code	Package	Baseqty	Delivery mode
ι	JMW LES5D5.0CT1G	SOD-523	3000	Tape and reel